Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
models
提交
25c4938e
M
models
项目概览
PaddlePaddle
/
models
1 年多 前同步成功
通知
222
Star
6828
Fork
2962
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
602
列表
看板
标记
里程碑
合并请求
255
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
M
models
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
602
Issue
602
列表
看板
标记
里程碑
合并请求
255
合并请求
255
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
25c4938e
编写于
8月 28, 2018
作者:
D
Dang Qingqing
浏览文件
操作
浏览文件
下载
差异文件
Merge branch 'develop' of
https://github.com/PaddlePaddle/models
into ce_image_classification3
上级
0441d0b6
42df377e
变更
9
显示空白变更内容
内联
并排
Showing
9 changed file
with
382 addition
and
144 deletion
+382
-144
fluid/language_model/infer.py
fluid/language_model/infer.py
+5
-4
fluid/language_model/train.py
fluid/language_model/train.py
+8
-7
fluid/language_model/train_on_cloud.py
fluid/language_model/train_on_cloud.py
+12
-11
fluid/mnist/model.py
fluid/mnist/model.py
+7
-7
fluid/object_detection/data_util.py
fluid/object_detection/data_util.py
+151
-0
fluid/object_detection/reader.py
fluid/object_detection/reader.py
+64
-15
fluid/object_detection/train.py
fluid/object_detection/train.py
+129
-92
fluid/ocr_recognition/.run_ce.sh
fluid/ocr_recognition/.run_ce.sh
+2
-1
fluid/ocr_recognition/_ce.py
fluid/ocr_recognition/_ce.py
+4
-7
未找到文件。
fluid/language_model/infer.py
浏览文件 @
25c4938e
...
...
@@ -4,9 +4,10 @@ import math
import
unittest
import
contextlib
import
numpy
as
np
import
six
import
paddle
import
paddle.fluid
as
fluid
import
paddle.v2
as
paddle
import
utils
...
...
@@ -24,8 +25,8 @@ def infer(test_reader, use_cuda, model_path):
accum_words
=
0
t0
=
time
.
time
()
for
data
in
test_reader
():
src_wordseq
=
utils
.
to_lodtensor
(
map
(
lambda
x
:
x
[
0
],
data
)
,
place
)
dst_wordseq
=
utils
.
to_lodtensor
(
map
(
lambda
x
:
x
[
1
],
data
)
,
place
)
src_wordseq
=
utils
.
to_lodtensor
(
[
dat
[
0
]
for
dat
in
data
]
,
place
)
dst_wordseq
=
utils
.
to_lodtensor
(
[
dat
[
1
]
for
dat
in
data
]
,
place
)
avg_cost
=
exe
.
run
(
infer_program
,
feed
=
{
"src_wordseq"
:
src_wordseq
,
...
...
@@ -60,6 +61,6 @@ if __name__ == "__main__":
vocab
,
train_reader
,
test_reader
=
utils
.
prepare_data
(
batch_size
=
20
,
buffer_size
=
1000
,
word_freq_threshold
=
0
)
for
epoch
in
xrange
(
start_index
,
last_index
+
1
):
for
epoch
in
six
.
moves
.
xrange
(
start_index
,
last_index
+
1
):
epoch_path
=
model_dir
+
"/epoch_"
+
str
(
epoch
)
infer
(
test_reader
=
test_reader
,
use_cuda
=
True
,
model_path
=
epoch_path
)
fluid/language_model/train.py
浏览文件 @
25c4938e
import
os
import
sys
import
time
import
six
import
numpy
as
np
import
math
...
...
@@ -114,9 +115,9 @@ def train(train_reader,
total_time
=
0.0
fetch_list
=
[
avg_cost
.
name
]
for
pass_idx
in
xrange
(
pass_num
):
for
pass_idx
in
six
.
moves
.
xrange
(
pass_num
):
epoch_idx
=
pass_idx
+
1
print
"epoch_%d start"
%
epoch_idx
print
(
"epoch_%d start"
%
epoch_idx
)
t0
=
time
.
time
()
i
=
0
...
...
@@ -124,9 +125,9 @@ def train(train_reader,
for
data
in
train_reader
():
i
+=
1
lod_src_wordseq
=
utils
.
to_lodtensor
(
map
(
lambda
x
:
x
[
0
],
data
)
,
place
)
[
dat
[
0
]
for
dat
in
data
]
,
place
)
lod_dst_wordseq
=
utils
.
to_lodtensor
(
map
(
lambda
x
:
x
[
1
],
data
)
,
place
)
[
dat
[
1
]
for
dat
in
data
]
,
place
)
ret_avg_cost
=
train_exe
.
run
(
feed
=
{
"src_wordseq"
:
lod_src_wordseq
,
"dst_wordseq"
:
lod_dst_wordseq
...
...
