Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
models
提交
29b56eec
M
models
项目概览
PaddlePaddle
/
models
大约 2 年 前同步成功
通知
232
Star
6828
Fork
2962
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
602
列表
看板
标记
里程碑
合并请求
255
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
M
models
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
602
Issue
602
列表
看板
标记
里程碑
合并请求
255
合并请求
255
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
29b56eec
编写于
5月 08, 2017
作者:
G
guosheng
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add ner model
上级
10ab8b5e
变更
8
展开全部
隐藏空白更改
内联
并排
Showing
8 changed file
with
475442 addition
and
0 deletion
+475442
-0
sequence_tagging_for_ner/conll03.py
sequence_tagging_for_ner/conll03.py
+130
-0
sequence_tagging_for_ner/data/target.txt
sequence_tagging_for_ner/data/target.txt
+9
-0
sequence_tagging_for_ner/data/test
sequence_tagging_for_ner/data/test
+55044
-0
sequence_tagging_for_ner/data/train
sequence_tagging_for_ner/data/train
+219554
-0
sequence_tagging_for_ner/data/vocab.txt
sequence_tagging_for_ner/data/vocab.txt
+100232
-0
sequence_tagging_for_ner/data/wordVectors.txt
sequence_tagging_for_ner/data/wordVectors.txt
+100232
-0
sequence_tagging_for_ner/ner_final.py
sequence_tagging_for_ner/ner_final.py
+241
-0
sequence_tagging_for_ner/ner_params_pass_99.tar.gz
sequence_tagging_for_ner/ner_params_pass_99.tar.gz
+0
-0
未找到文件。
sequence_tagging_for_ner/conll03.py
0 → 100644
浏览文件 @
29b56eec
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Conll03 dataset.
"""
import
tarfile
import
gzip
import
itertools
import
re
import
numpy
as
np
__all__
=
[
'train'
,
'test'
,
'get_dict'
,
'get_embedding'
]
UNK_IDX
=
0
def
canonicalize_digits
(
word
):
if
any
([
c
.
isalpha
()
for
c
in
word
]):
return
word
word
=
re
.
sub
(
"\d"
,
"DG"
,
word
)
if
word
.
startswith
(
"DG"
):
word
=
word
.
replace
(
","
,
""
)
# remove thousands separator
return
word
def
canonicalize_word
(
word
,
wordset
=
None
,
digits
=
True
):
word
=
word
.
lower
()
if
digits
:
if
(
wordset
!=
None
)
and
(
word
in
wordset
):
return
word
word
=
canonicalize_digits
(
word
)
# try to canonicalize numbers
if
(
wordset
==
None
)
or
(
word
in
wordset
):
return
word
else
:
return
"UUUNKKK"
# unknown token
def
load_dict
(
filename
):
d
=
dict
()
with
open
(
filename
,
'r'
)
as
f
:
for
i
,
line
in
enumerate
(
f
):
d
[
line
.
strip
()]
=
i
return
d
def
get_dict
(
vocab_file
=
'data/vocab.txt'
,
target_file
=
'data/target.txt'
):
"""
Get the word and label dictionary.
"""
word_dict
=
load_dict
(
vocab_file
)
label_dict
=
load_dict
(
target_file
)
return
word_dict
,
label_dict
def
get_embedding
(
emb_file
=
'data/wordVectors.txt'
):
"""
Get the trained word vector.
"""
return
np
.
loadtxt
(
emb_file
,
dtype
=
float
)
def
corpus_reader
(
filename
=
'data/train'
):
def
reader
():
sentence
=
[]
labels
=
[]
with
open
(
filename
)
as
f
:
for
line
in
f
:
if
re
.
match
(
r
"-DOCSTART-.+"
,
line
)
or
(
len
(
line
.
strip
())
==
0
):
if
len
(
sentence
)
>
0
:
yield
sentence
,
labels
sentence
=
[]
labels
=
[]
else
:
segs
=
line
.
strip
().
split
()
sentence
.
append
(
segs
[
0
])
labels
.
append
(
segs
[
-
1
])
f
.
close
()
return
reader
def
reader_creator
(
corpus_reader
=
corpus_reader
(
'data/train'
),
word_dict
=
load_dict
(
'data/vocab.txt'
),
label_dict
=
load_dict
(
'data/target.txt'
)):
"""
Conll03 train set creator.
