diff --git a/fluid/image_classification/caffe2fluid/README.md b/fluid/image_classification/caffe2fluid/README.md index 279b4c6e57a785736a1c75928de8d45f4e4e956e..5f565afe0c33db291092faeac632da3d51f95613 100644 --- a/fluid/image_classification/caffe2fluid/README.md +++ b/fluid/image_classification/caffe2fluid/README.md @@ -2,7 +2,8 @@ This tool is used to convert a Caffe model to Fluid model ### Howto -1, Prepare caffepb.py in ./proto, two options provided +1, Prepare caffepb.py in ./proto if your python has no 'pycaffe' module, two options provided here: + 1) generate it from caffe.proto using protoc bash ./proto/compile.sh @@ -12,14 +13,24 @@ This tool is used to convert a Caffe model to Fluid model 2, Convert the caffe model using 'convert.py' which will generate a python script and a weight(in .npy) file 3, Use the converted model to predict - see more detail info in 'tests/lenet/README.md' + + see more detail info in 'examples/xxx' -### Supported models +### Tested models - Lenet on mnist dataset - ResNets:(ResNet-50, ResNet-101, ResNet-152) - model addrs:(https://onedrive.live.com/?authkey=%21AAFW2-FVoxeVRck&id=4006CBB8476FF777%2117887&cid=4006CBB8476FF777) + model addr: `https://onedrive.live.com/?authkey=%21AAFW2-FVoxeVRck&id=4006CBB8476FF777%2117887&cid=4006CBB8476FF777`_ + +- GoogleNet: + model addr: `https://gist.github.com/jimmie33/7ea9f8ac0da259866b854460f4526034`_ + +- VGG: + model addr: `https://gist.github.com/ksimonyan/211839e770f7b538e2d8`_ + +- AlexNet: + model addr: `https://github.com/BVLC/caffe/tree/master/models/bvlc_alexnet`_ ### Notes Some of this code come from here: https://github.com/ethereon/caffe-tensorflow diff --git a/fluid/image_classification/caffe2fluid/convert.py b/fluid/image_classification/caffe2fluid/convert.py index 68a9e4f7e490a69c1b582d6fc14b2015bfdf9536..379f1a26368c9ffa4a9f82dad499ad7114f942fc 100755 --- a/fluid/image_classification/caffe2fluid/convert.py +++ b/fluid/image_classification/caffe2fluid/convert.py @@ -4,8 +4,8 @@ import os import sys import numpy as np import argparse -from kaffe import KaffeError, print_stderr +from kaffe import KaffeError, print_stderr from kaffe.paddle import Transformer @@ -47,6 +47,8 @@ def convert(def_path, caffemodel_path, data_output_path, code_output_path, except KaffeError as err: fatal_error('Error encountered: {}'.format(err)) + return 0 + def main(): """ main @@ -64,9 +66,10 @@ def main(): help='The phase to convert: test (default) or train') args = parser.parse_args() validate_arguments(args) - convert(args.def_path, args.caffemodel, args.data_output_path, - args.code_output_path, args.phase) + return convert(args.def_path, args.caffemodel, args.data_output_path, + args.code_output_path, args.phase) if __name__ == '__main__': - main() + ret = main() + sys.exit(ret) diff --git a/fluid/image_classification/caffe2fluid/examples/imagenet/README.md b/fluid/image_classification/caffe2fluid/examples/imagenet/README.md new file mode 100644 index 0000000000000000000000000000000000000000..b82050859239be8804ddec8e2054edc38c4ac052 --- /dev/null +++ b/fluid/image_classification/caffe2fluid/examples/imagenet/README.md @@ -0,0 +1,10 @@ +a demo to show converting caffe models on 'imagenet' using caffe2fluid + +--- + +# How to use + +1. prepare python environment +2. download caffe model to "models.caffe/xxx" which contains "xxx.caffemodel" and "xxx.prototxt" +3. run the tool + eg: bash ./run.sh resnet50 ./models.caffe/resnet50 ./models/resnet50 diff --git a/fluid/image_classification/caffe2fluid/examples/imagenet/data/65.jpeg b/fluid/image_classification/caffe2fluid/examples/imagenet/data/65.jpeg new file mode 100644 index 0000000000000000000000000000000000000000..fd3a93f59385d6ff632483646e6caee300b56d09 Binary files /dev/null and b/fluid/image_classification/caffe2fluid/examples/imagenet/data/65.jpeg differ diff --git a/fluid/image_classification/caffe2fluid/examples/imagenet/infer.py b/fluid/image_classification/caffe2fluid/examples/imagenet/infer.py new file mode 100644 index 0000000000000000000000000000000000000000..ec594199be5a3e7a33c9673b1d5497c95f20d946 --- /dev/null +++ b/fluid/image_classification/caffe2fluid/examples/imagenet/infer.py @@ -0,0 +1,142 @@ +#!