@@ -135,12 +136,12 @@ def train(train_reader,
avg_ppl
=
np
.
exp
(
ret_avg_cost
[
0
])
newest_ppl
=
np
.
mean
(
avg_ppl
)
if
i
%
100
==
0
:
print
"step:%d ppl:%.3f"
%
(
i
,
newest_ppl
)
print
(
"step:%d ppl:%.3f"
%
(
i
,
newest_ppl
)
)
t1
=
time
.
time
()
total_time
+=
t1
-
t0
print
"epoch:%d num_steps:%d time_cost(s):%f"
%
(
epoch_idx
,
i
,
total_time
/
epoch_idx
)
print
(
"epoch:%d num_steps:%d time_cost(s):%f"
%
(
epoch_idx
,
i
,
total_time
/
epoch_idx
)
)
if
pass_idx
==
pass_num
-
1
and
args
.
enable_ce
:
#Note: The following logs are special for CE monitoring.
...
...
fluid/language_model/train_on_cloud.py
浏览文件 @
25c4938e
import
os
import
sys
import
time
import
six
import
numpy
as
np
import
math
...
...
@@ -49,7 +50,7 @@ def build_dict(min_word_freq=50):
word_freq
=
filter
(
lambda
x
:
x
[
1
]
>
min_word_freq
,
word_freq
.
items
())
word_freq_sorted
=
sorted
(
word_freq
,
key
=
lambda
x
:
(
-
x
[
1
],
x
[
0
]))
words
,
_
=
list
(
zip
(
*
word_freq_sorted
))
word_idx
=
dict
(
zip
(
words
,
xrange
(
len
(
words
))))
word_idx
=
dict
(
zip
(
words
,
six
.
moves
.
xrange
(
len
(
words
))))
word_idx
[
'<unk>'
]
=
len
(
words
)
return
word_idx
...
...
@@ -212,16 +213,16 @@ def do_train(train_reader,
exe
.
run
(
fluid
.
default_startup_program
())
total_time
=
0.0
for
pass_idx
in
xrange
(
pass_num
):
for
pass_idx
in
six
.
moves
.
xrange
(
pass_num
):
epoch_idx
=
pass_idx
+
1
print
"epoch_%d start"
%
epoch_idx
print
(
"epoch_%d start"
%
epoch_idx
)
t0
=
time
.
time
()
i
=
0
for
data
in
train_reader
():
i
+=
1
lod_src_wordseq
=
to_lodtensor
(
map
(
lambda
x
:
x
[
0
],
data
)
,
place
)
lod_dst_wordseq
=
to_lodtensor
(
map
(
lambda
x
:
x
[
1
],
data
)
,
place
)
lod_src_wordseq
=
to_lodtensor
(
[
dat
[
0
]
for
dat
in
data
]
,
place
)
lod_dst_wordseq
=
to_lodtensor
(
[
dat
[
1
]
for
dat
in
data
]
,
place
)
ret_avg_cost
=
exe
.
run
(
fluid
.
default_main_program
(),
feed
=
{
"src_wordseq"
:
lod_src_wordseq
,
...
...
@@ -231,12 +232,12 @@ def do_train(train_reader,
use_program_cache
=
True
)
avg_ppl
=
math
.
exp
(
ret_avg_cost
[
0
])
if
i
%
100
==
0
:
print
"step:%d ppl:%.3f"
%
(
i
,
avg_ppl
)
print
(
"step:%d ppl:%.3f"
%
(
i
,
avg_ppl
)
)
t1
=
time
.
time
()
total_time
+=
t1
-
t0
print
"epoch:%d num_steps:%d time_cost(s):%f"
%
(
epoch_idx
,
i
,
total_time
/
epoch_idx
)
print
(
"epoch:%d num_steps:%d time_cost(s):%f"
%
(
epoch_idx
,
i
,
total_time
/
epoch_idx
)
)
save_dir
=
"%s/epoch_%d"
%
(
model_dir
,
epoch_idx
)
feed_var_names
=
[
"src_wordseq"
,
"dst_wordseq"
]
...
...
@@ -258,13 +259,13 @@ def train():
""" event handler """
if
isinstance
(
event
,
paddle
.
event
.
EndIteration
):
if
event
.
batch_id
%
100
==
0
:
print
"
\n
Pass %d, Batch %d, Cost %f, %s"
%
(
event
.
pass_id
,
event
.
batch_id
,
event
.
cost
,
event
.
metrics
)
print
(
"
\n
Pass %d, Batch %d, Cost %f, %s"
%
(
event
.
pass_id
,
event
.
batch_id
,
event
.
cost
,
event
.
metrics
)
)
else
:
sys
.
stdout
.
write
(
'.'
)
sys
.
stdout
.
flush
()
if
isinstance
(
event
,
paddle
.
event
.
EndPass
):
print
"isinstance(event, paddle.event.EndPass)"
print
(
"isinstance(event, paddle.event.EndPass)"
)
do_train
(
train_reader
=
train_reader
,
...
...
fluid/mnist/model.py
浏览文件 @
25c4938e
...
...
@@ -9,6 +9,7 @@ import time
import
paddle
import
paddle.fluid
as
fluid
import
paddle.fluid.profiler
as
profiler
import
six
SEED
=
90
DTYPE
=
"float32"
...
...
