提交 3da4acc3 编写于 作者: B buaawht

Merge branch 'develop' of https://github.com/PaddlePaddle/models into my-dev

......@@ -30,11 +30,12 @@ class SampleInfo(object):
label_bin_path (str): File containing the label data.
label_size (int): Byte count of the sample's label data.
label_frame_num (int): Label number of the sample.
sample_name (str): Key of the sample
"""
def __init__(self, feature_bin_path, feature_start, feature_size,
feature_frame_num, feature_dim, label_bin_path, label_start,
label_size, label_frame_num):
label_size, label_frame_num, sample_name):
self.feature_bin_path = feature_bin_path
self.feature_start = feature_start
self.feature_size = feature_size
......@@ -45,6 +46,7 @@ class SampleInfo(object):
self.label_start = label_start
self.label_size = label_size
self.label_frame_num = label_frame_num
self.sample_name = sample_name
class SampleInfoBucket(object):
......@@ -102,19 +104,28 @@ class SampleInfoBucket(object):
feature_bin_path = self._feature_bin_paths[block_idx]
feature_desc_path = self._feature_desc_paths[block_idx]
label_desc_lines = open(label_desc_path).readlines()
feature_desc_lines = open(feature_desc_path).readlines()
sample_num = int(label_desc_lines[0].split()[1])
assert sample_num == int(feature_desc_lines[0].split()[1])
label_desc_lines = []
if label_desc_path != "":
label_desc_lines = open(label_desc_path).readlines()
sample_num = int(feature_desc_lines[0].split()[1])
if label_desc_path != "":
assert sample_num == int(label_desc_lines[0].split()[1])
for i in xrange(sample_num):
feature_desc_split = feature_desc_lines[i + 1].split()
sample_name = feature_desc_split[0]
feature_start = int(feature_desc_split[2])
feature_size = int(feature_desc_split[3])
feature_frame_num = int(feature_desc_split[4])
feature_dim = int(feature_desc_split[5])
label_start = -1
label_size = -1
label_frame_num = feature_frame_num
if label_desc_path != "":
label_desc_split = label_desc_lines[i + 1].split()
label_start = int(label_desc_split[2])
label_size = int(label_desc_split[3])
......@@ -129,7 +140,7 @@ class SampleInfoBucket(object):
SampleInfo(feature_bin_path, feature_start,
feature_size, feature_frame_num, feature_dim,
label_bin_path, label_start, label_size,
label_frame_num))
label_frame_num, sample_name))
#split sentence
else:
cur_frame_pos = 0
......@@ -150,13 +161,12 @@ class SampleInfoBucket(object):
* feature_dim * 4, cur_frame_len * feature_dim *
4, cur_frame_len, feature_dim, label_bin_path,
label_start + cur_frame_pos * 4, cur_frame_len *
4, cur_frame_len))
4, cur_frame_len, sample_name))
remain_frame_num -= cur_frame_len
cur_frame_pos += cur_frame_len
if remain_frame_num <= 0:
break
return sample_info_list
......@@ -192,7 +202,7 @@ class AsyncDataReader(object):
def __init__(self,
feature_file_list,
label_file_list,
label_file_list="",
drop_frame_len=512,
proc_num=10,
sample_buffer_size=1024,
......@@ -221,9 +231,11 @@ class AsyncDataReader(object):
def generate_bucket_list(self, is_shuffle):
if self._block_info_list is None:
block_feature_info_lines = open(self._feature_file_list).readlines()
block_label_info_lines = open(self._label_file_list).readlines()
assert len(block_feature_info_lines) == len(block_label_info_lines)
self._block_info_list = []
if self._label_file_list != "":
block_label_info_lines = open(self._label_file_list).readlines()
assert len(block_feature_info_lines) == len(
block_label_info_lines)
for i in xrange(0, len(block_feature_info_lines), 2):
block_info = (block_feature_info_lines[i],
block_feature_info_lines[i + 1],
......@@ -231,6 +243,12 @@ class AsyncDataReader(object):
block_label_info_lines[i + 1])
self._block_info_list.append(
map(lambda line: line.strip(), block_info))
else:
for i in xrange(0, len(block_feature_info_lines), 2):
block_info = (block_feature_info_lines[i],
block_feature_info_lines[i + 1], "", "")
self._block_info_list.append(
map(lambda line: line.strip(), block_info))
if is_shuffle:
self._rng.shuffle(self._block_info_list)
