Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
models
提交
3483068e
M
models
项目概览
PaddlePaddle
/
models
大约 1 年 前同步成功
通知
222
Star
6828
Fork
2962
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
602
列表
看板
标记
里程碑
合并请求
255
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
M
models
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
602
Issue
602
列表
看板
标记
里程碑
合并请求
255
合并请求
255
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
3483068e
编写于
3月 07, 2018
作者:
Q
qingqing01
提交者:
GitHub
3月 07, 2018
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #694 from qingqing01/mobilenet_ssd
Refine MobileNet SSD model and add mAP evaluator.
上级
f5df7903
32481e12
变更
3
显示空白变更内容
内联
并排
Showing
3 changed file
with
112 addition
and
140 deletion
+112
-140
fluid/object_detection/load_model.py
fluid/object_detection/load_model.py
+39
-0
fluid/object_detection/mobilenet_ssd.py
fluid/object_detection/mobilenet_ssd.py
+71
-139
fluid/object_detection/reader.py
fluid/object_detection/reader.py
+2
-1
未找到文件。
fluid/object_detection/load_model.py
0 → 100644
浏览文件 @
3483068e
import
paddle.v2
as
paddle
import
paddle.fluid
as
fluid
import
numpy
as
np
def
load_vars
():
vars
=
{}
name_map
=
{}
with
open
(
'./ssd_mobilenet_v1_coco/names.map'
,
'r'
)
as
map_file
:
for
param
in
map_file
:
fd_name
,
tf_name
=
param
.
strip
().
split
(
'
\t
'
)
name_map
[
fd_name
]
=
tf_name
tf_vars
=
np
.
load
(
'./ssd_mobilenet_v1_coco/ssd_mobilenet_v1_coco_2017_11_17.npy'
).
item
()
for
fd_name
in
name_map
:
tf_name
=
name_map
[
fd_name
]
tf_var
=
tf_vars
[
tf_name
]
if
len
(
tf_var
.
shape
)
==
4
and
'depthwise'
in
tf_name
:
vars
[
fd_name
]
=
np
.
transpose
(
tf_var
,
(
2
,
3
,
0
,
1
))
elif
len
(
tf_var
.
shape
)
==
4
:
vars
[
fd_name
]
=
np
.
transpose
(
tf_var
,
(
3
,
2
,
0
,
1
))
else
:
vars
[
fd_name
]
=
tf_var
return
vars
def
load_and_set_vars
(
place
):
vars
=
load_vars
()
for
k
,
v
in
vars
.
items
():
t
=
fluid
.
global_scope
().
find_var
(
k
).
get_tensor
()
#print(np.array(t).shape, v.shape, k)
assert
np
.
array
(
t
).
shape
==
v
.
shape
t
.
set
(
v
,
place
)
if
__name__
==
"__main__"
:
load_vars
()
fluid/object_detection/mobilenet_ssd
_fluid
.py
→
fluid/object_detection/mobilenet_ssd.py
浏览文件 @
3483068e
import
os
import
paddle.v2
as
paddle
import
paddle.fluid
as
fluid
from
paddle.fluid.initializer
import
MSRA
from
paddle.fluid.param_attr
import
ParamAttr
import
reader
import
numpy
as
np
import
load_model
as
load_model
parameter_attr
=
ParamAttr
(
initializer
=
MSRA
())
def
conv_bn
_layer
(
input
,
def
conv_bn
(
input
,
filter_size
,
num_filters
,
stride
,
...
...
@@ -37,7 +37,7 @@ def depthwise_separable(input, num_filters1, num_filters2, num_groups, stride,
scale
):
"""
"""
depthwise_conv
=
conv_bn
_layer
(
depthwise_conv
=
conv_bn
(
input
=
input
,
filter_size
=
3
,
num_filters
=
int
(
num_filters1
*
scale
),
...
...