@@ -47,7 +48,7 @@ def print_arguments(args):
vars
(
args
)[
'use_nvprof'
]
=
(
vars
(
args
)[
'use_nvprof'
]
and
vars
(
args
)[
'device'
]
==
'GPU'
)
print
(
'----------- Configuration Arguments -----------'
)
for
arg
,
value
in
sorted
(
vars
(
args
).
iteritems
(
)):
for
arg
,
value
in
sorted
(
six
.
iteritems
(
vars
(
args
)
)):
print
(
'%s: %s'
%
(
arg
,
value
))
print
(
'------------------------------------------------'
)
...
...
@@ -71,7 +72,7 @@ def cnn_model(data):
# TODO(dzhwinter) : refine the initializer and random seed settting
SIZE
=
10
input_shape
=
conv_pool_2
.
shape
param_shape
=
[
reduce
(
lambda
a
,
b
:
a
*
b
,
input_shape
[
1
:],
1
)]
+
[
SIZE
]
param_shape
=
[
six
.
moves
.
reduce
(
lambda
a
,
b
:
a
*
b
,
input_shape
[
1
:],
1
)]
+
[
SIZE
]
scale
=
(
2.0
/
(
param_shape
[
0
]
**
2
*
SIZE
))
**
0.5
predict
=
fluid
.
layers
.
fc
(
...
...
@@ -89,9 +90,8 @@ def eval_test(exe, batch_acc, batch_size_tensor, inference_program):
paddle
.
dataset
.
mnist
.
test
(),
batch_size
=
args
.
batch_size
)
test_pass_acc
=
fluid
.
average
.
WeightedAverage
()
for
batch_id
,
data
in
enumerate
(
test_reader
()):
img_data
=
np
.
array
(
map
(
lambda
x
:
x
[
0
].
reshape
([
1
,
28
,
28
]),
data
)).
astype
(
DTYPE
)
y_data
=
np
.
array
(
map
(
lambda
x
:
x
[
1
],
data
)).
astype
(
"int64"
)
img_data
=
np
.
array
([
x
[
0
].
reshape
([
1
,
28
,
28
])
for
x
in
data
]).
astype
(
DTYPE
)
y_data
=
np
.
array
([
x
[
1
]
for
x
in
data
]).
astype
(
"int64"
)
y_data
=
y_data
.
reshape
([
len
(
y_data
),
1
])
acc
,
weight
=
exe
.
run
(
inference_program
,
...
...
@@ -153,8 +153,8 @@ def run_benchmark(model, args):
every_pass_loss
=
[]
for
batch_id
,
data
in
enumerate
(
train_reader
()):
img_data
=
np
.
array
(
map
(
lambda
x
:
x
[
0
].
reshape
([
1
,
28
,
28
]),
data
)
).
astype
(
DTYPE
)
y_data
=
np
.
array
(
map
(
lambda
x
:
x
[
1
],
data
)
).
astype
(
"int64"
)
[
x
[
0
].
reshape
([
1
,
28
,
28
])
for
x
in
data
]
).
astype
(
DTYPE
)
y_data
=
np
.
array
(
[
x
[
1
]
for
x
in
data
]
).
astype
(
"int64"
)
y_data
=
y_data
.
reshape
([
len
(
y_data
),
1
])
start
=
time
.
time
()
...
...
fluid/object_detection/data_util.py
0 → 100644
浏览文件 @
25c4938e
"""
This code is based on https://github.com/fchollet/keras/blob/master/keras/utils/data_utils.py
"""
import
time
import
numpy
as
np
import
threading
import
multiprocessing
try
:
import
queue
except
ImportError
:
import
Queue
as
queue
class
GeneratorEnqueuer
(
object
):
"""
Builds a queue out of a data generator.
Args:
generator: a generator function which endlessly yields data
use_multiprocessing (bool): use multiprocessing if True,
otherwise use threading.
wait_time (float): time to sleep in-between calls to `put()`.
random_seed (int): Initial seed for workers,
will be incremented by one for each workers.
"""
def
__init__
(
self
,
generator
,
use_multiprocessing
=
False
,
wait_time
=
0.05
,
random_seed
=
None
):
self
.
wait_time
=
wait_time
self
.
_generator
=
generator
self
.
_use_multiprocessing
=
use_multiprocessing
self
.
_threads
=
[]
self
.
_stop_event
=
None
self
.
queue
=
None
self
.
_manager
=
None
self
.
seed
=
random_seed
def
start
(
self
,
workers
=
1
,
max_queue_size
=
10
):
"""
Start worker threads which add data from the generator into the queue.
Args:
workers (int): number of worker threads
max_queue_size (int): queue size
(when full, threads could block on `put()`)
"""
def
data_generator_task
():
"""
Data generator task.
"""
def
task
():
if
(
self
.
queue
is
not
None
and
self
.
queue
.
qsize
()
<
max_queue_size
):
generator_output
=
next
(
self
.
_generator
)
self
.
queue
.
put
((
generator_output
))
else
:
time
.
sleep
(
self
.
wait_time
)
if
not
self
.
_use_multiprocessing
:
while
not
self
.
_stop_event
.
is_set
():
with
self
.
genlock
:
try
:
task
()
except
Exception
:
self
.
_stop_event
.
set
()
break
else
:
while
not
self
.