Because the training dataset is not free, the test dataset is used for
training. It returns a reader creator, each sample in the reader is nine
features, including sentence sequence, predicate, predicate context,
predicate context flag and tagged sequence.
:return: Training reader creator
:rtype: callable
"""
def
reader
():
for
sentence
,
labels
in
corpus_reader
():
#word_idx = [word_dict.get(w, UNK_IDX) for w in sentence]
word_idx
=
[
word_dict
.
get
(
canonicalize_word
(
w
,
word_dict
),
UNK_IDX
)
for
w
in
sentence
]
label_idx
=
[
label_dict
.
get
(
w
)
for
w
in
labels
]
yield
word_idx
,
label_idx
return
reader
def
train
():
return
reader_creator
(
corpus_reader
(
'data/train'
),
word_dict
=
load_dict
(
'data/vocab.txt'
),
label_dict
=
load_dict
(
'data/target.txt'
))
def
test
():
return
reader_creator
(
corpus_reader
(
'data/test'
),
word_dict
=
load_dict
(
'data/vocab.txt'
),
label_dict
=
load_dict
(
'data/target.txt'
))
sequence_tagging_for_ner/data/target.txt
0 → 100644
浏览文件 @
29b56eec
B-LOC
B-MISC
B-ORG
B-PER
I-LOC
I-MISC
I-ORG
I-PER
O
sequence_tagging_for_ner/data/test
0 → 100644
浏览文件 @
29b56eec
此差异已折叠。
点击以展开。
sequence_tagging_for_ner/data/train
0 → 100644
浏览文件 @
29b56eec
此差异已折叠。
点击以展开。
sequence_tagging_for_ner/data/vocab.txt
0 → 100644
浏览文件 @
29b56eec
此差异已折叠。
点击以展开。
sequence_tagging_for_ner/data/wordVectors.txt
0 → 100644
浏览文件 @
29b56eec
此差异已折叠。
点击以展开。
sequence_tagging_for_ner/ner_final.py
0 → 100644
浏览文件 @
29b56eec
import
math
import
gzip
import
paddle.v2
as
paddle
import
paddle.v2.evaluator
as
evaluator
import
conll03
import
itertools
word_dict
,
label_dict
=
conll03
.
get_dict
()
word_dict_len
=
len
(
word_dict
)
label_dict_len
=
len
(
label_dict
)
word_dim
=
50
caps_dim
=
5
context_length
=
5
hidden_dim
=
300
mix_hidden_lr
=
1e-3
default_std
=
1
/
math
.
sqrt
(
hidden_dim
)
/
3.0
emb_para
=
paddle
.
attr
.
Param
(
name
=
'emb'
,
initial_std
=
math
.
sqrt
(
1.
/
word_dim
),
is_static
=
True
)
std_0
=
paddle
.
attr
.
Param
(
initial_std
=
0.
)
std_default
=
paddle
.
attr
.
Param
(
initial_std
=
default_std
)
def
d_type
(
size
):
return
paddle
.
data_type
.
integer_value_sequence
(
size
)
def
ner_net
():
word
=
paddle
.
layer
.
data
(
name
=
'word'
,
type
=
d_type
(
word_dict_len
))
#ws = paddle.layer.data(name='ws', type=d_type(num_ws))
word_embedding
=
paddle
.
layer
.
mixed
(
name
=
'word_embedding'
,
size
=
word_dim
,
input
=
paddle
.
layer
.
table_projection
(
input
=
word
,
param_attr
=
emb_para
))
#ws_embedding = paddle.layer.mixed(name='ws_embedding', size=caps_dim,
# input=paddle.layer.table_projection(input=ws))
emb_layers
=
[
word_embedding
]
#[word_embedding, ws_embedding]
word_caps_vector
=
paddle
.
layer
.
concat
(
name
=
'word_caps_vector'
,
input
=
emb_layers
)
hidden_1
=
paddle
.
layer
.
mixed
(
name
=
'hidden1'
,
size
=
hidden_dim
,
bias_attr
=
std_default
,
input
=
[
paddle
.
layer
.
full_matrix_projection
(
input
=
word_caps_vector
,
param_attr
=
std_default
)
])
lstm_para_attr
=
paddle
.
attr
.
