提交 2c552f9c 编写于 作者: chrisxu2014's avatar chrisxu2014

add augmentor class

上级 1bafb9c6
......@@ -83,7 +83,7 @@ class AugmentationPipeline(object):
return SpeedPerturbAugmentor(self._rng, **params)
if augmentor_type == "resample":
return ResampleAugmentor(self._rng, **params)
if augmentor_type == "baysian_normal":
if augmentor_type == "bayesian_normal":
return OnlineBayesianNormalizationAugmentor(self._rng, **params)
else:
raise ValueError("Unknown augmentor type [%s]." % augmentor_type)
"""Test augmentor class."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import unittest
from data_utils import audio
from data_utils.augmentor.augmentation import AugmentationPipeline
import random
import numpy as np
random_seed=0
#audio instance
audio_data=[3.05175781e-05, -8.54492188e-04, -1.09863281e-03, -9.46044922e-04,\
-1.31225586e-03, -1.09863281e-03, -1.73950195e-03, -2.10571289e-03,\
-2.04467773e-03, -1.46484375e-03, -1.43432617e-03, -9.46044922e-04,\
-1.95312500e-03, -1.86157227e-03, -2.10571289e-03, -2.31933594e-03,\
-2.01416016e-03, -2.62451172e-03, -2.07519531e-03, -2.38037109e-03]
audio_data = np.array(audio_data)
samplerate = 10
class TestAugmentor(unittest.TestCase):
def test_volume(self):
augmentation_config='[{"type": "volume","params": {"min_gain_dBFS": -15, "max_gain_dBFS": 15},"prob": 1.0}]'
augmentation_pipeline = AugmentationPipeline(augmentation_config=augmentation_config,
random_seed=random_seed)
audio_segment = audio.AudioSegment(audio_data, samplerate)
augmentation_pipeline.transform_audio(audio_segment)
original_audio = audio.AudioSegment(audio_data, samplerate)
self.assertFalse(np.any(audio_segment.samples == original_audio.samples))
def test_speed(self):
augmentation_config='[{"type": "speed","params": {"min_speed_rate": 1.2,"max_speed_rate": 1.4},"prob": 1.0}]'
augmentation_pipeline = AugmentationPipeline(augmentation_config=augmentation_config,
random_seed=random_seed)
audio_segment = audio.AudioSegment(audio_data, samplerate)
augmentation_pipeline.transform_audio(audio_segment)
original_audio = audio.AudioSegment(audio_data, samplerate)
self.assertFalse(np.any(audio_segment.samples == original_audio.samples))
def test_resample(self):
augmentation_config='[{"type": "resample","params": {"new_sample_rate":5},"prob": 1.0}]'
augmentation_pipeline = AugmentationPipeline(augmentation_config=augmentation_config,
random_seed=random_seed)
audio_segment = audio.AudioSegment(audio_data, samplerate)
augmentation_pipeline.transform_audio(audio_segment)
self.assertTrue(audio_segment.sample_rate == 5)
def test_bayesial(self):
augmentation_config='[{"type": "bayesian_normal","params": {"target_db": -20, "prior_db": -4, "prior_samples": -8, "startup_delay": 0.0},"prob": 1.0}]'
augmentation_pipeline = AugmentationPipeline(augmentation_config=augmentation_config,
random_seed=random_seed)
audio_segment = audio.AudioSegment(audio_data, samplerate)
augmentation_pipeline.transform_audio(audio_segment)
original_audio = audio.AudioSegment(audio_data, samplerate)
self.assertFalse(np.any(audio_segment.samples == original_audio.samples))
if __name__ == '__main__':
unittest.main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册