......@@ -310,19 +328,25 @@ class AsyncDataReader(object):
sample_info.feature_dim,
len(feature_bytes))
label_data = None
if sample_info.label_bin_path != "":
label_bytes = read_bytes(sample_info.label_bin_path,
sample_info.label_start,
sample_info.label_size)
assert sample_info.label_frame_num * 4 == len(label_bytes), (
sample_info.label_bin_path, sample_info.label_array,
assert sample_info.label_frame_num * 4 == len(
label_bytes), (sample_info.label_bin_path,
sample_info.label_array,
len(label_bytes))
label_array = struct.unpack('I' * sample_info.label_frame_num,
label_bytes)
label_array = struct.unpack(
'I' * sample_info.label_frame_num, label_bytes)
label_data = np.array(
label_array, dtype='int64').reshape(
(sample_info.label_frame_num, 1))
else:
label_data = np.zeros(
(sample_info.label_frame_num, 1), dtype='int64')
feature_frame_num = sample_info.feature_frame_num
feature_dim = sample_info.feature_dim
......@@ -332,12 +356,11 @@ class AsyncDataReader(object):
feature_data = np.array(
feature_array, dtype='float32').reshape((
sample_info.feature_frame_num, sample_info.feature_dim))
sample_data = (feature_data, label_data)
sample_data = (feature_data, label_data,
sample_info.sample_name)
for transformer in self._transformers:
# @TODO(pkuyym) to make transfomer only accept feature_data
sample_data = transformer.perform_trans(sample_data)
while order_id != out_order[0]:
time.sleep(0.001)
......@@ -387,12 +410,14 @@ class AsyncDataReader(object):
batch_feature = np.zeros((lod[-1], frame_dim), dtype="float32")
batch_label = np.zeros((lod[-1], 1), dtype="int64")
start = 0
name_lst = []
for sample in batch_samples:
frame_num = sample[0].shape[0]
batch_feature[start:start + frame_num, :] = sample[0]
batch_label[start:start + frame_num, :] = sample[1]
start += frame_num
return (batch_feature, batch_label)
name_lst.append(sample[2])
return (batch_feature, batch_label, name_lst)
@suppress_complaints(verbose=self._verbose, notify=self._force_exit)
def batch_assembling_task(sample_generator, batch_queue):
......@@ -402,16 +427,16 @@ class AsyncDataReader(object):
batch_samples.append(sample)
lod.append(lod[-1] + sample[0].shape[0])
if len(batch_samples) == batch_size:
(batch_feature, batch_label) = batch_to_ndarray(
(batch_feature, batch_label, name_lst) = batch_to_ndarray(
batch_samples, lod)
batch_queue.put((batch_feature, batch_label, lod))
batch_queue.put((batch_feature, batch_label, lod, name_lst))
batch_samples = []
lod = [0]
if len(batch_samples) >= minimum_batch_size:
(batch_feature, batch_label) = batch_to_ndarray(batch_samples,
lod)
batch_queue.put((batch_feature, batch_label, lod))
(batch_feature, batch_label, name_lst) = batch_to_ndarray(
batch_samples, lod)
batch_queue.put((batch_feature, batch_label, lod, name_lst))
batch_queue.put(EpochEndSignal())
......
......@@ -22,7 +22,7 @@ class TestTransMeanVarianceNorm(unittest.TestCase):
feature = np.zeros((2, 120), dtype="float32")
feature.fill(1)
trans = trans_mean_variance_norm.TransMeanVarianceNorm(self._file_path)
(feature1, label1) = trans.perform_trans((feature, None))
(feature1, label1, name) = trans.perform_trans((feature, None, None))
(mean, var) = trans.get_mean_var()
feature_flat1 = feature1.flatten()
feature_flat = feature.flatten()
......@@ -70,7 +70,7 @@ class TestTransAddDelta(unittest.TestCase):
feature[2, 0:40].fill(3)
feature[3, 0:40].fill(4)
trans = trans_add_delta.TransAddDelta()
(feature, label) = trans.perform_trans((feature, None))
(feature, label, name) = trans.perform_trans((feature, None, None))
self.assertAlmostEqual(feature.shape[0], 4)
self.assertAlmostEqual(feature.shape[1], 120)
self.assertAlmostEqual(1.0, feature[0][0])
......@@ -93,7 +93,7 @@ class TestTransSplict(unittest.TestCase):
feature[i, :].fill(i)
trans = trans_splice.TransSplice()
(feature, label) = trans.perform_trans((feature, None))
(feature, label, name) = trans.perform_trans((feature, None, None))
self.assertEqual(feature.shape[1], 110)
for i in xrange(8):
......