/bin/env python + +#function: +# a demo to show how to use the converted model genereated by caffe2fluid +# +#notes: +# only support imagenet data + +import os +import sys +import inspect +import numpy as np +import paddle.v2 as paddle +import paddle.v2.fluid as fluid + + +def load_data(imgfile, shape): + h, w = shape[1:] + from PIL import Image + im = Image.open(imgfile) + + # The storage order of the loaded image is W(widht), + # H(height), C(channel). PaddlePaddle requires + # the CHW order, so transpose them. + im = im.resize((w, h), Image.ANTIALIAS) + im = np.array(im).astype(np.float32) + im = im.transpose((2, 0, 1)) # CHW + im = im[(2, 1, 0), :, :] # BGR + + # The mean to be subtracted from each image. + # By default, the per-channel ImageNet mean. + mean = np.array([104., 117., 124.], dtype=np.float32) + mean = mean.reshape([3, 1, 1]) + im = im - mean + return im.reshape([1] + shape) + + +def build_model(net_file, net_name): + print('build model with net_file[%s] and net_name[%s]' % + (net_file, net_name)) + + net_path = os.path.dirname(net_file) + module_name = os.path.basename(net_file).rstrip('.py') + if net_path not in sys.path: + sys.path.insert(0, net_path) + + try: + m = __import__(module_name, fromlist=[net_name]) + MyNet = getattr(m, net_name) + except Exception as e: + print('failed to load module[%s]' % (module_name)) + print(e) + return None + + input_name = 'data' + input_shape = MyNet.input_shapes()[input_name] + images = fluid.layers.data(name='image', shape=input_shape, dtype='float32') + #label = fluid.layers.data(name='label', shape=[1], dtype='int64') + + net = MyNet({input_name: images}) + input_shape = MyNet.input_shapes()[input_name] + return net, input_shape + + +def dump_results(results, names, root): + if os.path.exists(root) is False: + os.path.mkdir(root) + + for i in range(len(names)): + n = names[i] + res = results[i] + filename = os.path.join(root, n) + np.save(filename + '.npy', res) + + +def infer(net_file, net_name, model_file, imgfile, debug=False): + """ do inference using a model which consist 'xxx.py' and 'xxx.npy' + """ + #1, build model + net, input_shape = build_model(net_file, net_name) + prediction = net.get_output() + + #2, load weights for this model + place = fluid.CPUPlace() + exe = fluid.Executor(place) + startup_program = fluid.default_startup_program() + exe.run(startup_program) + + if model_file.find('.npy') > 0: + net.load(data_path=model_file, exe=exe, place=place) + else: + net.load(data_path=model_file, exe=exe) + + #3, test this model + test_program = fluid.default_main_program().clone() + + fetch_list_var = [] + fetch_list_name = [] + if debug is False: + fetch_list_var.append(prediction) + else: + for k, v in net.layers.items(): + fetch_list_var.append(v) + fetch_list_name.append(k) + + np_images = load_data(imgfile, input_shape) + results = exe.run(program=test_program, + feed={'image': np_images}, + fetch_list=fetch_list_var) + + if debug is True: + dump_path = 'results.layers' + dump_results(results, fetch_list_name, dump_path) + print('all results dumped to [%s]' % (dump_path)) + else: + result = results[0] + print('predicted class:', np.argmax(result)) + + +if __name__ == "__main__": + """ maybe more convenient to use 'run.sh' to call this tool + """ + net_file = 'models/resnet50/resnet50.py' + weight_file = 'models/resnet50/resnet50.npy' + imgfile = 'data/65.jpeg' + net_name = 'ResNet50' + + argc = len(sys.argv) + if argc == 5: + net_file = sys.argv[1] + weight_file = sys.argv[2] + imgfile = sys.argv[3] + net_name = sys.argv[4] + elif argc > 1: + print('usage:') + print('\tpython %s [net_file] [weight_file] [imgfile] [net_name]' % + (sys.argv[0])) + print('\teg:python %s %s %s %s %s' % (sys.argv[0], net_file, + weight_file, imgfile, net_name)) + sys.exit(1) + + infer(net_file, net_name, weight_file, imgfile) diff --git a/fluid/image_classification/caffe2fluid/examples/imagenet/run.sh b/fluid/image_classification/caffe2fluid/examples/imagenet/run.sh new file mode 100644 index 0000000000000000000000000000000000000000..7a1a5ebd7c0a5090c00a0c8ca6b0e11b110967dc --- /dev/null +++ b/fluid/image_classification/caffe2fluid/examples/imagenet/run.sh @@ -0,0 +1,72 @@ +#!