Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
models
提交
1b223c30
M
models
项目概览
PaddlePaddle
/
models
大约 1 年 前同步成功
通知
222
Star
6828
Fork
2962
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
602
列表
看板
标记
里程碑
合并请求
255
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
M
models
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
602
Issue
602
列表
看板
标记
里程碑
合并请求
255
合并请求
255
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
1b223c30
编写于
11月 04, 2019
作者:
S
slf12
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
use new seq2seq api test=develop
上级
ed1cb0ce
变更
1
显示空白变更内容
内联
并排
Showing
1 changed file
with
50 addition
and
24 deletion
+50
-24
PaddleCV/ocr_recognition/attention_model.py
PaddleCV/ocr_recognition/attention_model.py
+50
-24
未找到文件。
PaddleCV/ocr_recognition/attention_model.py
浏览文件 @
1b223c30
...
...
@@ -16,6 +16,7 @@ from __future__ import division
from
__future__
import
print_function
import
paddle.fluid
as
fluid
import
six
import
numpy
as
np
decoder_size
=
128
word_vector_dim
=
128
...
...
@@ -24,6 +25,7 @@ sos = 0
eos
=
1
beam_size
=
1
def
conv_bn_pool
(
input
,
group
,
out_ch
,
...
...
@@ -79,32 +81,42 @@ def encoder_net(images, rnn_hidden_size=200, is_test=False, use_cudnn=True):
stride
=
[
1
,
1
],
filter_size
=
[
conv_features
.
shape
[
2
],
1
])
pad_value
=
fluid
.
layers
.
assign
(
input
=
np
.
array
([
0.0
],
dtype
=
np
.
float32
))
sliced_feature_pad
,
output_len
=
fluid
.
layers
.
sequence_pad
(
sliced_feature
,
pad_value
,
maxlen
=
48
)
para_attr
=
fluid
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
Normal
(
0.0
,
0.02
))
bias_attr
=
fluid
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
Normal
(
0.0
,
0.02
),
learning_rate
=
2.0
)
fc_1
=
fluid
.
layers
.
fc
(
input
=
sliced_feature
,
fc_1
=
fluid
.
layers
.
fc
(
input
=
sliced_feature
_pad
,
size
=
rnn_hidden_size
*
3
,
param_attr
=
para_attr
,
bias_attr
=
False
)
fc_2
=
fluid
.
layers
.
fc
(
input
=
sliced_feature
,
bias_attr
=
False
,
num_flatten_dims
=
2
)
fc_2
=
fluid
.
layers
.
fc
(
input
=
sliced_feature_pad
,
size
=
rnn_hidden_size
*
3
,
param_attr
=
para_attr
,
bias_attr
=
False
)
gru_forward
=
fluid
.
layers
.
dynamic_gru
(
input
=
fc_1
,
size
=
rnn_hidden_size
,
bias_attr
=
False
,
num_flatten_dims
=
2
)
gru_cell_forward
=
fluid
.
layers
.
GRUCell
(
hidden_size
=
rnn_hidden_size
,
param_attr
=
para_attr
,
bias_attr
=
bias_attr
,
candidate_activation
=
'relu'
)
gru_backward
=
fluid
.
layers
.
dynamic_gru
(
input
=
fc_2
,
size
=
rnn_hidden_size
,
is_reverse
=
True
,
activation
=
fluid
.
layers
.
relu
)
gru_cell_backward
=
fluid
.
layers
.
GRUCell
(
hidden_size
=
rnn_hidden_size
,
param_attr
=
para_attr
,
bias_attr
=
bias_attr
,
candidate_activation
=
'relu'
)
activation
=
fluid
.
layers
.
relu
)
gru_forward
,
_
=
fluid
.
layers
.
rnn
(
gru_cell_forward
,
inputs
=
fc_1
)
gru_backward
,
_
=
fluid
.
layers
.
rnn
(
gru_cell_backward
,
inputs
=
fc_2
,
is_reverse
=
True
)
output_len
=
fluid
.
layers
.
reshape
(
output_len
,
[
-
1
])
gru_forward
=
fluid
.
layers
.
sequence_unpad
(
x
=
gru_forward
,
length
=
output_len
)
gru_backward
=
fluid
.
layers
.
sequence_unpad
(
x
=
gru_backward
,
length
=
output_len
)
encoded_vector
=
fluid
.
layers
.
concat
(
input
=
[
gru_forward
,
gru_backward
],
axis
=
1
)
...
