未验证 提交 3ce9dd26 编写于 作者: X xiaoting 提交者: GitHub

update serving tipc (#5529)

* update serving tipc

* rm python version

* rm python version

* Update serving_python.md

* mv unset to prepare.sh
上级 b720fdbb
......@@ -22,7 +22,7 @@ op:
model_config: "./serving_server"
#计算硬件类型: 空缺时由devices决定(CPU/GPU),0=cpu, 1=gpu, 2=tensorRT, 3=arm cpu, 4=kunlun xpu
device_type: 1
device_type:
#计算硬件ID,当devices为""或不写时为CPU预测;当devices为"0", "0,1,2"时为GPU预测,表示使用的GPU卡
devices: "0" # "0,1"
......
......@@ -21,6 +21,62 @@ from PIL import Image
import io
from preprocess_ops import ResizeImage, CenterCropImage, NormalizeImage, ToCHW, Compose
from argparse import ArgumentParser, RawDescriptionHelpFormatter
import yaml
class ArgsParser(ArgumentParser):
def __init__(self):
super(ArgsParser, self).__init__(
formatter_class=RawDescriptionHelpFormatter)
self.add_argument("-c", "--config", help="configuration file to use")
self.add_argument(
"-o", "--opt", nargs='+', help="set configuration options")
def parse_args(self, argv=None):
args = super(ArgsParser, self).parse_args(argv)
assert args.config is not None, \
"Please specify --config=configure_file_path."
args.conf_dict = self._parse_opt(args.opt, args.config)
print("args config:", args.conf_dict)
return args
def _parse_helper(self, v):
if v.isnumeric():
if "." in v:
v = float(v)
else:
v = int(v)
elif v == "True" or v == "False":
v = (v == "True")
return v
def _parse_opt(self, opts, conf_path):
f = open(conf_path)
config = yaml.load(f, Loader=yaml.Loader)
if not opts:
return config
for s in opts:
s = s.strip()
k, v = s.split('=')
v = self._parse_helper(v)
if "devices" in k:
v = str(v)
print(k, v, type(v))
cur = config
parent = cur
for kk in k.split("."):
if kk not in cur:
cur[kk] = {}
parent = cur
cur = cur[kk]
else:
parent = cur
cur = cur[kk]
parent[k.split(".")[-1]] = v
return config
class MobileNetV3Op(Op):
def init_op(self):
self.seq = Compose([
......@@ -53,16 +109,17 @@ class MobileNetV3Op(Op):
result["prob"] = str(result["prob"])
return result, None, ""
class MobileNetV3Service(WebService):
def get_pipeline_response(self, read_op):
mobilenetv3_op = MobileNetV3Op(
name="imagenet", input_ops=[read_op])
mobilenetv3_op = MobileNetV3Op(name="imagenet", input_ops=[read_op])
return mobilenetv3_op
# define the service class
uci_service = MobileNetV3Service(name="imagenet")
# load config and prepare the service
uci_service.prepare_pipeline_config("config.yml")
FLAGS = ArgsParser().parse_args()
uci_service.prepare_pipeline_config(yml_dict=FLAGS.conf_dict)
# start the service
uci_service.run_service()
......@@ -8,6 +8,7 @@ trans_model:-m paddle_serving_client.convert
--serving_server:./deploy/serving_python/serving_server/
--serving_client:./deploy/serving_python/serving_client/
serving_dir:./deploy/serving_python
web_service:web_service.py
web_service:web_service.py --config=config.yml
--opt op.imagenet.local_service_conf.devices:"0"|null
pipline:pipeline_http_client.py
--image_dir:../../lite_data/test/
\ No newline at end of file
......@@ -54,6 +54,8 @@ elif [ ${MODE} = "serving_infer" ];then
wget -nc -P ./inference https://paddle-model-ecology.bj.bcebos.com/model/mobilenetv3_reprod/mobilenet_v3_small_infer.tar --no-check-certificate
cd ./inference && tar xf mobilenet_v3_small_infer.tar && cd ../
fi
unset https_proxy
unset http_proxy
elif [ ${MODE} = "cpp_infer" ];then
PADDLEInfer=$3
# wget model
......
