diff --git a/PaddleCV/image_classification/README.md b/PaddleCV/image_classification/README.md index 896720eafccc0d5bec49a4c2df41417ebcddeef8..83ff508a6b0bd9aa12b43541b49dfca6a7d06d33 100644 --- a/PaddleCV/image_classification/README.md +++ b/PaddleCV/image_classification/README.md @@ -46,7 +46,8 @@ pip install numpy ### 数据准备 -下面给出了ImageNet分类任务的样例,首先,通过如下的方式进行数据的准备: +下面给出了ImageNet分类任务的样例 +在Linux系统下通过如下的方式进行数据的准备: ``` cd data/ILSVRC2012/ sh download_imagenet2012.sh @@ -69,6 +70,8 @@ val/ILSVRC2012_val_00000001.jpeg 65 ``` 注意:可能需要根据本地环境调整reader.py中相关路径来正确读取数据。 +**Windows系统下请用户自行下载ImageNet数据。[label下载链接](http://paddle-imagenet-models.bj.bcebos.com/ImageNet_label.tgz)** + ### 模型训练 数据准备完毕后,可以通过如下的方式启动训练: diff --git a/PaddleCV/image_classification/README_en.md b/PaddleCV/image_classification/README_en.md index f9b68ca3b18f2a1470e3b7bc7d9243ea064ea11b..18a073ae2c071af931321551e0211d8d969b74fc 100644 --- a/PaddleCV/image_classification/README_en.md +++ b/PaddleCV/image_classification/README_en.md @@ -37,7 +37,8 @@ Running samples in this directory requires Python 2.7 and later, CUDA 8.0 and la ### Data preparation -An example for ImageNet classification is as follows. First of all, preparation of imagenet data can be done as: +An example for ImageNet classification is as follows. +For Linux system, preparation of imagenet data can be done as: ```bash cd data/ILSVRC2012/ @@ -62,6 +63,7 @@ val/ILSVRC2012_val_00000001.jpeg 65 ``` Note: You may need to modify the data path in reader.py to load data correctly. +**For windows system, Users should download ImageNet data by themselves. and the label list can be downloaded in [Here](http://paddle-imagenet-models.bj.bcebos.com/ImageNet_label.tgz)** ### Training