_stop_event
.
is_set
():
try
:
task
()
except
Exception
:
self
.
_stop_event
.
set
()
break
try
:
if
self
.
_use_multiprocessing
:
self
.
_manager
=
multiprocessing
.
Manager
()
self
.
queue
=
self
.
_manager
.
Queue
(
maxsize
=
max_queue_size
)
self
.
_stop_event
=
multiprocessing
.
Event
()
else
:
self
.
genlock
=
threading
.
Lock
()
self
.
queue
=
queue
.
Queue
()
self
.
_stop_event
=
threading
.
Event
()
for
_
in
range
(
workers
):
if
self
.
_use_multiprocessing
:
# Reset random seed else all children processes
# share the same seed
np
.
random
.
seed
(
self
.
seed
)
thread
=
multiprocessing
.
Process
(
target
=
data_generator_task
)
thread
.
daemon
=
True
if
self
.
seed
is
not
None
:
self
.
seed
+=
1
else
:
thread
=
threading
.
Thread
(
target
=
data_generator_task
)
self
.
_threads
.
append
(
thread
)
thread
.
start
()
except
:
self
.
stop
()
raise
def
is_running
(
self
):
"""
Returns:
bool: Whether the worker theads are running.
"""
return
self
.
_stop_event
is
not
None
and
not
self
.
_stop_event
.
is_set
()
def
stop
(
self
,
timeout
=
None
):
"""
Stops running threads and wait for them to exit, if necessary.
Should be called by the same thread which called `start()`.
Args:
timeout(int|None): maximum time to wait on `thread.join()`.
"""
if
self
.
is_running
():
self
.
_stop_event
.
set
()
for
thread
in
self
.
_threads
:
if
self
.
_use_multiprocessing
:
if
thread
.
is_alive
():
thread
.
terminate
()
else
:
thread
.
join
(
timeout
)
if
self
.
_manager
:
self
.
_manager
.
shutdown
()
self
.
_threads
=
[]
self
.
_stop_event
=
None
self
.
queue
=
None
def
get
(
self
):
"""
Creates a generator to extract data from the queue.
Skip the data if it is `None`.
# Yields
tuple of data in the queue.
"""
while
self
.
is_running
():
if
not
self
.
queue
.
empty
():
inputs
=
self
.
queue
.
get
()
if
inputs
is
not
None
:
yield
inputs
else
:
time
.
sleep
(
self
.
wait_time
)
fluid/object_detection/reader.py
浏览文件 @
25c4938e
...
...
@@ -23,6 +23,7 @@ import os
import
time
import
copy
import
six
from
data_util
import
GeneratorEnqueuer
class
Settings
(
object
):
...
...
@@ -168,7 +169,7 @@ def preprocess(img, bbox_labels, mode, settings):
return
img
,
sampled_labels
def
coco
(
settings
,
file_list
,
mode
,
shuffle
):
def
coco
(
settings
,
file_list
,
mode
,
batch_size
,
shuffle
):
# cocoapi
from
pycocotools.coco
import
COCO
from
pycocotools.cocoeval
import
COCOeval
...
...
@@ -183,9 +184,10 @@ def coco(settings, file_list, mode, shuffle):
images
=
images
[:
settings
.
toy
]
if
len
(
images
)
>
settings
.
toy
else
images
print
(
"{} on {} with {} images"
.
format
(
mode
,
settings
.
dataset
,
len
(
images
)))
def
reader
()
:
if
mode
==
'train'
and
shuffle
:
while
True
:
if
mode
==
"train"
and
shuffle
:
random
.
shuffle
(
images
)
batch_out
=
[]
for
image
in
images
:
image_name
=
image
[
'file_name'
]
image_path
=
os
.
path
.
join
(
settings
.
data_dir
,
image_name
)
...
...
@@ -222,25 +224,28 @@ def coco(settings, file_list, mode, shuffle):
boxes
=
sample_labels
[:,
1
:
5
]
lbls
=
sample_labels
[:,
0
].
astype
(
'int32'
)
iscrowd
=
sample_labels
[:,
-
1
].
astype
(
'int32'
)
if
'cocoMAP'
in
settings
.
ap_version
:
yield
im
,
boxes
,
lbls
,
iscrowd
,
\
[
im_id
,
im_width
,
im_height
]
batch_out
.
append
((
im
,
boxes
,
lbls
,
iscrowd
,
[
im_id
,
im_width
,
im_height
]))
else
:
yield
im
,
boxes
,
lbls
,
iscrowd
batch_out
.
append
((
im
,
boxes
,
lbls
,
iscrowd
))
if
len
(
batch_out
)
==
batch_size
:
yield
batch_out
batch_out
=
[]
return
reader
def
pascalvoc
(
settings
,
file_list
,
mode
,
shuffle
):
def
pascalvoc
(
settings
,
file_list
,
mode
,
batch_size
,
shuffle
):
flist
=
open
(
file_list
)
images
=
[
line
.
strip
()
for
line
in
flist
]
if
not
settings
.
toy
==
0
:
images
=
images
[:
settings
.
toy
]
if
len
(
images
)
>
settings
.
toy
else
images
print
(
"{} on {} with {} images"
.
format
(
mode
,
settings
.
dataset
,
len
(
images
)))
def
reader
()
:
if
mode
==
'train'
and
shuffle
:
while
True
:
if
mode
==
"train"
and
shuffle
:
random
.
shuffle
(
images
)
batch_out
=
[]
for
image
in
images
:
image_path
,
label_path
=
image
.
split
()
image_path
=
os
.
path
.
join
(
settings
.
data_dir
,
image_path
)
...