/bin/bash + +#function: +# a tool used to: +# 1, convert a caffe model +# 2, do inference using this model +# +#usage: +# bash run.sh resnet50 ./models.caffe/resnet50 ./models/resnet50 +# + +#set -x +if [[ $# -lt 3 ]];then + echo "usage:" + echo " bash $0 [model_name] [cf_model_path] [pd_model_path] [only_convert]" + echo " eg: bash $0 resnet50 ./models.caffe/resnet50 ./models/resnet50" + exit 1 +else + model_name=$1 + cf_model_path=$2 + pd_model_path=$3 + only_convert=$4 +fi + +proto_file=$cf_model_path/${model_name}.prototxt +caffemodel_file=$cf_model_path/${model_name}.caffemodel +weight_file=$pd_model_path/${model_name}.npy +net_file=$pd_model_path/${model_name}.py + +if [[ ! -e $proto_file ]];then + echo "not found prototxt[$proto_file]" + exit 1 +fi + +if [[ ! -e $caffemodel_file ]];then + echo "not found caffemodel[$caffemodel_file]" + exit 1 +fi + +if [[ ! -e $pd_model_path ]];then + mkdir $pd_model_path +fi + +PYTHON=`which cfpython` +if [[ -z $PYTHON ]];then + PYTHON=`which python` +fi +$PYTHON ../../convert.py \ + $proto_file \ + --caffemodel $caffemodel_file \ + --data-output-path $weight_file\ + --code-output-path $net_file + +ret=$? +if [[ $ret -ne 0 ]];then + echo "failed to convert caffe model[$cf_model_path]" + exit $ret +else + echo "succeed to convert caffe model[$cf_model_path] to fluid model[$pd_model_path]" +fi + +if [[ -z $only_convert ]];then + PYTHON=`which pdpython` + if [[ -z $PYTHON ]];then + PYTHON=`which python` + fi + imgfile="data/65.jpeg" + net_name=`grep "name" $proto_file | head -n1 | perl -ne 'if(/\"([^\"]+)\"/){ print $1."\n";}'` + $PYTHON ./infer.py $net_file $weight_file $imgfile $net_name + ret=$? +fi +exit $ret diff --git a/fluid/image_classification/caffe2fluid/examples/mnist/README.md b/fluid/image_classification/caffe2fluid/examples/mnist/README.md new file mode 100644 index 0000000000000000000000000000000000000000..cd427d632737c8988403f987d86c159500022198 --- /dev/null +++ b/fluid/image_classification/caffe2fluid/examples/mnist/README.md @@ -0,0 +1,10 @@ +a demo to show converting caffe model on 'mnist' using caffe2fluid + +--- + +# How to use + +1. prepare python environment +2. download caffe model to "models.caffe/lenet" which contains "lenet.caffemodel" and "lenet.prototxt" +3. run the tool + eg: bash ./run.sh lenet ./models.caffe/lenet ./models/lenet diff --git a/fluid/image_classification/caffe2fluid/tests/lenet/predict.py b/fluid/image_classification/caffe2fluid/examples/mnist/evaluate.py similarity index 66% rename from fluid/image_classification/caffe2fluid/tests/lenet/predict.py rename to fluid/image_classification/caffe2fluid/examples/mnist/evaluate.py index 7405cc6f848ea139bc4edd4c3ec0e0af773ea25a..5c86635d5a014262bdec40fe063915350c5fadb3 100644 --- a/fluid/image_classification/caffe2fluid/tests/lenet/predict.py +++ b/fluid/image_classification/caffe2fluid/examples/mnist/evaluate.py @@ -4,12 +4,12 @@ # demo to show how to use converted model using caffe2fluid # +import sys +import os import numpy as np import paddle.v2 as paddle import paddle.v2.fluid as fluid -from lenet import LeNet as MyNet - def test_model(exe, test_program, fetch_list, test_reader, feeder): acc_set = [] @@ -24,10 +24,15 @@ def test_model(exe, test_program, fetch_list, test_reader, feeder): return float(acc_val) -def main(model_path): +def evaluate(net_file, model_file): """ main """ - print('load fluid model in %s' % (model_path)) + #1, build model + net_path = os.path.dirname(net_file) + if net_path not in sys.path: + sys.path.insert(0, net_path) + + from lenet import LeNet as MyNet with_gpu = False paddle.init(use_gpu=with_gpu) @@ -45,10 +50,10 @@ def main(model_path): exe.run(fluid.default_startup_program()) #2, load weights - if model_path.find('.npy') > 0: - net.load(data_path=model_path, exe=exe, place=place) + if model_file.find('.npy') > 0: + net.load(data_path=model_file, exe=exe, place=place) else: - net.load(data_path=model_path, exe=exe) + net.load(data_path=model_file, exe=exe) #3, test this model test_program = fluid.default_main_program().clone() @@ -65,10 +70,17 @@ def main(model_path): if __name__ == "__main__": - import sys - if len(sys.argv) == 2: - fluid_model_path = sys.argv[1] - else: - fluid_model_path = './model.fluid' - - main(fluid_model_path) + net_file = 'models/lenet/lenet.py' + weight_file = 'models/lenet/lenet.npy' + + argc = len(sys.argv) + if argc == 3: + net_file = sys.argv[1] + weight_file = sys.argv[2] + elif argc > 1: + print('usage:') + print('\tpython %s [net_file] [weight_file]' % (sys.argv[0])) + print('\teg:python %s %s %s %s' % (sys.argv[0], net_file, weight_file)) + sys.exit(1) + + evaluate(net_file, weight_file) diff --git a/fluid/image_classification/caffe2fluid/examples/mnist/run.sh b/fluid/image_classification/caffe2fluid/examples/mnist/run.sh new file mode 100644 index 0000000000000000000000000000000000000000..eee83ef7cefd594c62fd95db525f081a27c6ea38 --- /dev/null +++ b/fluid/image_classification/caffe2fluid/examples/mnist/run.sh @@ -0,0 +1,75 @@ +#!