......@@ -25,9 +25,11 @@ serving_client_key=$(func_parser_key "${lines[8]}")
serving_client_value=$(func_parser_value "${lines[8]}")
serving_dir_value=$(func_parser_value "${lines[9]}")
web_service_py=$(func_parser_value "${lines[10]}")
pipeline_py=$(func_parser_value "${lines[11]}")
image_dir_key=$(func_parser_key "${lines[12]}")
image_dir_value=$(func_parser_value "${lines[12]}")
web_use_gpu_key=$(func_parser_key "${lines[11]}")
web_use_gpu_list=$(func_parser_value "${lines[11]}")
pipeline_py=$(func_parser_value "${lines[12]}")
image_dir_key=$(func_parser_key "${lines[13]}")
image_dir_value=$(func_parser_value "${lines[13]}")
LOG_PATH="./log/${model_name}/${MODE}"
......@@ -53,24 +55,38 @@ function func_serving(){
cd ${serving_dir_value}
status_check $last_status "${trans_model_cmd}" "${status_log}" "${model_name}"
echo $PWD
unset https_proxy
unset http_proxy
for use_gpu in ${web_use_gpu_list[*]}; do
if [ ${use_gpu} = "null" ]; then
_save_log_path="../../log/${model_name}/${MODE}/serving_infer_python_cpu_batchsize_1.log"
web_service_cmd="${python} ${web_service_py} ${web_use_gpu_key}="" &"
eval $web_service_cmd
last_status=${PIPESTATUS[0]}
status_check $last_status "${web_service_cmd}" "${status_log}" "${model_name}"
sleep 5s
set_image_dir=$(func_set_params "${image_dir_key}" "${image_dir_value}")
pipeline_cmd="${python} ${pipeline_py} ${set_image_dir} > ${_save_log_path} 2>&1 "
eval $pipeline_cmd
last_status=${PIPESTATUS[0]}
status_check $last_status "${pipeline_cmd}" "${status_log}" "${model_name}"
eval "cat ${_save_log_path}"
ps ux | grep -E 'web_service|pipeline' | awk '{print $2}' | xargs kill -s 9
else
_save_log_path="../../log/${model_name}/${MODE}/serving_infer_python_gpu_batchsize_1.log"
web_service_cmd="${python} ${web_service_py} &"
web_service_cmd="${python} ${web_service_py} ${web_use_gpu_key}=${use_gpu} &"
eval $web_service_cmd
last_status=${PIPESTATUS[0]}
status_check $last_status "${web_service_cmd}" "${status_log}" "${model_name}"
sleep 5s
_save_log_path="../../log/${model_name}/${MODE}/server_infer_gpu_batchsize_1.log"
set_image_dir=$(func_set_params "${image_dir_key}" "${image_dir_value}")
pipeline_cmd="${python} ${pipeline_py} ${set_image_dir} > ${_save_log_path} 2>&1 "
eval $pipeline_cmd
last_status=${PIPESTATUS[0]}
status_check $last_status "${pipeline_cmd}" "${status_log}" "${model_name}"
eval "cat ${_save_log_path}"
cd ../../
ps ux | grep -E 'web_service|pipeline' | awk '{print $2}' | xargs kill -s 9
fi
done
}
......
......@@ -71,15 +71,13 @@ Paddle Serving服务化部署主要包括以下步骤:
nvidia-docker exec -it test bash
```
(2)安装Paddle Serving个安装包,分别是:paddle-serving-server(CPU/GPU版本二选一), paddle-serving-client, paddle-serving-app和paddlepaddle(CPU/GPU版本二选一)。
(2)安装Paddle Serving个安装包,分别是:paddle-serving-server(CPU/GPU版本二选一), paddle-serving-client, paddle-serving-app和paddlepaddle(CPU/GPU版本二选一)。
```bash
pip3 install paddle-serving-client==0.8.3
#pip3 install paddle-serving-server==0.8.3 # CPU
pip3 install paddle-serving-server-gpu==0.8.3.post102 # GPU with CUDA10.2 + TensorRT6
pip3 install paddle-serving-app==0.8.3
#pip3 install paddlepaddle==2.2.2 # CPU
pip3 install paddlepaddle-gpu==2.2.2
pip install paddle-serving-client