...
@@ -274,7 +279,51 @@ def pascalvoc(settings, file_list, mode, shuffle):
boxes
=
sample_labels
[:,
1
:
5
]
lbls
=
sample_labels
[:,
0
].
astype
(
'int32'
)
difficults
=
sample_labels
[:,
-
1
].
astype
(
'int32'
)
yield
im
,
boxes
,
lbls
,
difficults
batch_out
.
append
((
im
,
boxes
,
lbls
,
difficults
))
if
len
(
batch_out
)
==
batch_size
:
yield
batch_out
batch_out
=
[]
def
batch_reader
(
settings
,
file_list
,
batch_size
,
mode
,
shuffle
=
True
,
num_workers
=
8
):
file_list
=
os
.
path
.
join
(
settings
.
data_dir
,
file_list
)
if
'coco'
in
settings
.
dataset
:
train_settings
=
copy
.
copy
(
settings
)
if
'2014'
in
file_list
:
sub_dir
=
"train2014"
elif
'2017'
in
file_list
:
sub_dir
=
"train2017"
train_settings
.
data_dir
=
os
.
path
.
join
(
settings
.
data_dir
,
sub_dir
)
def
reader
():
try
:
if
'coco'
in
settings
.
dataset
:
enqueuer
=
GeneratorEnqueuer
(
coco
(
train_settings
,
file_list
,
mode
,
batch_size
,
shuffle
),
use_multiprocessing
=
False
)
else
:
enqueuer
=
GeneratorEnqueuer
(
pascalvoc
(
settings
,
file_list
,
mode
,
batch_size
,
shuffle
),
use_multiprocessing
=
False
)
enqueuer
.
start
(
max_queue_size
=
24
,
workers
=
num_workers
)
generator_output
=
None
while
True
:
while
enqueuer
.
is_running
():
if
not
enqueuer
.
queue
.
empty
():
generator_output
=
enqueuer
.
queue
.
get
()
break
else
:
time
.
sleep
(
0.01
)
yield
generator_output
generator_output
=
None
finally
:
if
enqueuer
is
not
None
:
enqueuer
.
stop
()
return
reader
...
...
@@ -293,7 +342,7 @@ def train(settings, file_list, shuffle=True):
return
pascalvoc
(
settings
,
file_list
,
'train'
,
shuffle
)
def
test
(
settings
,
file_list
):
def
test
(
settings
,
file_list
,
batch_size
):
file_list
=
os
.
path
.
join
(
settings
.
data_dir
,
file_list
)
if
'coco'
in
settings
.
dataset
:
test_settings
=
copy
.
copy
(
settings
)
...
...
@@ -302,9 +351,9 @@ def test(settings, file_list):
elif
'2017'
in
file_list
:
sub_dir
=
"val2017"
test_settings
.
data_dir
=
os
.
path
.
join
(
settings
.
data_dir
,
sub_dir
)
return
coco
(
test_settings
,
file_list
,
'test'
,
False
)
return
coco
(
test_settings
,
file_list
,
'test'
,
batch_size
,
False
)
else
:
return
pascalvoc
(
settings
,
file_list
,
'test'
,
False
)
return
pascalvoc
(
settings
,
file_list
,
'test'
,
batch_size
,
False
)
def
infer
(
settings
,
image_path
):
...
...
fluid/object_detection/train.py
浏览文件 @
25c4938e
...
...
@@ -15,7 +15,7 @@ parser = argparse.ArgumentParser(description=__doc__)
add_arg
=
functools
.
partial
(
add_arguments
,
argparser
=
parser
)
# yapf: disable
add_arg
(
'learning_rate'
,
float
,
0.001
,
"Learning rate."
)
add_arg
(
'batch_size'
,
int
,
64
,
"Minibatch size."
)
add_arg
(
'batch_size'
,
int
,
16
,
"Minibatch size."
)
add_arg
(
'num_passes'
,
int
,
120
,
"Epoch number."
)
add_arg
(
'use_gpu'
,
bool
,
True
,
"Whether use GPU."
)
add_arg
(
'parallel'
,
bool
,
True
,
"Parallel."
)
...
...