/bin/bash + +#function: +# a tool used to: +# 1, convert a caffe model +# 2, do inference using this model +# +#usage: +# bash run.sh lenet ./models.caffe/lenet ./models/lenet +# + +#set -x +if [[ $# -lt 3 ]];then + echo "usage:" + echo " bash $0 [model_name] [cf_model_path] [pd_model_path] [only_convert]" + echo " eg: bash $0 lenet ./models.caffe/lenet ./models/lenet" + exit 1 +else + model_name=$1 + cf_model_path=$2 + pd_model_path=$3 + no_eval=$4 +fi + +proto_file=$cf_model_path/${model_name}.prototxt +caffemodel_file=$cf_model_path/${model_name}.caffemodel +weight_file=$pd_model_path/${model_name}.npy +net_file=$pd_model_path/${model_name}.py + +if [[ ! -e $proto_file ]];then + echo "not found prototxt[$proto_file]" + exit 1 +fi + +if [[ ! -e $caffemodel_file ]];then + echo "not found caffemodel[$caffemodel_file]" + exit 1 +fi + +if [[ ! -e $pd_model_path ]];then + mkdir $pd_model_path +fi + +PYTHON=`which cfpython` +if [[ -z $PYTHON ]];then + PYTHON=`which python` +fi +$PYTHON ../../convert.py \ + $proto_file \ + --caffemodel $caffemodel_file \ + --data-output-path $weight_file\ + --code-output-path $net_file + +ret=$? +if [[ $ret -ne 0 ]];then + echo "failed to convert caffe model[$cf_model_path]" + exit $ret +else + echo "succeed to convert caffe model[$cf_model_path] to fluid model[$pd_model_path]" +fi + +if [[ -z $only_convert ]];then + PYTHON=`which pdpython` + if [[ -z $PYTHON ]];then + PYTHON=`which python` + fi + net_name=`grep "name" $proto_file | head -n1 | perl -ne 'if(/\"([^\"]+)\"/){ print $1."\n";}'` + if [[ $net_name != "LeNet" ]];then + echo "only support LeNet" + exit 1 + fi + $PYTHON ./evaluate.py $net_file $weight_file + ret=$? +fi +exit $ret diff --git a/fluid/image_classification/caffe2fluid/kaffe/caffe/resolver.py b/fluid/image_classification/caffe2fluid/kaffe/caffe/resolver.py index 5fbd48d3ade5ab4b812210acf82be625871740cb..6ad7767ed8a88f1c0258ad36cc35221c33b641e5 100644 --- a/fluid/image_classification/caffe2fluid/kaffe/caffe/resolver.py +++ b/fluid/image_classification/caffe2fluid/kaffe/caffe/resolver.py @@ -54,7 +54,6 @@ def show_fallback_warning(): WARNING: PyCaffe not found! Falling back to a pure protocol buffer implementation. * Conversions will be drastically slower. - * This backend is UNTESTED! ------------------------------------------------------------ ''' diff --git a/fluid/image_classification/caffe2fluid/kaffe/graph.py b/fluid/image_classification/caffe2fluid/kaffe/graph.py index cb751dffa1ca9cc19214bed12681312942046df6..5387f441852b8a318a41898ee0b62b4903ccdabb 100644 --- a/fluid/image_classification/caffe2fluid/kaffe/graph.py +++ b/fluid/image_classification/caffe2fluid/kaffe/graph.py @@ -175,6 +175,7 @@ class GraphBuilder(object): kind = NodeKind.map_raw_kind(layer.type) if kind is None: raise KaffeError('Unknown layer type encountered: %s' % layer.type) + # We want to use the layer's top names (the "output" names), rather than the # name attribute, which is more of readability thing than a functional one. # Other layers will refer to a node by its "top name". @@ -235,6 +236,7 @@ class GraphBuilder(object): node.add_parent(parent_node) if len(layer.top) > 1: raise KaffeError('Multiple top nodes are not supported.') + for output_name in layer.top: if output_name == layer.name: # Output is named the same as the node. No further action required. diff --git a/fluid/image_classification/caffe2fluid/kaffe/layers.py b/fluid/image_classification/caffe2fluid/kaffe/layers.py index 6be35ed727fed76a1c96017455bdaa354ace9f97..f263407ab41458573f2df775f99202bed0e9d894 100644 --- a/fluid/image_classification/caffe2fluid/kaffe/layers.py +++ b/fluid/image_classification/caffe2fluid/kaffe/layers.py @@ -51,17 +51,79 @@ LAYER_DESCRIPTORS = { 'Threshold': shape_identity, } -LAYER_TYPES = LAYER_DESCRIPTORS.keys() +# layer types in 'V1LayerParameter' +# (v1layertype name, enum value, mapped to layer type) +v1_layertypes = [ + ('ABSVAL', 35), + ('ACCURACY', 1), + ('ARGMAX', 30), + ('BNLL', 2), + ('CONCAT', 3), + ('CONVOLUTION', 4), + ('DATA', 5), + ('DECONVOLUTION', 39), + ('DROPOUT', 6), + ('ELTWISE', 25), + ('EXP', 38), + ('FLATTEN', 8), + ('IM2COL', 11), + ('INNERPRODUCT', 14), + ('LRN', 15), + ('MEMORYDATA', 29), + ('MULTINOMIALLOGISTICLOSS', 16), + ('MVN', 34), + ('POOLING', 17), + ('POWER', 26), + ('RELU', 18), + ('SIGMOID', 19), + ('SIGMOIDCROSSENTROPYLOSS', 27), + ('SILENCE', 36), + ('SOFTMAX', 20), + ('SPLIT', 22), + ('SLICE', 33), + ('TANH', 23), + ('WINDOWDATA', 24), + ('THRESHOLD', 31), +] +LAYER_TYPES = LAYER_DESCRIPTORS.keys() LayerType = type('LayerType', (), {t: t for t in LAYER_TYPES}) +#map the layer name in V1 to standard name +V1_LAYER_MAP = {'_not_init_': True} + + +def get_v1_layer_map(): + global