pip install paddle-serving-app
#pip install paddlepaddle # CPU
pip install paddlepaddle-gpu
```
您可能需要使用国内镜像源(例如百度源, 在pip命令中添加`-i https://mirror.baidu.com/pypi/simple`)来加速下载。
Paddle Serving Server更多不同运行环境的whl包下载地址,请参考:[下载页面](https://github.com/PaddlePaddle/Serving/blob/v0.8.3/doc/Latest_Packages_CN.md)
......@@ -105,7 +103,7 @@ cd models/tutorials/tipc/serving_cpp
为了便于模型服务化部署,需要将静态图模型(模型结构文件:\*.pdmodel和模型参数文件:\*.pdiparams)使用paddle_serving_client.convert按如下命令转换为服务化部署模型:
```bash
python3 -m paddle_serving_client.convert --dirname {静态图模型路径} --model_filename {模型结构文件} --params_filename {模型参数文件} --serving_server {转换后的服务器端模型和配置文件存储路径} --serving_client {转换后的客户端模型和配置文件存储路径}
python -m paddle_serving_client.convert --dirname {静态图模型路径} --model_filename {模型结构文件} --params_filename {模型参数文件} --serving_server {转换后的服务器端模型和配置文件存储路径} --serving_client {转换后的客户端模型和配置文件存储路径}
```
上面命令中 "转换后的服务器端模型和配置文件" 将用于后续服务化部署。其中`paddle_serving_client.convert`命令是`paddle_serving_client` whl包内置的转换函数,无需修改。
......@@ -114,7 +112,7 @@ python3 -m paddle_serving_client.convert --dirname {静态图模型路径} --mod
针对MobileNetV3网络,将inference模型转换为服务化部署模型的示例命令如下,转换完后在本地生成**serving_server**和**serving_client**两个文件夹。本教程后续主要使用serving_server文件夹中的模型。
```bash
python3 -m paddle_serving_client.convert \
python -m paddle_serving_client.convert \
--dirname ./mobilenet_v3_small_infer/ \
--model_filename inference.pdmodel \
--params_filename inference.pdiparams \
......@@ -133,7 +131,6 @@ python3 -m paddle_serving_client.convert \
- serving_client.py:用于**客户端**访问服务的程序,开发者需要设置url(服务地址)、logid(日志ID)和测试图像。
- preprocess_ops.py:用户图片前项处理的一些工具类
**【实战】**
......@@ -145,7 +142,40 @@ cp -r ./template/code/* ./
<a name="2.5"></a>
### 2.5 服务端修改
服务端无需进行代码修改。
需要将前后处理部分以自定义OP的形式与 Serving 服务端编译在一起,推荐复用 cpp_infer 中的代码。
**【基本流程】**
具体开发流程可参考[新增op](https://github.com/PaddlePaddle/Serving/blob/v0.8.3/doc/C%2B%2B_Serving/2%2B_model.md)
**【实战】**
针对MobileNet网络, 新增三类文件:
* [General_Clas_op.*](../../mobilenetv3_prod/Step6/deploy/serving_cpp/preprocess/general_clas_op.cpp) 包含自定义op部分,读取 client 端传输数据并进行推理预测;
* [preprocess_op.*](../../mobilenetv3_prod/Step6/deploy/serving_cpp/preprocess/preprocess_op.cpp) 是可能会用到的工具类函数,复用 cpp_infer 中的代码;
* [serving_client_conf.prototxt](../../mobilenetv3_prod/Step6/deploy/serving_cpp/preprocess/serving_client_conf.prototxt) 由于clint端输入的是原始图像,可能与推理时需要的输入数据类型不同,建议将输入数据类型统一修改成string,tipc测试时每次copy该文件,覆盖自动生成的`serving_client_conf.prototxt`。 具体将 feed_var 中的 feed_type 修改为20,shape修改为1。
```
feed_var {
name: "input"
alias_name: "input"
is_lod_tensor: false
feed_type: 20
shape: 1
}
```
完成代码开发后,将相关代码cp到Serving源码中并进行编译[编译](https://github.com/PaddlePaddle/Serving/blob/v0.8.3/doc/Compile_CN.md):
```
cp deploy/serving_cpp/preprocess/general_clas_op.* ${Serving_repo_path}/core/general-server/op
cp deploy/serving_cpp/preprocess/preprocess_op.* ${Serving_repo_path}/core/predictor/tools/pp_shitu_tools
```
<a name="2.6"></a>
### 2.6 客户端修改
......@@ -170,13 +200,11 @@ img_path = "./images/demo.jpg"
**【基本流程】**
serving_client.py文件中的preprocess函数用于开发数据预处理程序,包含输入、处理流程和输出三部分。
serving_client.py文件中的preprocess函数用于开发数据处理程序,包含输入和输出两部分。
**(1)输入:** 一般开发者使用时,需要自行定义读取数据的方式。
**(2)处理流程:** 数据预处理流程和基于Paddle Inference的模型预处理流程相同。
**(3)输出:** 需要返回两个参数,第一个参数为模型预测的输入字典,第二个参数为需要获取的模型输出列表
**(2)输出:** 需要返回两个参数,第一个参数为模型预测的输入字典,第二个参数为需要获取的模型输出列表
```