......@@ -32,9 +32,9 @@ class TransAddDelta(object):
Args:
sample(object,tuple): contain feature numpy and label numpy
Returns:
(feature, label)
(feature, label, name)
"""
(feature, label) = sample
(feature, label, name) = sample
frame_dim = feature.shape[1]
d_frame_dim = frame_dim * 3
head_filled = 5
......@@ -64,7 +64,7 @@ class TransAddDelta(object):
start * d_frame_dim + 2 * frame_dim, frame_dim, nframe,
d_frame_dim)
mat.shape = tmp_shape
return (mat[head_filled:mat.shape[0] - tail_filled, :], label)
return (mat[head_filled:mat.shape[0] - tail_filled, :], label, name)
def _regress(self, data_in, start_in, data_out, start_out, size, n, step):
""" regress
......
......@@ -53,9 +53,9 @@ class TransMeanVarianceNorm(object):
Args:
sample(object):input sample, contain feature numpy and label numpy
Returns:
(feature, label)
(feature, label, name)
"""
(feature, label) = sample
(feature, label, name) = sample
shape = feature.shape
assert len(shape) == 2
nfeature_len = shape[0] * shape[1]
......@@ -68,4 +68,4 @@ class TransMeanVarianceNorm(object):
feature[ncur_idx:ncur_idx + self._nLen] = block
ncur_idx += self._nLen
feature = feature.reshape(shape)
return (feature, label)
return (feature, label, name)
......@@ -30,9 +30,9 @@ class TransSplice(object):
Args:
sample(object): input sample(feature, label)
Return:
(feature, label)
(feature, label, name)
"""
(feature, label) = sample
(feature, label, name) = sample
nframe_num = feature.shape[0]
nframe_dim = feature.shape[1]
nnew_frame_dim = nframe_dim * (
......@@ -61,4 +61,4 @@ class TransSplice(object):
np.copyto(ret[i * nnew_frame_dim:(i + 1) * nnew_frame_dim],
mat[i * nframe_dim:i * nframe_dim + nnew_frame_dim])
ret = ret.reshape((nframe_num, nnew_frame_dim))
return (ret, label)
return (ret, label, name)
......@@ -210,6 +210,7 @@ def train(args):
# train data reader
train_data_reader = reader.AsyncDataReader(args.train_feature_lst,
args.train_label_lst, -1)
train_data_reader.set_transformers(ltrans)
# train
for pass_id in xrange(args.pass_num):
......@@ -218,7 +219,7 @@ def train(args):
train_data_reader.batch_iterator(args.batch_size,
args.minimum_batch_size)):
# load_data
(features, labels, lod) = batch_data
(features, labels, lod, name_lst) = batch_data
feature_t.set(features, place)
feature_t.set_lod([lod])
label_t.set(labels, place)
......
......@@ -92,7 +92,9 @@ pos_enc_param_names = (
encoder_input_data_names = (
"src_word",
"src_pos",
"src_slf_attn_bias", )
"src_slf_attn_bias",
"src_slf_attn_pre_softmax_shape",
"src_slf_attn_post_softmax_shape", )
# Names of all data layers in decoder listed in order.
decoder_input_data_names = (
......@@ -100,6 +102,10 @@ decoder_input_data_names = (
"trg_pos",
"trg_slf_attn_bias",
"trg_src_attn_bias",
"trg_slf_attn_pre_softmax_shape",
"trg_slf_attn_post_softmax_shape",
"trg_src_attn_pre_softmax_shape",
"trg_src_attn_post_softmax_shape",
"enc_output", )
# Names of label related data layers listed in order.
......