Param
(
initial_std
=
0.0
,
learning_rate
=
0.1
)
hidden_para_attr
=
paddle
.
attr
.
Param
(
initial_std
=
default_std
,
learning_rate
=
mix_hidden_lr
)
lstm_1_1
=
paddle
.
layer
.
lstmemory
(
name
=
'rnn1-1'
,
input
=
hidden_1
,
act
=
paddle
.
activation
.
Relu
(),
gate_act
=
paddle
.
activation
.
Sigmoid
(),
state_act
=
paddle
.
activation
.
Sigmoid
(),
bias_attr
=
std_0
,
param_attr
=
lstm_para_attr
)
lstm_1_2
=
paddle
.
layer
.
lstmemory
(
name
=
'rnn1-2'
,
input
=
hidden_1
,
act
=
paddle
.
activation
.
Relu
(),
gate_act
=
paddle
.
activation
.
Sigmoid
(),
state_act
=
paddle
.
activation
.
Sigmoid
(),
reverse
=
1
,
bias_attr
=
std_0
,
param_attr
=
lstm_para_attr
)
hidden_2_1
=
paddle
.
layer
.
mixed
(
size
=
hidden_dim
,
bias_attr
=
std_default
,
input
=
[
paddle
.
layer
.
full_matrix_projection
(
input
=
hidden_1
,
param_attr
=
hidden_para_attr
),
paddle
.
layer
.
full_matrix_projection
(
input
=
lstm_1_1
,
param_attr
=
lstm_para_attr
)
])
hidden_2_2
=
paddle
.
layer
.
mixed
(
size
=
hidden_dim
,
bias_attr
=
std_default
,
input
=
[
paddle
.
layer
.
full_matrix_projection
(
input
=
hidden_1
,
param_attr
=
hidden_para_attr
),
paddle
.
layer
.
full_matrix_projection
(
input
=
lstm_1_2
,
param_attr
=
lstm_para_attr
)
])
lstm_2_1
=
paddle
.
layer
.
lstmemory
(
name
=
'rnn2-1'
,
input
=
hidden_2_1
,
act
=
paddle
.
activation
.
Relu
(),
gate_act
=
paddle
.
activation
.
Sigmoid
(),
state_act
=
paddle
.
activation
.
Sigmoid
(),
reverse
=
1
,
bias_attr
=
std_0
,
param_attr
=
lstm_para_attr
)
lstm_2_2
=
paddle
.
layer
.
lstmemory
(
name
=
'rnn2-2'
,
input
=
hidden_2_2
,
act
=
paddle
.
activation
.
Relu
(),
gate_act
=
paddle
.
activation
.
Sigmoid
(),
state_act
=
paddle
.
activation
.
Sigmoid
(),
bias_attr
=
std_0
,
param_attr
=
lstm_para_attr
)
hidden_3
=
paddle
.
layer
.
mixed
(
name
=
'hidden3'
,
size
=
hidden_dim
,
bias_attr
=
std_default
,
input
=
[
paddle
.
layer
.
full_matrix_projection
(
input
=
hidden_2_1
,
param_attr
=
hidden_para_attr
),
paddle
.
layer
.
full_matrix_projection
(
input
=
lstm_2_1
,
param_attr
=
lstm_para_attr
),
paddle
.
layer
.
full_matrix_projection
(
input
=
hidden_2_2
,
param_attr
=
hidden_para_attr
),
paddle
.
layer
.
full_matrix_projection
(
input
=
lstm_2_2
,
param_attr
=
lstm_para_attr
)
])
output
=
paddle
.
layer
.
mixed
(
name
=
'output'
,
size
=
label_dict_len
,
bias_attr
=
False
,
input
=
[
paddle
.
layer
.
full_matrix_projection
(
input
=
hidden_3
,
param_attr
=
std_default
)
])
target
=
paddle
.
layer
.
data
(
name
=
'target'
,
type
=
d_type
(
label_dict_len
))
crf_cost
=
paddle
.
layer
.
crf
(
size
=
label_dict_len
,
input
=
output
,
label
=
target
,
param_attr
=
paddle
.
attr
.
Param
(
name
=
'crfw'
,
initial_std
=
default_std
,
learning_rate
=
mix_hidden_lr
))
predict
=
paddle
.
layer
.
crf_decoding
(
size
=
label_dict_len
,
input
=
output
,
param_attr
=
paddle
.
attr
.