{"input": input_data}, ["output"]
......@@ -196,20 +224,20 @@ import numpy as np
import base64
from PIL import Image
import io
from preprocess_ops import ResizeImage, CenterCropImage, NormalizeImage, ToCHW, Compose
from paddle_serving_client import Client
```
添加数据读取相关代码:
添加数据读取相关代码,将输入图片转换成string类型
```py
def preprocess():
image_file = img_path
image = Image.open(image_file)
seq = Compose([
ResizeImage(256), CenterCropImage(224), NormalizeImage(), ToCHW()
])
input_data=seq(image)
feed = {"input": input_data}
def cv2_to_base64(image):
return base64.b64encode(image).decode(
'utf8')
def preprocess(img_file):
with open(img_file, 'rb') as file:
image_data = file.read()
image = cv2_to_base64(image_data)
feed = {"input": image}
fetch = ["softmax_1.tmp_0"]
return feed, fetch
```
......@@ -253,7 +281,7 @@ def postprocess(fetch_map):
可以按如下命令启动模型预测服务:
```bash
python3 -m paddle_serving_server.serve --model serving_server --port 9993
python -m paddle_serving_server.serve --model serving_server --op GeneralClasOp --port 9993
```
**【实战】**
......@@ -273,7 +301,7 @@ python3 -m paddle_serving_server.serve --model serving_server --port 9993
客户端访问服务的命令如下:
```bash
python3 serving_client.py
python serving_client.py
```
访问成功的界面如下图:
......
......@@ -13,11 +13,13 @@
# limitations under the License.
from paddle_serving_client import Client
import os
url = "127.0.0.1:9993"
logid = 10000
img_path = "./images/demo.jpg"
def preprocess():
"""preprocess
......@@ -30,6 +32,7 @@ def preprocess():
"""
pass
def postprocess(fetch_map):
"""postprocess
......@@ -42,14 +45,12 @@ def postprocess(fetch_map):
"""
pass
client = Client()
client.load_client_config(
"serving_client/serving_client_conf.prototxt")
client.load_client_config("serving_client/serving_client_conf.prototxt")
client.connect([url])
feed, fetch = preprocess()
feed, fetch = preprocess(img_path)
fetch_map = client.predict(feed=feed, fetch=fetch)
result = postprocess(fetch_map)
print(result)
......@@ -76,15 +76,15 @@ Paddle Serving服务化部署主要包括以下步骤:
nvidia-docker exec -it test bash
```
(2)安装Paddle Serving四个安装包,分别是:paddle-serving-server(CPU/GPU版本二选一), paddle-serving-client, paddle-serving-app和paddlepaddle(CPU/GPU版本二选一)。
(2)安装Paddle Serving四个安装包的最新版本,分别是:paddle-serving-server(CPU/GPU版本二选一), paddle-serving-client, paddle-serving-app和paddlepaddle(CPU/GPU版本二选一)。
```bash
pip3 install paddle-serving-client==0.7.0
#pip3 install paddle-serving-server==0.7.0 # CPU
pip3 install paddle-serving-server-gpu==0.7.0.post102 # GPU with CUDA10.2 + TensorRT6
pip3 install paddle-serving-app==0.7.0
#pip3 install paddlepaddle==2.2.1 # CPU
pip3 install paddlepaddle-gpu==2.2.1
pip install paddle-serving-client
#pip install paddle-serving-server # CPU
pip install paddle-serving-server-gpu # GPU 默认 CUDA10.2 + TensorRT6,其他环境需手动指定版本号
pip install paddle-serving-app
#pip install paddlepaddle # CPU
pip install paddlepaddle-gpu
```
您可能需要使用国内镜像源(例如百度源, 在pip命令中添加`-i https://mirror.baidu.com/pypi/simple`)来加速下载。
Paddle Serving Server更多不同运行环境的whl包下载地址,请参考:[下载页面](https://github.com/PaddlePaddle/Serving/blob/v0.7.0/doc/Latest_Packages_CN.md)
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册