......@@ -27,7 +27,14 @@ def translate_batch(exe, src_words, encoder, enc_in_names, enc_out_names,
is_target=False,
return_pos=True,
return_attn_bias=True,
return_max_len=True)
return_max_len=False)
# Append the shape inputs to reshape before and after softmax in encoder
# self attention.
enc_in_data = enc_in_data + [
np.array(
[-1, enc_in_data[2].shape[-1]], dtype="int32"), np.array(
enc_in_data[2].shape, dtype="int32")
]
enc_output = exe.run(encoder,
feed=dict(zip(enc_in_names, enc_in_data)),
fetch_list=enc_out_names)[0]
......@@ -35,8 +42,8 @@ def translate_batch(exe, src_words, encoder, enc_in_names, enc_out_names,
# Beam Search.
# To store the beam info.
scores = np.zeros((batch_size, beam_size), dtype="float32")
prev_branchs = [[]] * batch_size
next_ids = [[]] * batch_size
prev_branchs = [[] for i in range(batch_size)]
next_ids = [[] for i in range(batch_size)]
# Use beam_map to map the instance idx in batch to beam idx, since the
# size of feeded batch is changing.
beam_map = range(batch_size)
......@@ -64,8 +71,8 @@ def translate_batch(exe, src_words, encoder, enc_in_names, enc_out_names,
trg_words = np.array(
[[bos_idx]] * batch_size * beam_size, dtype="int64")
trg_pos = np.array([[1]] * batch_size * beam_size, dtype="int64")
src_max_length, src_slf_attn_bias, trg_max_len = enc_in_data[
-1], enc_in_data[-2], 1
src_max_length, src_slf_attn_bias, trg_max_len = enc_in_data[2].shape[
-1], enc_in_data[2], 1
# This is used to remove attention on subsequent words.
trg_slf_attn_bias = np.ones((batch_size * beam_size, trg_max_len,
trg_max_len))
......@@ -77,15 +84,33 @@ def translate_batch(exe, src_words, encoder, enc_in_names, enc_out_names,
trg_src_attn_bias = np.tile(
src_slf_attn_bias[:, :, ::src_max_length, :],
[beam_size, 1, trg_max_len, 1])
# Append the shape inputs to reshape before and after softmax in
# decoder self attention.
trg_slf_attn_pre_softmax_shape = np.array(
[-1, trg_slf_attn_bias.shape[-1]], dtype="int32")
trg_slf_attn_post_softmax_shape = np.array(
trg_slf_attn_bias.shape, dtype="int32")
# Append the shape inputs to reshape before and after softmax in
# encoder-decoder attention.
trg_src_attn_pre_softmax_shape = np.array(
[-1, trg_src_attn_bias.shape[-1]], dtype="int32")
trg_src_attn_post_softmax_shape = np.array(
trg_src_attn_bias.shape, dtype="int32")
enc_output = np.tile(enc_output, [beam_size, 1, 1])
return trg_words, trg_pos, trg_slf_attn_bias, trg_src_attn_bias, enc_output
return trg_words, trg_pos, trg_slf_attn_bias, trg_src_attn_bias, \
trg_slf_attn_pre_softmax_shape, trg_slf_attn_post_softmax_shape, \
trg_src_attn_pre_softmax_shape, trg_src_attn_post_softmax_shape, \
enc_output
def update_dec_in_data(dec_in_data, next_ids, active_beams):
"""
Update the input data of decoder mainly by slicing from the previous
input data and dropping the finished instance beams.
"""
trg_words, trg_pos, trg_slf_attn_bias, trg_src_attn_bias, enc_output = dec_in_data
trg_words, trg_pos, trg_slf_attn_bias, trg_src_attn_bias, \
trg_slf_attn_pre_softmax_shape, trg_slf_attn_post_softmax_shape, \
trg_src_attn_pre_softmax_shape, trg_src_attn_post_softmax_shape, \
enc_output = dec_in_data
trg_cur_len = len(next_ids[0]) + 1 # include the <bos>
trg_words = np.array(
[
......@@ -112,8 +137,23 @@ def translate_batch(exe, src_words, encoder, enc_in_names, enc_out_names,
trg_src_attn_bias = np.tile(trg_src_attn_bias[
active_beams_indice, :, ::trg_src_attn_bias.shape[2], :],
[1, 1, trg_cur_len, 1])