Param
(
name
=
'crfw'
))
return
output
,
target
,
crf_cost
,
predict
def
ner_net_train
(
data_reader
=
conll03
.
train
(),
num_passes
=
1
):
# define network topology
feature_out
,
target
,
crf_cost
,
predict
=
ner_net
()
crf_dec
=
paddle
.
layer
.
crf_decoding
(
size
=
label_dict_len
,
input
=
feature_out
,
label
=
target
,
param_attr
=
paddle
.
attr
.
Param
(
name
=
'crfw'
))
evaluator
.
sum
(
input
=
crf_dec
)
# create parameters
parameters
=
paddle
.
parameters
.
create
(
crf_cost
)
parameters
.
set
(
'emb'
,
conll03
.
get_embedding
())
# create optimizer
optimizer
=
paddle
.
optimizer
.
Momentum
(
momentum
=
0
,
learning_rate
=
2e-4
,
regularization
=
paddle
.
optimizer
.
L2Regularization
(
rate
=
8e-4
),
gradient_clipping_threshold
=
25
,
model_average
=
paddle
.
optimizer
.
ModelAverage
(
average_window
=
0.5
,
max_average_window
=
10000
),
)
trainer
=
paddle
.
trainer
.
SGD
(
cost
=
crf_cost
,
parameters
=
parameters
,
update_equation
=
optimizer
,
extra_layers
=
crf_dec
)
reader
=
paddle
.
batch
(
paddle
.
reader
.
shuffle
(
data_reader
,
buf_size
=
8192
),
batch_size
=
256
)
feeding
=
{
'word'
:
0
,
'target'
:
1
}
def
event_handler
(
event
):
if
isinstance
(
event
,
paddle
.
event
.
EndIteration
):
if
event
.
batch_id
%
100
==
0
:
print
"Pass %d, Batch %d, Cost %f, %s"
%
(
event
.
pass_id
,
event
.
batch_id
,
event
.
cost
,
event
.
metrics
)
if
event
.
batch_id
%
1000
==
0
:
result
=
trainer
.
test
(
reader
=
reader
,
feeding
=
feeding
)
print
"
\n
Test with Pass %d, Batch %d, %s"
%
(
event
.
pass_id
,
event
.
batch_id
,
result
.
metrics
)
if
isinstance
(
event
,
paddle
.
event
.
EndPass
):
# save parameters
with
gzip
.
open
(
'params_pass_%d.tar.gz'
%
event
.
pass_id
,
'w'
)
as
f
:
parameters
.
to_tar
(
f
)
result
=
trainer
.
test
(
reader
=
reader
,
feeding
=
feeding
)
print
"
\n
Test with Pass %d, %s"
%
(
event
.
pass_id
,
result
.
metrics
)
trainer
.
train
(
reader
=
reader
,
event_handler
=
event_handler
,
num_passes
=
num_passes
,
feeding
=
feeding
)
return
parameters
def
ner_net_infer
(
parameters
=
paddle
.
parameters
.
Parameters
.
from_tar
(
gzip
.
open
(
'ner_params_pass_99.tar.gz'
)),
data_reader
=
conll03
.
test
()):
test_creator
=
data_reader
test_data
=
[]
for
item
in
test_creator
():
test_data
.
append
([
item
[
0
]])
if
len
(
test_data
)
==
10
:
break
feature_out
,
target
,
crf_cost
,
predict
=
ner_net
()
lab_ids
=
paddle
.
infer
(
output_layer
=
predict
,
parameters
=
parameters
,
input
=
test_data
,
field
=
'id'
)
labels_reverse
=
{}
for
(
k
,
v
)
in
label_dict
.
items
():
labels_reverse
[
v
]
=
k
pre_lab
=
[
labels_reverse
[
lab_id
]
for
lab_id
in
lab_ids
]
print
pre_lab
if
__name__
==
'__main__'
:
paddle
.
init
(
use_gpu
=
False
,
trainer_count
=
1
)
ner_net_train
()
ner_net_infer
()
sequence_tagging_for_ner/ner_params_pass_99.tar.gz
0 → 100644
浏览文件 @
29b56eec
文件已添加
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录