@@ -46,7 +46,7 @@ def depthwise_separable(input, num_filters1, num_filters2, num_groups, stride,
num_groups
=
int
(
num_groups
*
scale
),
use_cudnn
=
False
)
pointwise_conv
=
conv_bn
_layer
(
pointwise_conv
=
conv_bn
(
input
=
depthwise_conv
,
filter_size
=
1
,
num_filters
=
int
(
num_filters2
*
scale
),
...
...
@@ -56,9 +56,8 @@ def depthwise_separable(input, num_filters1, num_filters2, num_groups, stride,
def
extra_block
(
input
,
num_filters1
,
num_filters2
,
num_groups
,
stride
,
scale
):
"""
"""
pointwise_conv
=
conv_bn_layer
(
# 1x1 conv
pointwise_conv
=
conv_bn
(
input
=
input
,
filter_size
=
1
,
num_filters
=
int
(
num_filters1
*
scale
),
...
...
@@ -66,7 +65,8 @@ def extra_block(input, num_filters1, num_filters2, num_groups, stride, scale):
num_groups
=
int
(
num_groups
*
scale
),
padding
=
0
)
normal_conv
=
conv_bn_layer
(
# 3x3 conv
normal_conv
=
conv_bn
(
input
=
pointwise_conv
,
filter_size
=
3
,
num_filters
=
int
(
num_filters2
*
scale
),
...
...
@@ -77,130 +77,33 @@ def extra_block(input, num_filters1, num_filters2, num_groups, stride, scale):
def
mobile_net
(
img
,
img_shape
,
scale
=
1.0
):
# 300x300
tmp
=
conv_bn_layer
(
img
,
filter_size
=
3
,
channels
=
3
,
num_filters
=
int
(
32
*
scale
),
stride
=
2
,
padding
=
1
)
tmp
=
conv_bn
(
img
,
3
,
int
(
32
*
scale
),
2
,
1
,
3
)
# 150x150
tmp
=
depthwise_separable
(
tmp
,
num_filters1
=
32
,
num_filters2
=
64
,
num_groups
=
32
,
stride
=
1
,
scale
=
scale
)
tmp
=
depthwise_separable
(
tmp
,
num_filters1
=
64
,
num_filters2
=
128
,
num_groups
=
64
,
stride
=
2
,
scale
=
scale
)
tmp
=
depthwise_separable
(
tmp
,
32
,
64
,
32
,
1
,
scale
)
tmp
=
depthwise_separable
(
tmp
,
64
,
128
,
64
,
2
,
scale
)
# 75x75
tmp
=
depthwise_separable
(
tmp
,
num_filters1
=
128
,
num_filters2
=
128
,
num_groups
=
128
,
stride
=
1
,
scale
=
scale
)
tmp
=
depthwise_separable
(
tmp
,
num_filters1
=
128
,
num_filters2
=
256
,
num_groups
=
128
,
stride
=
2
,
scale
=
scale
)
tmp
=
depthwise_separable
(
tmp
,
128
,
128
,
128
,
1
,
scale
)
tmp
=
depthwise_separable
(
tmp
,
128
,
256
,
128
,
2
,
scale
)
# 38x38
tmp
=
depthwise_separable
(
tmp
,
num_filters1
=
256
,
num_filters2
=
256
,
num_groups
=
256
,
stride
=
1
,
scale
=
scale
)
tmp
=
depthwise_separable
(
tmp
,
num_filters1
=
256
,
num_filters2
=
512
,
num_groups
=
256
,
stride
=
2
,
scale
=
scale
)
tmp
=
depthwise_separable
(
tmp
,
256
,
256
,
256
,
1
,
scale
)
tmp
=
depthwise_separable
(
tmp
,
256
,
512
,
256
,
2
,
scale
)
# 19x19
for
i
in
range
(
5
):
tmp
=
depthwise_separable
(
tmp
,
num_filters1
=
512
,
num_filters2
=
512
,
num_groups
=
512
,
stride
=
1
,
scale
=
scale
)
tmp
=
depthwise_separable
(
tmp
,
512
,
512