@@ -36,45 +36,41 @@ add_arg('data_dir', str, 'data/pascalvoc', "data directory")
add_arg
(
'enable_ce'
,
bool
,
False
,
"Whether use CE to evaluate the model"
)
#yapf: enable
def
train
(
args
,
train_file_list
,
val_file_list
,
data_args
,
learning_rate
,
batch_size
,
num_passes
,
model_save_dir
,
pretrained_model
=
None
):
if
args
.
enable_ce
:
fluid
.
framework
.
default_startup_program
().
random_seed
=
111
def
build_program
(
is_train
,
main_prog
,
startup_prog
,
args
,
data_args
,
boundaries
=
None
,
values
=
None
,
train_file_list
=
None
):
image_shape
=
[
3
,
data_args
.
resize_h
,
data_args
.
resize_w
]
if
'coco'
in
data_args
.
dataset
:
num_classes
=
91
elif
'pascalvoc'
in
data_args
.
dataset
:
num_classes
=
21
devices
=
os
.
getenv
(
"CUDA_VISIBLE_DEVICES"
)
or
""
devices_num
=
len
(
devices
.
split
(
","
))
def
get_optimizer
():
optimizer
=
fluid
.
optimizer
.
RMSProp
(
learning_rate
=
fluid
.
layers
.
piecewise_decay
(
boundaries
,
values
),
regularization
=
fluid
.
regularizer
.
L2Decay
(
0.00005
),
)
return
optimizer
image
=
fluid
.
layers
.
data
(
name
=
'image'
,
shape
=
image_shape
,
dtype
=
'float32'
)
gt_box
=
fluid
.
layers
.
data
(
name
=
'gt_box'
,
shape
=
[
4
],
dtype
=
'float32'
,
lod_level
=
1
)
gt_label
=
fluid
.
layers
.
data
(
name
=
'gt_label'
,
shape
=
[
1
],
dtype
=
'int32'
,
lod_level
=
1
)
difficult
=
fluid
.
layers
.
data
(
name
=
'gt_difficult'
,
shape
=
[
1
],
dtype
=
'int32'
,
lod_level
=
1
)
with
fluid
.
program_guard
(
main_prog
,
startup_prog
):
py_reader
=
fluid
.
layers
.
py_reader
(
capacity
=
64
,
shapes
=
[[
-
1
]
+
image_shape
,
[
-
1
,
4
],
[
-
1
,
1
],
[
-
1
,
1
]],
lod_levels
=
[
0
,
1
,
1
,
1
],
dtypes
=
[
"float32"
,
"float32"
,
"int32"
,
"int32"
],
use_double_buffer
=
True
)
with
fluid
.
unique_name
.
guard
():
image
,
gt_box
,
gt_label
,
difficult
=
fluid
.
layers
.
read_file
(
py_reader
)
locs
,
confs
,
box
,
box_var
=
mobile_net
(
num_classes
,
image
,
image_shape
)
nmsed_out
=
fluid
.
layers
.
detection_output
(
locs
,
confs
,
box
,
box_var
,
nms_threshold
=
args
.
nms_threshold
)
if
is_train
:
loss
=
fluid
.
layers
.
ssd_loss
(
locs
,
confs
,
gt_box
,
gt_label
,
box
,
box_var
)
loss
=
fluid
.
layers
.
reduce_sum
(
loss
)
test_program
=
fluid
.
default_main_program
().
clone
(
for_test
=
True
)
with
fluid
.
program_guard
(
test_program
):
map_eval
=
fluid
.
evaluator
.
DetectionMAP
(
optimizer
=
get_optimizer
()
optimizer
.
minimize
(
loss
)
else
:
nmsed_out
=
fluid
.
layers
.
detection_output
(
locs
,
confs
,
box
,
box_var
,
nms_threshold
=
args
.
nms_threshold
)
with
fluid
.
program_guard
(
main_prog
):
loss
=
fluid
.
evaluator
.
DetectionMAP
(
nmsed_out
,
gt_label
,
gt_box
,
...
...
@@ -83,82 +79,121 @@ def train(args,
overlap_threshold
=
0.5
,
evaluate_difficult
=
False
,
ap_version
=
args
.
ap_version
)
if
not
is_train
:
main_prog
=
main_prog
.
clone
(
for_test
=
True
)
return
py_reader
,
loss
def
train
(
args
,
train_file_list
,
val_file_list
,
data_args
,
learning_rate
,
batch_size
,
num_passes
,
model_save_dir
,
pretrained_model
=
None
):
startup_prog
=
fluid
.
Program
()
train_prog
=
fluid
.
Program
()
test_prog
=
fluid
.
Program
()
devices
=
os
.
getenv
(
"CUDA_VISIBLE_DEVICES"
)
or
""
devices_num
=
len
(
devices
.
split
(
","
))
if
'coco'
in
data_args
.
dataset
:
# learning rate decay in 12, 19 pass, respectively
if
'2014'
in
train_file_list
:
epocs
=
82783
//
batch_size
epocs
=
82783
//
batch_size
//
devices_num
test_epocs
=
40504
//
batch_size
boundaries
=
[
epocs
*
12
,
epocs
*
19
]
elif
'2017'
in
train_file_list
:
epocs
=
118287
//
batch_size
epocs
=
118287
//
batch_size
//
devices_num
test_epocs
=
5000
//
batch_size
boundaries
=
[
epocs
*
12
,
epocs
*
19
]
values
=
[
learning_rate
,
learning_rate
*
0.5
,
learning_rate
*
0.25
]
values
=
[
learning_rate
,
learning_rate
*
0.5
,
learning_rate
*
0.25
]
elif
'pascalvoc'
in
data_args
.
dataset
:
epocs
=
19200
//
batch_size
epocs
=
19200
//
batch_size
//
devices_num
test_epocs
=
4952
//
batch_size
boundaries
=
[
epocs
*
40
,
epocs
*
60
,
epocs
*
80
,
epocs
*
100
]
values
=
[
learning_rate
,
learning_rate
*
0.5
,
learning_rate
*
0.25
,
learning_rate
*
0.1
,
learning_rate
*
0.01
]
optimizer
=
fluid
.
optimizer
.