V1_LAYER_MAP + if '_not_init_' not in V1_LAYER_MAP: + return V1_LAYER_MAP + else: + del V1_LAYER_MAP['_not_init_'] + + name2layer = {} + for n in LAYER_TYPES: + name2layer[n.upper()] = n + + for l in v1_layertypes: + n, v = l + if n in name2layer and v not in V1_LAYER_MAP: + V1_LAYER_MAP[v] = name2layer[n] + else: + raise KaffeError('not found v1 layer type %s' % n) + return V1_LAYER_MAP + class NodeKind(LayerType): @staticmethod def map_raw_kind(kind): if kind in LAYER_TYPES: return kind - return None + + v1_layers = get_v1_layer_map() + if kind in v1_layers: + return v1_layers[kind] + else: + return None @staticmethod def compute_output_shape(node): diff --git a/fluid/image_classification/caffe2fluid/kaffe/paddle/network.py b/fluid/image_classification/caffe2fluid/kaffe/paddle/network.py index 620a84e8f1289672151f1f280559a56b37995ce0..fd6a71cb6acbfffe2aed1d3680fb91c8c85dc3d3 100644 --- a/fluid/image_classification/caffe2fluid/kaffe/paddle/network.py +++ b/fluid/image_classification/caffe2fluid/kaffe/paddle/network.py @@ -27,6 +27,9 @@ def layer(op): self.layers[name] = layer_output # This output is now the input for the next layer. self.feed(layer_output) + #print('output shape of %s:' % (name)) + #print layer_output.shape + # Return self for chained calls. return self @@ -158,41 +161,64 @@ class Network(object): output = fluid.layers.relu(x=input) return output - @layer - def max_pool(self, input, k_h, k_w, s_h, s_w, name, padding=None): - if padding is None: - padding = [0, 0] + def _adjust_pad_if_needed(self, i_hw, k_hw, s_hw, p_hw): + #adjust the padding if needed + i_h, i_w = i_hw + k_h, k_w = k_hw + s_h, s_w = s_hw + p_h, p_w = p_hw + + def is_consistent(i, k, s, p): + o = i + 2 * p - k + if o % s == 0: + return True + else: + return False + + real_p_h = 0 + real_p_w = 0 + if is_consistent(i_h, k_h, s_h, p_h) is False: + real_p_h = int(k_h / 2) + if is_consistent(i_w, k_w, s_w, p_w) is False: + real_p_w = int(k_w / 2) + + return [real_p_h, real_p_w] + + def pool(self, pool_type, input, k_h, k_w, s_h, s_w, name, padding): # Get the number of channels in the input - h_i, w_i = input.shape[2:] - fluid = import_fluid() - output = fluid.layers.pool2d( - input=input, - pool_size=[k_h, k_w], - pool_stride=[s_h, s_w], - pool_padding=padding, - pool_type='max') - return output + in_hw = input.shape[2:] + k_hw = [k_h, k_w] + s_hw = [s_h, s_w] - @layer - def avg_pool(self, input, k_h, k_w, s_h, s_w, name, padding=None): if padding is None: - padding = [0, 0] + #fix bug about the difference between conv and pool + #more info: https://github.com/BVLC/caffe/issues/1318 + padding = self._adjust_pad_if_needed(in_hw, k_hw, s_hw, [0, 0]) - # Get the number of channels in the input - h_i, w_i = input.shape[2:] fluid = import_fluid() output = fluid.layers.pool2d( input=input, - pool_size=[k_h, k_w], - pool_stride=[s_h, s_w], + pool_size=k_hw, + pool_stride=s_hw, pool_padding=padding, - pool_type='avg') + pool_type=pool_type) return output + @layer + def max_pool(self, input, k_h, k_w, s_h, s_w, name, padding=None): + return self.pool('max', input, k_h, k_w, s_h, s_w, name, padding) + + @layer + def avg_pool(self, input, k_h, k_w, s_h, s_w, name, padding=None): + return self.pool('avg', input, k_h, k_w, s_h, s_w, name, padding) + @layer def lrn(self, input, radius, alpha, beta, name, bias=1.0): - raise Exception('lrn() not implemented yet') + fluid = import_fluid() + output = fluid.layers.lrn(input=input, \ + n=radius, k=bias, alpha=alpha, beta=beta, name=name) + return output @layer def concat(self, inputs, axis, name): @@ -228,7 +254,7 @@ class Network(object): @layer def softmax(self, input, name): fluid = import_fluid() - output = fluid.layers.softmax(x=input, name=name) + output = fluid.layers.softmax(input) return output @layer @@ -256,5 +282,8 @@ class Network(object): return output @layer - def dropout(self, input, keep_prob, name): - raise Exception('dropout() not implemented yet') + def dropout(self, input, drop_prob, name, is_test=True): + fluid = import_fluid() + output = fluid.layers.dropout( + input, dropout_prob=drop_prob, is_test=is_test, name=name) + return output diff --git a/fluid/image_classification/caffe2fluid/kaffe/paddle/transformer.py b/fluid/image_classification/caffe2fluid/kaffe/paddle/transformer.py index 92b9d32a3a755d8e6a2a8739cc3f42f9c8564b40..4d7ec49a39199bb1415f830d88f89e93a4b95266 100644 --- a/fluid/image_classification/caffe2fluid/kaffe/paddle/transformer.py +++ b/fluid/image_classification/caffe2fluid/kaffe/paddle/transformer.py @@ -132,8 +132,7 @@ class TensorFlowMapper(NodeMapper): # just scales by alpha (as does Krizhevsky's paper). # We'll account for that here. alpha = params.alpha / float(params.local_size) - return TensorFlowNode('lrn', - int(params.local_size / 2), alpha, params.beta) + return TensorFlowNode('lrn', params.local_size, alpha, params.beta) def map_concat(self, node): return TensorFlowNode('concat', node.parameters.axis) @@ -191,22 +190,33 @@ class TensorFlowEmitter(object): def emit_setup_def(self): return self.statement('def setup(self):') - def emit_convert_def(self, input_nodes): - def data_layer_def(name, shape, dtype=None): - if dtype is None: - dtype = 'float32' + def emit_shape_def(self, input_nodes): + self.outdent() + func_def = self.statement('@classmethod') + func_def += self.statement('def input_shapes(cls):') + self.indent() - layer_var = name + '_layer' - shape = [str(s) for s in shape[1:]] - layer_def = '%s = fluid.layers.data(name="%s", shape=[%s], dtype="%s")'\ - % (layer_var, name, ','.join(shape), dtype) - return layer_var, layer_def + input_shapes = {} + for n in input_nodes: + name = n.name + output_shape = n.output_shape + shape = [str(s) for s in output_shape[1:]] + input_shapes[name] = ', '.join(shape) + input_shapes = ['"%s": [%s]' % (n, l) for n, l in input_shapes.items()] + shape_str = ','.join(input_shapes) + func_def += self.statement('return {%s}' % (shape_str)) + return '\n\n' + func_def + def emit_convert_def(self, input_nodes): codes = [] inputs = {} + codes.append('shapes = cls.input_shapes()') for n in input_nodes: name = n.name - layer_var, layer_def = data_layer_def(n.name, n.output_shape) + layer_var = name + '_layer' + layer_def = '%s = fluid.layers.data(name="%s", shape=shapes["%s"],'\ + ' dtype="float32")' % (layer_var, name, name) + #layer_var, layer_def = data_layer_def(n.name, n.output_shape) codes.append(layer_def) inputs[name] = layer_var @@ -229,7 +239,7 @@ class TensorFlowEmitter(object): func_def += self.statement('import paddle.v2.fluid as fluid') for l in codes: func_def += self.statement(l) - return '\n\n' + func_def + return '\n' + func_def def emit_main_def(self, name): if name is None: @@ -273,6 +283,7 @@ class TensorFlowEmitter(object): b += self.emit_node(node) blocks.append(b[:-1]) s = s + '\n\n'.join(blocks) + s += self.emit_shape_def(input_nodes) s += self.emit_convert_def(input_nodes) s += self.emit_main_def(name) return s diff --git a/fluid/image_classification/caffe2fluid/tests/lenet/README.md b/fluid/image_classification/caffe2fluid/tests/lenet/README.md deleted file mode 100644 index 982edc2aa67f43f849bb2523b1a15edaa02f5d28..0000000000000000000000000000000000000000 --- a/fluid/image_classification/caffe2fluid/tests/lenet/README.md +++ /dev/null @@ -1,28 +0,0 @@ -### Convert lenet model from caffe format into paddle format(fluid api) - -### Howto -1, Prepare your caffepb.py - -2, Download a lenet caffe-model - lenet_iter_10000.caffemodel - download address: https://github.com/ethereon/caffe-tensorflow/raw/master/examples/mnist/lenet_iter_10000.caffemodel - md5: cbec75c1c374b6c1981c4a1eb024ae01 - - lenet.prototxt - download address: https://raw.githubusercontent.com/BVLC/caffe/master/examples/mnist/lenet.prototxt - md5: 27384af843338ab90b00c8d1c81de7d5 - - -2, Convert this model(make sure caffepb.py is ready in ../../proto) - convert to npy format - bash ./convert.sh lenet.prototxt lenet.caffemodel lenet.py lenet.npy - - save to fluid format(optional) - bash ./convert.sh lenet.prototxt lenet.caffemodel lenet.py lenet.npy && python ./lenet.py ./lenet.npy ./fluid.model - -4, Use this new model(paddle installed in this python) - use fluid format - python ./predict.py ./fluid.model - - use npy format - python ./predict.py ./lenet.npy diff --git a/fluid/image_classification/caffe2fluid/tests/lenet/convert.sh b/fluid/image_classification/caffe2fluid/tests/lenet/convert.sh deleted file mode 100755 index b3ec1a1dce2434a4466cf5d4609de1b4aec9d346..0000000000000000000000000000000000000000 --- a/fluid/image_classification/caffe2fluid/tests/lenet/convert.sh +++ /dev/null @@ -1,33 +0,0 @@ -#!