...
@@ -123,7 +135,9 @@ def gru_decoder_with_attention(target_embedding, encoder_vec, encoder_proj,
bias_attr
=
False
)
decoder_state_expand
=
fluid
.
layers
.
sequence_expand
(
x
=
decoder_state_proj
,
y
=
encoder_proj
)
concated
=
encoder_proj
+
decoder_state_expand
#concated = encoder_proj + decoder_state_expand
concated
=
fluid
.
layers
.
elementwise_add
(
encoder_proj
,
decoder_state_expand
)
concated
=
fluid
.
layers
.
tanh
(
x
=
concated
)
attention_weights
=
fluid
.
layers
.
fc
(
input
=
concated
,
size
=
1
,
...
...
@@ -137,13 +151,19 @@ def gru_decoder_with_attention(target_embedding, encoder_vec, encoder_proj,
context
=
fluid
.
layers
.
sequence_pool
(
input
=
scaled
,
pool_type
=
'sum'
)
return
context
rnn
=
fluid
.
layers
.
DynamicRNN
()
pad_value
=
fluid
.
layers
.
assign
(
np
.
array
([
0.0
],
dtype
=
np
.
float32
))
target_embedding_pad
,
target_embedding_length
=
fluid
.
layers
.
sequence_pad
(
target_embedding
,
pad_value
)
target_embedding_length
=
fluid
.
layers
.
reshape
(
target_embedding_length
,
[
-
1
])
with
rnn
.
block
():
current_word
=
rnn
.
step_input
(
target_embedding
)
encoder_vec
=
rnn
.
static_input
(
encoder_vec
)
encoder_proj
=
rnn
.
static_input
(
encoder_proj
)
hidden_mem
=
rnn
.
memory
(
init
=
decoder_boot
,
need_reorder
=
True
)
target_embedding_pad
=
fluid
.
layers
.
transpose
(
target_embedding_pad
,
[
1
,
0
,
2
])
rnn
=
fluid
.
layers
.
StaticRNN
()
with
rnn
.
step
():
current_word
=
rnn
.
step_input
(
target_embedding_pad
)
hidden_mem
=
rnn
.
memory
(
init
=
decoder_boot
)
context
=
simple_attention
(
encoder_vec
,
encoder_proj
,
hidden_mem
)
fc_1
=
fluid
.
layers
.
fc
(
input
=
context
,
size
=
decoder_size
*
3
,
...
...
@@ -159,8 +179,13 @@ def gru_decoder_with_attention(target_embedding, encoder_vec, encoder_proj,
size
=
num_classes
+
2
,
bias_attr
=
True
,
act
=
'softmax'
)
rnn
.
output
(
out
)
return
rnn
()
rnn
.
step_output
(
out
)
rnn_out
=
rnn
()
rnn_out
=
fluid
.
layers
.
transpose
(
rnn_out
,
[
1
,
0
,
2
])
rnn_out
=
fluid
.
layers
.
sequence_unpad
(
x
=
rnn_out
,
length
=
target_embedding_length
)
return
rnn_out
def
attention_train_net
(
args
,
data_shape
,
num_classes
):
...
...
@@ -188,7 +213,8 @@ def attention_train_net(args, data_shape, num_classes):
prediction
=
gru_decoder_with_attention
(
trg_embedding
,
encoded_vector
,
encoded_proj
,
decoder_boot
,
decoder_size
,
num_classes
)
fluid
.
clip
.
set_gradient_clip
(
fluid
.
clip
.
GradientClipByValue
(
args
.
gradient_clip
))
fluid
.
clip
.
set_gradient_clip
(
fluid
.
clip
.
GradientClipByValue
(
args
.
gradient_clip
))
label_out
=
fluid
.
layers
.
cast
(
x
=
label_out
,
dtype
=
'int64'
)
_
,
maxid
=
fluid
.
layers
.
topk
(
input
=
prediction
,
k
=
1
)
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录