RMSProp
(
learning_rate
=
fluid
.
layers
.
piecewise_decay
(
boundaries
,
values
),
regularization
=
fluid
.
regularizer
.
L2Decay
(
0.00005
),
)
learning_rate
*
0.1
,
learning_rate
*
0.01
]
optimizer
.
minimize
(
loss
)
if
args
.
enable_ce
:
startup_prog
.
random_seed
=
111
train_prog
.
random_seed
=
111
test_prog
.
random_seed
=
111
train_py_reader
,
loss
=
build_program
(
is_train
=
True
,
main_prog
=
train_prog
,
startup_prog
=
startup_prog
,
args
=
args
,
data_args
=
data_args
,
values
=
values
,
boundaries
=
boundaries
,
train_file_list
=
train_file_list
)
test_py_reader
,
map_eval
=
build_program
(
is_train
=
False
,
main_prog
=
test_prog
,
startup_prog
=
startup_prog
,
args
=
args
,
data_args
=
data_args
)
place
=
fluid
.
CUDAPlace
(
0
)
if
args
.
use_gpu
else
fluid
.
CPUPlace
()
exe
=
fluid
.
Executor
(
place
)
exe
.
run
(
fluid
.
default_startup_program
()
)
exe
.
run
(
startup_prog
)
if
pretrained_model
:
def
if_exist
(
var
):
return
os
.
path
.
exists
(
os
.
path
.
join
(
pretrained_model
,
var
.
name
))
fluid
.
io
.
load_vars
(
exe
,
pretrained_model
,
predicate
=
if_exist
)
fluid
.
io
.
load_vars
(
exe
,
pretrained_model
,
main_program
=
train_prog
,
predicate
=
if_exist
)
if
args
.
parallel
:
train_exe
=
fluid
.
ParallelExecutor
(
train_exe
=
fluid
.
ParallelExecutor
(
main_program
=
train_prog
,
use_cuda
=
args
.
use_gpu
,
loss_name
=
loss
.
name
)
test_exe
=
fluid
.
ParallelExecutor
(
main_program
=
test_prog
,
use_cuda
=
args
.
use_gpu
,
share_vars_from
=
train_exe
)
if
not
args
.
enable_ce
:
train_reader
=
paddle
.
batch
(
reader
.
train
(
data_args
,
train_file_list
),
batch_size
=
batch_size
)
train_reader
=
reader
.
batch_reader
(
data_args
,
train_file_list
,
batch_size
,
"train"
)
else
:
import
random
random
.
seed
(
0
)
np
.
random
.
seed
(
0
)
train_reader
=
paddle
.
batch
(
reader
.
train
(
data_args
,
train_file_list
,
False
),
batch_size
=
batch_size
)
test_reader
=
paddle
.
batch
(
reader
.
test
(
data_args
,
val_file_list
),
batch_size
=
batch_size
)
feeder
=
fluid
.
DataFeeder
(
place
=
place
,
feed_list
=
[
image
,
gt_box
,
gt_label
,
difficult
])
def
save_model
(
postfix
):
train_reader
=
reader
.
batch_reader
(
data_args
,
train_file_list
,
batch_size
,
"train"
,
shuffle
=
False
)
test_reader
=
reader
.
batch_reader
(
data_args
,
val_file_list
,
batch_size
,
"test"
)
train_py_reader
.
decorate_paddle_reader
(
train_reader
)
test_py_reader
.
decorate_paddle_reader
(
test_reader
)
def
save_model
(
postfix
,
main_prog
):
model_path
=
os
.
path
.
join
(
model_save_dir
,
postfix
)
if
os
.
path
.
isdir
(
model_path
):
shutil
.
rmtree
(
model_path
)
print
(
'save models to %s'
%
(
model_path
))
fluid
.
io
.
save_persistables
(
exe
,
model_path
)
fluid
.
io
.
save_persistables
(
exe
,
model_path
,
main_program
=
main_prog
)
best_map
=
0.
def
test
(
pass_id
,
best_map
):
_
,
accum_map
=
map_eval
.
get_map_var
()
map_eval
.
reset
(
exe
)
every_pass_map
=
[]
for
batch_id
,
data
in
enumerate
(
test_reader
()):
test_map
,
=
exe
.
run
(
test_program
,
feed
=
feeder
.
feed
(
data
),
test_py_reader
.
start
()
batch_id
=
0
try
:
while
True
:
test_map
,
=
exe
.
run
(
test_prog
,
fetch_list
=
[
accum_map
])
if
batch_id
%
20
==
0
:
every_pass_map
.
append
(
test_map
)
print
(
"Batch {0}, map {1}"
.
format
(
batch_id
,
test_map
))
batch_id
+=
1
if
batch_id
>
test_epocs
:
break
except
fluid
.
core
.