/bin/bash - -#function: -# convert a caffe model -# eg: -# bash ./convert.sh ./model.caffe/lenet.prototxt ./model.caffe/lenet.caffemodel lenet.py lenet.npy - -if [[ $# -ne 4 ]];then - echo "usage:" - echo " bash $0 [PROTOTXT] [CAFFEMODEL] [PY_NAME] [WEIGHT_NAME]" - echo " eg: bash $0 lenet.prototxt lenet.caffemodel lenet.py lenet.npy" - exit 1 -fi - -WORK_ROOT=$(dirname `readlink -f ${BASH_SOURCE[0]}`) -if [[ -z $PYTHON ]];then - PYTHON=`which python` -fi - -PROTOTXT=$1 -CAFFEMODEL=$2 -PY_NAME=$3 -WEIGHT_NAME=$4 -CONVERTER_PY="$WORK_ROOT/../../convert.py" - -$PYTHON $CONVERTER_PY $PROTOTXT --caffemodel $CAFFEMODEL --code-output-path=$PY_NAME --data-output-path=$WEIGHT_NAME -ret=$? -if [[ $ret -eq 0 ]];then - echo "succeed to convert caffe model[$CAFFEMODEL, $PROTOTXT] to paddle model[$PY_NAME, $WEIGHT_NAME]" -else - echo "failed to convert caffe model[$CAFFEMODEL, $PROTOTXT]" -fi -exit $ret diff --git a/fluid/image_classification/caffe2fluid/tests/lenet/lenet.npy b/fluid/image_classification/caffe2fluid/tests/lenet/lenet.npy deleted file mode 100644 index 66f773e5ffd54c8f5151b920aecdf3dd4f8c91d2..0000000000000000000000000000000000000000 Binary files a/fluid/image_classification/caffe2fluid/tests/lenet/lenet.npy and /dev/null differ diff --git a/fluid/image_classification/caffe2fluid/tests/lenet/lenet.py b/fluid/image_classification/caffe2fluid/tests/lenet/lenet.py deleted file mode 100644 index 50e6927483a61c574f1152c6dc438a6b2c8a4d90..0000000000000000000000000000000000000000 --- a/fluid/image_classification/caffe2fluid/tests/lenet/lenet.py +++ /dev/null @@ -1,297 +0,0 @@ -### generated by caffe2fluid, your net is in class "LeNet" ### - -import math -import os -import numpy as np - - -def import_fluid(): - import paddle.v2.fluid as fluid - return fluid - - -def layer(op): - '''Decorator for composable network layers.''' - - def layer_decorated(self, *args, **kwargs): - # Automatically set a name if not provided. - name = kwargs.setdefault('name', self.get_unique_name(op.__name__)) - # Figure out the layer inputs. - if len(self.terminals) == 0: - raise RuntimeError('No input variables found for layer %s.' % name) - elif len(self.terminals) == 1: - layer_input = self.terminals[0] - else: - layer_input = list(self.terminals) - # Perform the operation and get the output. - layer_output = op(self, layer_input, *args, **kwargs) - # Add to layer LUT. - self.layers[name] = layer_output - # This output is now the input for the next layer. - self.feed(layer_output) - # Return self for chained calls. - return self - - return layer_decorated - - -class Network(object): - def __init__(self, inputs, trainable=True): - # The input nodes for this network - self.inputs = inputs - # The current list of terminal nodes - self.terminals = [] - # Mapping from layer names to layers - self.layers = dict(inputs) - # If true, the resulting variables are set as trainable - self.trainable = trainable - # Switch variable for dropout - self.paddle_env = None - self.setup() - - def setup(self): - '''Construct the network. ''' - raise NotImplementedError('Must be implemented by the subclass.') - - def load(self, data_path, exe=None, place=None, ignore_missing=False): - '''Load network weights. - data_path: The path to the numpy-serialized network weights - ignore_missing: If true, serialized weights for missing layers are ignored. - ''' - fluid = import_fluid() - #load fluid mode directly - if os.path.isdir(data_path): - assert (exe is not None), \ - 'must provide a executor to load fluid model' - fluid.io.load_persistables_if_exist(executor=exe, dirname=data_path) - return True - - #load model from a npy file - if exe is None or place is None: - if self.paddle_env is None: - place = fluid.CPUPlace() - exe = fluid.Executor(place) - self.paddle_env = {'place': place, 'exe': exe} - exe = exe.run(fluid.default_startup_program()) - else: - place = self.paddle_env['place'] - exe = self.paddle_env['exe'] - - data_dict = np.load(data_path).item() - for op_name in data_dict: - layer = self.layers[op_name] - for param_name, data in data_dict[op_name].iteritems(): - try: - name = '%s_%s' % (op_name, param_name) - v = fluid.global_scope().find_var(name) - w = v.get_tensor() - w.set(data, place) - except ValueError: - if not ignore_missing: - raise - return True - - def feed(self, *args): - '''Set the input(s) for the next operation by replacing the terminal nodes. - The arguments can be either layer names or the actual layers. - ''' - assert len(args) != 0 - self.terminals = [] - for fed_layer in args: - if isinstance(fed_layer, basestring): - try: - fed_layer = self.layers[fed_layer] - except KeyError: - raise KeyError('Unknown layer name fed: %s' % fed_layer) - self.terminals.append(fed_layer) - return self - - def get_output(self): - '''Returns the current network output.''' - return self.terminals[-1] - - def get_unique_name(self, prefix): - '''Returns an index-suffixed unique name for the given prefix. - This is used for