,
512
,
1
,
scale
)
module11
=
tmp
tmp
=
depthwise_separable
(
tmp
,
num_filters1
=
512
,
num_filters2
=
1024
,
num_groups
=
512
,
stride
=
2
,
scale
=
scale
)
tmp
=
depthwise_separable
(
tmp
,
512
,
1024
,
512
,
2
,
scale
)
# 10x10
module13
=
depthwise_separable
(
tmp
,
num_filters1
=
1024
,
num_filters2
=
1024
,
num_groups
=
1024
,
stride
=
1
,
scale
=
scale
)
module14
=
extra_block
(
module13
,
num_filters1
=
256
,
num_filters2
=
512
,
num_groups
=
1
,
stride
=
2
,
scale
=
scale
)
module13
=
depthwise_separable
(
tmp
,
1024
,
1024
,
1024
,
1
,
scale
)
module14
=
extra_block
(
module13
,
256
,
512
,
1
,
2
,
scale
)
# 5x5
module15
=
extra_block
(
module14
,
num_filters1
=
128
,
num_filters2
=
256
,
num_groups
=
1
,
stride
=
2
,
scale
=
scale
)
module15
=
extra_block
(
module14
,
128
,
256
,
1
,
2
,
scale
)
# 3x3
module16
=
extra_block
(
module15
,
num_filters1
=
128
,
num_filters2
=
256
,
num_groups
=
1
,
stride
=
2
,
scale
=
scale
)
module16
=
extra_block
(
module15
,
128
,
256
,
1
,
2
,
scale
)
# 2x2
module17
=
extra_block
(
module16
,
num_filters1
=
64
,
num_filters2
=
128
,
num_groups
=
1
,
stride
=
2
,
scale
=
scale
)
module17
=
extra_block
(
module16
,
64
,
128
,
1
,
2
,
scale
)
mbox_locs
,
mbox_confs
,
box
,
box_var
=
fluid
.
layers
.
multi_box_head
(
inputs
=
[
module11
,
module13
,
module14
,
module15
,
module16
,
module17
],
image
=
img
,
...
...
@@ -230,7 +133,9 @@ def train(train_file_list,
gt_box
=
fluid
.
layers
.
data
(
name
=
'gt_box'
,
shape
=
[
4
],
dtype
=
'float32'
,
lod_level
=
1
)
gt_label
=
fluid
.
layers
.
data
(
name
=
'gt_label'
,
shape
=
[
1
],
dtype
=
'float32'
,
lod_level
=
1
)
name
=
'gt_label'
,
shape
=
[
1
],
dtype
=
'int32'
,
lod_level
=
1
)
difficult
=
fluid
.
layers
.
data
(
name
=
'gt_difficult'
,
shape
=
[
1
],
dtype
=
'int32'
,
lod_level
=
1
)
mbox_locs
,
mbox_confs
,
box
,
box_var
=
mobile_net
(
image
,
image_shape
)
nmsed_out
=
fluid
.
layers
.
detection_output
(
mbox_locs
,
mbox_confs
,
box
,
...
...
@@ -239,35 +144,62 @@ def train(train_file_list,
box
,
box_var
)
loss
=
fluid
.
layers
.
nn
.
reduce_sum
(
loss_vec
)
map_eval
=
fluid
.
evaluator
.
DetectionMAP
(
nmsed_out
,
gt_label
,
gt_box
,
difficult
,
21
,
overlap_threshold
=
0.5
,
evaluate_difficult
=
False
,
ap_version
=
'11point'
)
test_program
=
fluid
.
default_main_program
().
clone
(
for_test
=
True
)
optimizer
=
fluid
.
optimizer
.
Momentum
(
learning_rate
=
fluid
.
l
earning_rate_decay
.
exponential_decay
(
learning_rate
=
fluid
.
l
ayers
.
exponential_decay
(
learning_rate
=
learning_rate
,
decay_steps
=
40000
,
decay_rate
=
0.1
,
staircase
=
True
),
momentum
=
0.9
,
regularization
=
fluid
.
regularizer
.