# Append the shape inputs to reshape before and after softmax in
# decoder self attention.
trg_slf_attn_pre_softmax_shape = np.array(
[-1, trg_slf_attn_bias.shape[-1]], dtype="int32")
trg_slf_attn_post_softmax_shape = np.array(
trg_slf_attn_bias.shape, dtype="int32")
# Append the shape inputs to reshape before and after softmax in
# encoder-decoder attention.
trg_src_attn_pre_softmax_shape = np.array(
[-1, trg_src_attn_bias.shape[-1]], dtype="int32")
trg_src_attn_post_softmax_shape = np.array(
trg_src_attn_bias.shape, dtype="int32")
enc_output = enc_output[active_beams_indice, :, :]
return trg_words, trg_pos, trg_slf_attn_bias, trg_src_attn_bias, enc_output
return trg_words, trg_pos, trg_slf_attn_bias, trg_src_attn_bias, \
trg_slf_attn_pre_softmax_shape, trg_slf_attn_post_softmax_shape, \
trg_src_attn_pre_softmax_shape, trg_src_attn_post_softmax_shape, \
enc_output
dec_in_data = init_dec_in_data(batch_size, beam_size, enc_in_data,
enc_output)
......
......@@ -32,7 +32,9 @@ def multi_head_attention(queries,
d_value,
d_model,
n_head=1,
dropout_rate=0.):
dropout_rate=0.,
pre_softmax_shape=None,
post_softmax_shape=None):
"""
Multi-Head Attention. Note that attn_bias is added to the logit before
computing softmax activiation to mask certain selected positions so that
......@@ -111,26 +113,16 @@ def multi_head_attention(queries,
"""
Scaled Dot-Product Attention
"""
# FIXME(guosheng): Optimize the shape in reshape_op or softmax_op.
# The current implementation of softmax_op only supports 2D tensor,
# consequently it cannot be directly used here.
# If to use the reshape_op, Besides, the shape of product inferred in
# compile-time is not the actual shape in run-time. It cann't be used
# to set the attribute of reshape_op.
# So, here define the softmax for temporary solution.
def __softmax(x, eps=1e-9):
exp_out = layers.exp(x=x)
sum_out = layers.reduce_sum(exp_out, dim=-1, keep_dim=False)
return layers.elementwise_div(x=exp_out, y=sum_out, axis=0)
scaled_q = layers.scale(x=q, scale=d_model**-0.5)
product = layers.matmul(x=scaled_q, y=k, transpose_y=True)
weights = __softmax(
layers.elementwise_add(
x=product, y=attn_bias) if attn_bias else product)
weights = layers.reshape(
x=layers.elementwise_add(
x=product, y=attn_bias) if attn_bias else product,
shape=[-1, product.shape[-1]],
actual_shape=pre_softmax_shape,
act="softmax")
weights = layers.reshape(
x=weights, shape=product.shape, actual_shape=post_softmax_shape)
if dropout_rate:
weights = layers.dropout(
weights, dropout_prob=dropout_rate, is_test=False)
......@@ -177,7 +169,7 @@ def positionwise_feed_forward(x, d_inner_hid, d_hid):
return out
def pre_post_process_layer(prev_out, out, process_cmd, dropout=0.):
def pre_post_process_layer(prev_out, out, process_cmd, dropout_rate=0.):
"""
Add residual connection, layer normalization and droput to the out tensor
optionally according to the value of process_cmd.
......@@ -195,8 +187,9 @@ def pre_post_process_layer(prev_out, out, process_cmd, dropout=0.):
param_attr=fluid.initializer.Constant(1.),
bias_attr=fluid.initializer.Constant(0.))
elif cmd == "d": # add dropout
if dropout:
out = layers.dropout(out, dropout_prob=dropout, is_test=False)
if dropout_rate:
out = layers.dropout(
out, dropout_prob=dropout_rate, is_test=False)
return out
......@@ -210,7 +203,7 @@ def prepare_encoder(src_word,
src_emb_dim,
src_pad_idx,
src_max_len,
dropout=0.,
dropout_rate=0.,
pos_pad_idx=0,
pos_enc_param_name=None):
"""Add word embeddings and position encodings.