auto-generating layer names based on the type-prefix. - ''' - ident = sum(t.startswith(prefix) for t, _ in self.layers.items()) + 1 - return '%s_%d' % (prefix, ident) - - @layer - def conv(self, - input, - k_h, - k_w, - c_o, - s_h, - s_w, - name, - relu=True, - padding=None, - group=1, - biased=True): - if padding is None: - padding = [0, 0] - - # Get the number of channels in the input - c_i, h_i, w_i = input.shape[1:] - - # Verify that the grouping parameter is valid - assert c_i % group == 0 - assert c_o % group == 0 - - fluid = import_fluid() - prefix = name + '_' - output = fluid.layers.conv2d( - input=input, - filter_size=[k_h, k_w], - num_filters=c_o, - stride=[s_h, s_w], - padding=padding, - groups=group, - param_attr=fluid.ParamAttr(name=prefix + "weights"), - bias_attr=fluid.ParamAttr(name=prefix + "biases"), - act="relu" if relu is True else None) - return output - - @layer - def relu(self, input, name): - fluid = import_fluid() - output = fluid.layers.relu(x=input) - return output - - @layer - def max_pool(self, input, k_h, k_w, s_h, s_w, name, padding=None): - if padding is None: - padding = [0, 0] - - # Get the number of channels in the input - h_i, w_i = input.shape[2:] - fluid = import_fluid() - output = fluid.layers.pool2d( - input=input, - pool_size=[k_h, k_w], - pool_stride=[s_h, s_w], - pool_padding=padding, - pool_type='max') - return output - - @layer - def avg_pool(self, input, k_h, k_w, s_h, s_w, name, padding=None): - if padding is None: - padding = [0, 0] - - # Get the number of channels in the input - h_i, w_i = input.shape[2:] - fluid = import_fluid() - output = fluid.layers.pool2d( - input=input, - pool_size=[k_h, k_w], - pool_stride=[s_h, s_w], - pool_padding=padding, - pool_type='avg') - return output - - @layer - def lrn(self, input, radius, alpha, beta, name, bias=1.0): - raise Exception('lrn() not implemented yet') - - @layer - def concat(self, inputs, axis, name): - fluid = import_fluid() - output = fluid.layers.concat(input=inputs, axis=axis) - return output - - @layer - def add(self, inputs, name): - fluid = import_fluid() - output = inputs[0] - for i in inputs[1:]: - output = fluid.layers.elementwise_add(x=output, y=i) - return output - - @layer - def fc(self, input, num_out, name, relu=True, act=None): - fluid = import_fluid() - - if act is None: - act = 'relu' if relu is True else None - - prefix = name + '_' - output = fluid.layers.fc( - name=name, - input=input, - size=num_out, - act=act, - param_attr=fluid.ParamAttr(name=prefix + 'weights'), - bias_attr=fluid.ParamAttr(name=prefix + 'biases')) - return output - - @layer - def softmax(self, input, name): - fluid = import_fluid() - output = fluid.layers.softmax(x=input, name=name) - return output - - @layer - def batch_normalization(self, input, name, scale_offset=True, relu=False): - # NOTE: Currently, only inference is supported - fluid = import_fluid() - prefix = name + '_' - param_attr = None if scale_offset is False else fluid.ParamAttr( - name=prefix + 'scale') - bias_attr = None if scale_offset is False else fluid.ParamAttr( - name=prefix + 'offset') - mean_name = prefix + 'mean' - variance_name = prefix + 'variance' - output = fluid.layers.batch_norm( - name=name, - input=input, - is_test=True, - param_attr=param_attr, - bias_attr=bias_attr, - moving_mean_name=mean_name, - moving_variance_name=variance_name, - epsilon=1e-5, - act='relu' if relu is True else None) - - return output - - @layer - def dropout(self, input, keep_prob, name): - raise Exception('dropout() not implemented yet') - - -class LeNet(Network): - def setup(self): - self.feed('data') - self.conv(5, 5, 20, 1, 1, relu=False, name='conv1') - self.max_pool(2, 2, 2, 2, name='pool1') - self.conv(5, 5, 50, 1, 1, relu=False, name='conv2') - self.max_pool(2, 2, 2, 2, name='pool2') - self.fc(500, name='ip1') - self.fc(10, relu=False, name='ip2') - self.softmax(name='prob') - - @classmethod - def convert(cls, npy_model, fluid_path): - import paddle.v2.fluid as fluid - data_layer = fluid.layers.data( - name="data", shape=[1, 28, 28], dtype="float32") - feed_data = {"data": data_layer} - net = cls(feed_data) - place = fluid.CPUPlace() - exe = fluid.Executor(place) - exe.run(fluid.default_startup_program()) - net.load(data_path=npy_model, exe=exe, place=place) - fluid.io.save_persistables(executor=exe, dirname=fluid_path) - - -if __name__ == "__main__": - #usage: python xxxnet.py xxx.npy ./model - - import sys - npy_weight = sys.argv[1] - fluid_model = sys.argv[2] - LeNet.convert(npy_weight, fluid_model) - exit(0)