diff --git a/fluid/sequence_tagging_for_ner/train.py b/fluid/sequence_tagging_for_ner/train.py index 02589f34bcc1ce792ae938c6228524c612df34f9..846dbc426a3476c9583bdd891e2b4feca7d3fc4b 100644 --- a/fluid/sequence_tagging_for_ner/train.py +++ b/fluid/sequence_tagging_for_ner/train.py @@ -98,27 +98,25 @@ def main(train_data_file, test_data_file, vocab_file, target_file, emb_file, for pass_id in xrange(num_passes): chunk_evaluator.reset(exe) for data in train_reader(): - print len(data) cost, batch_precision, batch_recall, batch_f1_score = exe.run( fluid.default_main_program(), feed=feeder.feed(data), fetch_list=[avg_cost] + chunk_evaluator.metrics) if batch_id % 5 == 0: - print( - "Pass " + str(pass_id) + ", Batch " + str(batch_id) + - ", Cost " + str(cost[0]) + ", Precision " + - str(batch_precision[0]) + ", Recall " + str(batch_recall[0]) - + ", F1_score" + str(batch_f1_score[0])) + print("Pass " + str(pass_id) + ", Batch " + str( + batch_id) + ", Cost " + str(cost[0]) + ", Precision " + str( + batch_precision[0]) + ", Recall " + str(batch_recall[0]) + + ", F1_score" + str(batch_f1_score[0])) batch_id = batch_id + 1 pass_precision, pass_recall, pass_f1_score = chunk_evaluator.eval(exe) - print("[TrainSet] pass_id:" + str(pass_id) + " pass_precision:" + - str(pass_precision) + " pass_recall:" + str(pass_recall) + + print("[TrainSet] pass_id:" + str(pass_id) + " pass_precision:" + str( + pass_precision) + " pass_recall:" + str(pass_recall) + " pass_f1_score:" + str(pass_f1_score)) pass_precision, pass_recall, pass_f1_score = test( exe, chunk_evaluator, inference_program, test_reader, place) - print("[TestSet] pass_id:" + str(pass_id) + " pass_precision:" + - str(pass_precision) + " pass_recall:" + str(pass_recall) + + print("[TestSet] pass_id:" + str(pass_id) + " pass_precision:" + str( + pass_precision) + " pass_recall:" + str(pass_recall) + " pass_f1_score:" + str(pass_f1_score)) save_dirname = os.path.join(model_save_dir, "params_pass_%d" % pass_id)