......@@ -235,8 +228,8 @@ def prepare_encoder(src_word,
# FIXME(guosheng): Decouple the program desc with batch_size.
enc_input = layers.reshape(x=enc_input, shape=[batch_size, -1, src_emb_dim])
return layers.dropout(
enc_input, dropout_prob=dropout,
is_test=False) if dropout else enc_input
enc_input, dropout_prob=dropout_rate,
is_test=False) if dropout_rate else enc_input
prepare_encoder = partial(
......@@ -252,7 +245,9 @@ def encoder_layer(enc_input,
d_value,
d_model,
d_inner_hid,
dropout_rate=0.):
dropout_rate=0.,
pre_softmax_shape=None,
post_softmax_shape=None):
"""The encoder layers that can be stacked to form a deep encoder.
This module consits of a multi-head (self) attention followed by
......@@ -260,9 +255,9 @@ def encoder_layer(enc_input,
with the post_process_layer to add residual connection, layer normalization
and droput.
"""
attn_output = multi_head_attention(enc_input, enc_input, enc_input,
attn_bias, d_key, d_value, d_model,
n_head, dropout_rate)
attn_output = multi_head_attention(
enc_input, enc_input, enc_input, attn_bias, d_key, d_value, d_model,
n_head, dropout_rate, pre_softmax_shape, post_softmax_shape)
attn_output = post_process_layer(enc_input, attn_output, "dan",
dropout_rate)
ffd_output = positionwise_feed_forward(attn_output, d_inner_hid, d_model)
......@@ -277,7 +272,9 @@ def encoder(enc_input,
d_value,
d_model,
d_inner_hid,
dropout_rate=0.):
dropout_rate=0.,
pre_softmax_shape=None,
post_softmax_shape=None):
"""
The encoder is composed of a stack of identical layers returned by calling
encoder_layer.
......@@ -291,7 +288,9 @@ def encoder(enc_input,
d_value,
d_model,
d_inner_hid,
dropout_rate, )
dropout_rate,
pre_softmax_shape,
post_softmax_shape, )
enc_input = enc_output
return enc_output
......@@ -305,7 +304,11 @@ def decoder_layer(dec_input,
d_value,
d_model,
d_inner_hid,
dropout_rate=0.):
dropout_rate=0.,
slf_attn_pre_softmax_shape=None,
slf_attn_post_softmax_shape=None,
src_attn_pre_softmax_shape=None,
src_attn_post_softmax_shape=None):
""" The layer to be stacked in decoder part.
The structure of this module is similar to that in the encoder part except
......@@ -320,7 +323,9 @@ def decoder_layer(dec_input,
d_value,
d_model,
n_head,
dropout_rate, )
dropout_rate,
slf_attn_pre_softmax_shape,
slf_attn_post_softmax_shape, )
slf_attn_output = post_process_layer(
dec_input,
slf_attn_output,
......@@ -335,7 +340,9 @@ def decoder_layer(dec_input,
d_value,
d_model,
n_head,
dropout_rate, )
dropout_rate,
src_attn_pre_softmax_shape,
src_attn_post_softmax_shape, )
enc_attn_output = post_process_layer(
slf_attn_output,
enc_attn_output,
......@@ -363,7 +370,11 @@ def decoder(dec_input,
d_value,
d_model,
d_inner_hid,
dropout_rate=0.):
dropout_rate=0.,
slf_attn_pre_softmax_shape=None,
slf_attn_post_softmax_shape=None,
src_attn_pre_softmax_shape=None,
src_attn_post_softmax_shape=None):
"""
The decoder is composed of a stack of identical decoder_layer layers.
"""
......@@ -378,7 +389,11 @@ def decoder(dec_input,
d_value,
d_model,
d_inner_hid,
dropout_rate, )
dropout_rate,
slf_attn_pre_softmax_shape,
slf_attn_post_softmax_shape,
src_attn_pre_softmax_shape,
src_attn_post_softmax_shape, )
dec_input = dec_output
return dec_output
......@@ -391,7 +406,9 @@ def make_inputs(input_data_names,
is_pos,
slf_attn_bias_flag,
src_attn_bias_flag,
enc_output_flag=False):
enc_output_flag=False,
slf_attn_shape_flag=True,
src_attn_shape_flag=True):
"""
Define the input data layers for the transformer model.