L2Decay
(
5
*
1e-
5
),
)
regularization
=
fluid
.
regularizer
.
L2Decay
(
0.000
5
),
)
opts
=
optimizer
.
minimize
(
loss
)
place
=
fluid
.
CUDAPlace
(
0
)
exe
=
fluid
.
Executor
(
place
)
exe
.
run
(
fluid
.
default_startup_program
())
load_model
.
load_and_set_vars
(
place
)
train_reader
=
paddle
.
batch
(
reader
.
train
(
data_args
,
train_file_list
),
batch_size
=
batch_size
)
test_reader
=
paddle
.
batch
(
reader
.
test
(
data_args
,
train_file_list
),
batch_size
=
batch_size
)
feeder
=
fluid
.
DataFeeder
(
place
=
place
,
feed_list
=
[
image
,
gt_box
,
gt_label
])
feeder
=
fluid
.
DataFeeder
(
place
=
place
,
feed_list
=
[
image
,
gt_box
,
gt_label
,
difficult
])
#print fluid.default_main_program()
map
,
accum_map
=
map_eval
.
get_map_var
()
for
pass_id
in
range
(
num_passes
):
map_eval
.
reset
(
exe
)
for
batch_id
,
data
in
enumerate
(
train_reader
()):
loss_v
=
exe
.
run
(
fluid
.
default_main_program
(),
loss_v
,
map_v
,
accum_map_v
=
exe
.
run
(
fluid
.
default_main_program
(),
feed
=
feeder
.
feed
(
data
),
fetch_list
=
[
loss
])
if
batch_id
%
50
==
0
:
print
(
"Pass {0}, batch {1}, loss {2}"
.
format
(
pass_id
,
batch_id
,
np
.
sum
(
loss_v
)))
if
pass_id
%
1
==
0
:
fetch_list
=
[
loss
,
map
,
accum_map
])
print
(
"Pass {0}, batch {1}, loss {2}, cur_map {3}, map {4}"
.
format
(
pass_id
,
batch_id
,
loss_v
[
0
],
map_v
[
0
],
accum_map_v
[
0
]))
map_eval
.
reset
(
exe
)
test_map
=
None
for
_
,
data
in
enumerate
(
test_reader
()):
test_map
=
exe
.
run
(
test_program
,
feed
=
feeder
.
feed
(
data
),
fetch_list
=
[
accum_map
])
print
(
"Test {0}, map {1}"
.
format
(
pass_id
,
test_map
[
0
]))
if
pass_id
%
10
==
0
:
model_path
=
os
.
path
.
join
(
model_save_dir
,
str
(
pass_id
))
print
'save models to %s'
%
(
model_path
)
fluid
.
io
.
save_inference_model
(
model_path
,
[
'image'
],
[
nmsed_out
],
...
...
@@ -285,6 +217,6 @@ if __name__ == '__main__':
train_file_list
=
'./data/trainval.txt'
,
val_file_list
=
'./data/test.txt'
,
data_args
=
data_args
,
learning_rate
=
0.00
1
,
learning_rate
=
0.00
4
,
batch_size
=
32
,
num_passes
=
300
)
fluid/object_detection/reader.py
浏览文件 @
3483068e
...
...
@@ -159,7 +159,8 @@ def _reader_creator(settings, file_list, mode, shuffle):
if
mode
==
'train'
and
len
(
sample_labels
)
==
0
:
continue
yield
img
.
astype
(
'float32'
),
sample_labels
[:,
1
:
5
],
sample_labels
[:,
0
].
astype
(
'int'
)
),
sample_labels
[:,
1
:
5
],
sample_labels
[:,
0
].
astype
(
'int32'
),
sample_labels
[:,
5
].
astype
(
'int32'
)
elif
mode
==
'infer'
:
yield
img
.
astype
(
'float32'
)
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录