EOFException
:
test_py_reader
.
reset
()
mean_map
=
np
.
mean
(
every_pass_map
)
if
test_map
[
0
]
>
best_map
:
best_map
=
test_map
[
0
]
save_model
(
'best_model'
)
save_model
(
'best_model'
,
test_prog
)
print
(
"Pass {0}, test map {1}"
.
format
(
pass_id
,
test_map
))
return
best_map
,
mean_map
...
...
@@ -166,30 +201,33 @@ def train(args,
for
pass_id
in
range
(
num_passes
):
epoch_idx
=
pass_id
+
1
start_time
=
time
.
time
()
train_py_reader
.
start
()
prev_start_time
=
start_time
every_pass_loss
=
[]
for
batch_id
,
data
in
enumerate
(
train_reader
()):
batch_id
=
0
try
:
while
True
:
prev_start_time
=
start_time
start_time
=
time
.
time
()
if
len
(
data
)
<
(
devices_num
*
2
):
print
(
"There are too few data to train on all devices."
)
continue
if
args
.
parallel
:
loss_v
,
=
train_exe
.
run
(
fetch_list
=
[
loss
.
name
],
feed
=
feeder
.
feed
(
data
))
loss_v
,
=
train_exe
.
run
(
fetch_list
=
[
loss
.
name
])
else
:
loss_v
,
=
exe
.
run
(
fluid
.
default_main_program
(),
feed
=
feeder
.
feed
(
data
),
fetch_list
=
[
loss
])
loss_v
,
=
exe
.
run
(
train_prog
,
fetch_list
=
[
loss
])
loss_v
=
np
.
mean
(
np
.
array
(
loss_v
))
every_pass_loss
.
append
(
loss_v
)
if
batch_id
%
20
==
0
:
print
(
"Pass {0}, batch {1}, loss {2}, time {3}"
.
format
(
pass_id
,
batch_id
,
loss_v
,
start_time
-
prev_start_time
))
batch_id
+=
1
if
batch_id
>
epocs
:
break
except
fluid
.
core
.
EOFException
:
train_py_reader
.
reset
()
end_time
=
time
.
time
()
best_map
,
mean_map
=
test
(
pass_id
,
best_map
)
if
args
.
enable_ce
and
pass_id
==
1
:
if
args
.
enable_ce
and
pass_id
==
num_passes
-
1
:
total_time
+=
end_time
-
start_time
train_avg_loss
=
np
.
mean
(
every_pass_loss
)
if
devices_num
==
1
:
...
...
@@ -204,9 +242,8 @@ def train(args,
print
(
"kpis train_speed_card%s %f"
%
(
devices_num
,
total_time
/
epoch_idx
))
if
pass_id
%
10
==
0
or
pass_id
==
num_passes
-
1
:
save_model
(
str
(
pass_id
))
save_model
(
str
(
pass_id
)
,
train_prog
)
print
(
"Best test map {0}"
.
format
(
best_map
))
if
__name__
==
'__main__'
:
...
...
fluid/ocr_recognition/.run_ce.sh
浏览文件 @
25c4938e
export
ce_mode
=
1
python train.py
--batch_size
=
32
--total_step
=
1
--eval_period
=
1
--log_period
=
1
--use_gpu
=
True 1> ./tmp.log
rm
-f
*
_factor.txt
python train.py
--batch_size
=
32
--total_step
=
100
--eval_period
=
100
--log_period
=
100
--use_gpu
=
True 1> ./tmp.log
cat
tmp.log | python _ce.py
rm
tmp.log
fluid/ocr_recognition/_ce.py
浏览文件 @
25c4938e
...
...
@@ -8,14 +8,10 @@ from kpi import CostKpi, DurationKpi, AccKpi
# NOTE kpi.py should shared in models in some way!!!!
train_cost_kpi
=
CostKpi
(
'train_cost'
,
0.05
,
0
,
actived
=
True
)
test_acc_kpi
=
AccKpi
(
'test_acc'
,
0.005
,
0
,
actived
=
True
)
train_duration_kpi
=
DurationKpi
(
'train_duration'
,
0.06
,
0
,
actived
=
True
)
train_acc_kpi
=
AccKpi
(
'train_acc'
,
0.005
,
0
,
actived
=
True
)
tracking_kpis
=
[
train_acc_kpi
,
train_cost_kpi
,
test_acc_kpi
,
train_duration_kpi
,
]
...
...
@@ -51,6 +47,7 @@ def log_to_ce(log):
kpi_tracker
[
kpi
.
name
]
=
kpi
for
(
kpi_name
,
kpi_value
)
in
parse_log
(
log
):
if
kpi_name
in
kpi_tracker
:
print
(
kpi_name
,
kpi_value
)
kpi_tracker
[
kpi_name
].
add_record
(
kpi_value
)
kpi_tracker
[
kpi_name
].
persist
()
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录