"""
......@@ -429,6 +446,32 @@ def make_inputs(input_data_names,
dtype="float32",
append_batch_size=False)
input_layers += [src_attn_bias]
if slf_attn_shape_flag:
slf_attn_pre_softmax_shape = layers.data(
name=input_data_names[len(input_layers)],
shape=[3],
dtype="int32",
append_batch_size=False)
input_layers += [slf_attn_pre_softmax_shape]
slf_attn_post_softmax_shape = layers.data(
name=input_data_names[len(input_layers)],
shape=[3],
dtype="int32",
append_batch_size=False)
input_layers += [slf_attn_post_softmax_shape]
if src_attn_shape_flag:
src_attn_pre_softmax_shape = layers.data(
name=input_data_names[len(input_layers)],
shape=[3],
dtype="int32",
append_batch_size=False)
input_layers += [src_attn_pre_softmax_shape]
src_attn_post_softmax_shape = layers.data(
name=input_data_names[len(input_layers)],
shape=[3],
dtype="int32",
append_batch_size=False)
input_layers += [src_attn_post_softmax_shape]
if enc_output_flag:
enc_output = layers.data(
name=input_data_names[len(input_layers)],
......@@ -436,6 +479,7 @@ def make_inputs(input_data_names,
dtype="float32",
append_batch_size=False)
input_layers += [enc_output]
return input_layers
......@@ -453,8 +497,18 @@ def transformer(
src_pad_idx,
trg_pad_idx,
pos_pad_idx, ):
enc_input_layers = make_inputs(encoder_input_data_names, n_head, d_model,
batch_size, max_length, True, True, False)
enc_input_layers = make_inputs(
encoder_input_data_names,
n_head,
d_model,
batch_size,
max_length,
is_pos=True,
slf_attn_bias_flag=True,
src_attn_bias_flag=False,
enc_output_flag=False,
slf_attn_shape_flag=True,
src_attn_shape_flag=False)
enc_output = wrap_encoder(
src_vocab_size,
......@@ -470,8 +524,18 @@ def transformer(
pos_pad_idx,
enc_input_layers, )
dec_input_layers = make_inputs(decoder_input_data_names, n_head, d_model,
batch_size, max_length, True, True, True)
dec_input_layers = make_inputs(
decoder_input_data_names,
n_head,
d_model,
batch_size,
max_length,
is_pos=True,
slf_attn_bias_flag=True,
src_attn_bias_flag=True,
enc_output_flag=False,
slf_attn_shape_flag=True,
src_attn_shape_flag=True)
predict = wrap_decoder(
trg_vocab_size,
......@@ -490,9 +554,19 @@ def transformer(
# Padding index do not contribute to the total loss. The weights is used to
# cancel padding index in calculating the loss.
gold, weights = make_inputs(label_data_names, n_head, d_model, batch_size,
max_length, False, False, False)
cost = layers.cross_entropy(input=predict, label=gold)
gold, weights = make_inputs(
label_data_names,
n_head,
d_model,
batch_size,
max_length,
is_pos=False,
slf_attn_bias_flag=False,
src_attn_bias_flag=False,
enc_output_flag=False,
slf_attn_shape_flag=False,
src_attn_shape_flag=False)
cost = layers.softmax_with_cross_entropy(logits=predict, label=gold)
weighted_cost = cost * weights
return layers.reduce_sum(weighted_cost), predict
......@@ -514,11 +588,22 @@ def wrap_encoder(src_vocab_size,
"""
if enc_input_layers is None:
# This is used to implement independent encoder program in inference.
src_word, src_pos, src_slf_attn_bias = make_inputs(
encoder_input_data_names, n_head, d_model, batch_size, max_length,
True, True, False)
src_word, src_pos, src_slf_attn_bias, slf_attn_pre_softmax_shape, \
slf_attn_post_softmax_shape = make_inputs(
encoder_input_data_names,
n_head,
d_model,
batch_size,
max_length,
is_pos=True,
slf_attn_bias_flag=True,
src_attn_bias_flag=False,
enc_output_flag=False,
slf_attn_shape_flag=True,
src_attn_shape_flag=False)
else:
src_word, src_pos, src_slf_attn_bias = enc_input_layers
src_word, src_pos, src_slf_attn_bias, slf_attn_pre_softmax_shape, \
slf_attn_post_softmax_shape = enc_input_layers
enc_input = prepare_encoder(
src_word,
src_pos,
......@@ -536,7 +621,9 @@ def wrap_encoder(src_vocab_size,
d_value,
d_model,
d_inner_hid,
dropout_rate, )
dropout_rate,
slf_attn_pre_softmax_shape,
slf_attn_post_softmax_shape, )
return enc_output
......@@ -558,11 +645,26 @@ def wrap_decoder(trg_vocab_size,
"""
if dec_input_layers is None:
# This is used to implement independent decoder program in inference.
trg_word, trg_pos, trg_slf_attn_bias, trg_src_attn_bias, enc_output = make_inputs(
decoder_input_data_names, n_head, d_model, batch_size, max_length,
True, True, True, True)
trg_word, trg_pos, trg_slf_attn_bias, trg_src_attn_bias, \
slf_attn_pre_softmax_shape, slf_attn_post_softmax_shape, \
src_attn_pre_softmax_shape, src_attn_post_softmax_shape, \
enc_output = make_inputs(
decoder_input_data_names,
n_head,
d_model,
batch_size,
max_length,
is_pos=True,
slf_attn_bias_flag=True,
src_attn_bias_flag=True,
enc_output_flag=True,
slf_attn_shape_flag=True,
src_attn_shape_flag=True)
else:
trg_word, trg_pos, trg_slf_attn_bias, trg_src_attn_bias = dec_input_layers
trg_word, trg_pos, trg_slf_attn_bias, trg_src_attn_bias, \
slf_attn_pre_softmax_shape, slf_attn_post_softmax_shape, \
src_attn_pre_softmax_shape, src_attn_post_softmax_shape = \
dec_input_layers
dec_input = prepare_decoder(
trg_word,
......@@ -583,13 +685,17 @@ def wrap_decoder(trg_vocab_size,
d_value,
d_model,
d_inner_hid,
dropout_rate, )
dropout_rate,
slf_attn_pre_softmax_shape,
slf_attn_post_softmax_shape,
src_attn_pre_softmax_shape,
src_attn_post_softmax_shape, )
# Return logits for training and probs for inference.
predict = layers.reshape(
x=layers.fc(input=dec_output,
size=trg_vocab_size,
bias_attr=False,
num_flatten_dims=2),
shape=[-1, trg_vocab_size],
act="softmax")
act="softmax" if dec_input_layers is None else None)
return predict
......@@ -66,13 +66,29 @@ def prepare_batch_input(insts, input_data_names, src_pad_idx, trg_pad_idx,
[inst[1] for inst in insts], trg_pad_idx, n_head, is_target=True)
trg_src_attn_bias = np.tile(src_slf_attn_bias[:, :, ::src_max_len, :],
[1, 1, trg_max_len, 1]).astype("float32")
src_slf_attn_pre_softmax_shape = np.array(
[-1, src_slf_attn_bias.shape[-1]], dtype="int32")
src_slf_attn_post_softmax_shape = np.array(
src_slf_attn_bias.shape, dtype="int32")
trg_slf_attn_pre_softmax_shape = np.array(
[-1, trg_slf_attn_bias.shape[-1]], dtype="int32")
trg_slf_attn_post_softmax_shape = np.array(
trg_slf_attn_bias.shape, dtype="int32")
trg_src_attn_pre_softmax_shape = np.array(
[-1, trg_src_attn_bias.shape[-1]], dtype="int32")
trg_src_attn_post_softmax_shape = np.array(
trg_src_attn_bias.shape, dtype="int32")
lbl_word = pad_batch_data([inst[2] for inst in insts], trg_pad_idx, n_head,
False, False, False, False)
lbl_weight = (lbl_word != trg_pad_idx).astype("float32").reshape([-1, 1])
input_dict = dict(
zip(input_data_names, [
src_word, src_pos, src_slf_attn_bias, trg_word, trg_pos,
trg_slf_attn_bias, trg_src_attn_bias, lbl_word, lbl_weight
src_word, src_pos, src_slf_attn_bias,
src_slf_attn_pre_softmax_shape, src_slf_attn_post_softmax_shape,
trg_word, trg_pos, trg_slf_attn_bias, trg_src_attn_bias,
trg_slf_attn_pre_softmax_shape, trg_slf_attn_post_softmax_shape,
trg_src_attn_pre_softmax_shape, trg_src_attn_post_softmax_shape,
lbl_word, lbl_weight
]))
return input_dict
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册