提交 1b15f83f 编写于 作者: W whs 提交者: GitHub

Merge branch 'develop' into ds2_pcloud

......@@ -10,6 +10,7 @@ unittest(){
cd $1 > /dev/null
if [ -f "setup.sh" ]; then
sh setup.sh
export LD_LIBRARY_PATH=/usr/local/lib:$LD_LIBRARY_PATH
fi
if [ $? != 0 ]; then
exit 1
......
......@@ -2,14 +2,19 @@
## Installation
Please replace `$PADDLE_INSTALL_DIR` with your own paddle installation directory.
### Prerequisites
- **Python = 2.7** only supported;
- **cuDNN >= 6.0** is required to utilize NVIDIA GPU platform in the installation of PaddlePaddle, and the **CUDA toolkit** with proper version suitable for cuDNN. The cuDNN library below 6.0 is found to yield a fatal error in batch normalization when handling utterances with long duration in inference.
### Setup
```
sh setup.sh
export LD_LIBRARY_PATH=$PADDLE_INSTALL_DIR/Paddle/third_party/install/warpctc/lib:$LD_LIBRARY_PATH
```
For some machines, we also need to install libsndfile1. Details to be added.
Please replace `$PADDLE_INSTALL_DIR` with your own paddle installation directory.
## Usage
......@@ -138,3 +143,28 @@ python tune.py --help
```
Then reset parameters with the tuning result before inference or evaluating.
### Playing with the ASR Demo
A real-time ASR demo is built for users to try out the ASR model with their own voice. Please do the following installation on the machine you'd like to run the demo's client (no need for the machine running the demo's server).
For example, on MAC OS X:
```
brew install portaudio
pip install pyaudio
pip install pynput
```
After a model and language model is prepared, we can first start the demo's server:
```
CUDA_VISIBLE_DEVICES=0 python demo_server.py
```
And then in another console, start the demo's client:
```
python demo_client.py
```
On the client console, press and hold the "white-space" key on the keyboard to start talking, until you finish your speech and then release the "white-space" key. The decoding results (infered transcription) will be displayed.
It could be possible to start the server and the client in two seperate machines, e.g. `demo_client.py` is usually started in a machine with a microphone hardware, while `demo_server.py` is usually started in a remote server with powerful GPUs. Please first make sure that these two machines have network access to each other, and then use `--host_ip` and `--host_port` to indicate the server machine's actual IP address (instead of the `localhost` as default) and TCP port, in both `demo_server.py` and `demo_client.py`.
[
{
"type": "shift",
"params": {"min_shift_ms": -5,
"max_shift_ms": 5},
"prob": 1.0
}
]
[
{
"type": "noise",
"params": {"min_snr_dB": 40,
"max_snr_dB": 50,
"noise_manifest_path": "datasets/manifest.noise"},
"prob": 0.6
},
{
"type": "impulse",
"params": {"impulse_manifest_path": "datasets/manifest.impulse"},
"prob": 0.5
},
{
"type": "speed",
"params": {"min_speed_rate": 0.95,
"max_speed_rate": 1.05},
"prob": 0.5
},
{
"type": "shift",
"params": {"min_shift_ms": -5,
"max_shift_ms": 5},
"prob": 1.0
},
{
"type": "volume",
"params": {"min_gain_dBFS": -10,
"max_gain_dBFS": 10},
"prob": 0.0
},
{
"type": "bayesian_normal",
"params": {"target_db": -20,
"prior_db": -20,
"prior_samples": 100},
"prob": 0.0
}
]
......@@ -204,7 +204,7 @@ class AudioSegment(object):
:raise ValueError: If the sample rates of the two segments are not
equal, or if the lengths of segments don't match.
"""
if type(self) != type(other):
if isinstance(other, type(self)):
raise TypeError("Cannot add segments of different types: %s "
"and %s." % (type(self), type(other)))
if self._sample_rate != other._sample_rate:
......@@ -231,7 +231,7 @@ class AudioSegment(object):
Note that this is an in-place transformation.
:param gain: Gain in decibels to apply to samples.
:type gain: float
:type gain: float|1darray
"""
self._samples *= 10.**(gain / 20.)
......@@ -457,9 +457,9 @@ class AudioSegment(object):
audio segments when resample is not allowed.
"""
if allow_resample and self.sample_rate != impulse_segment.sample_rate:
impulse_segment = impulse_segment.resample(self.sample_rate)
impulse_segment.resample(self.sample_rate)
if self.sample_rate != impulse_segment.sample_rate:
raise ValueError("Impulse segment's sample rate (%d Hz) is not"
raise ValueError("Impulse segment's sample rate (%d Hz) is not "
"equal to base signal sample rate (%d Hz)." %
(impulse_segment.sample_rate, self.sample_rate))
samples = signal.fftconvolve(self.samples, impulse_segment.samples,
......
......@@ -8,6 +8,8 @@ import random
from data_utils.augmentor.volume_perturb import VolumePerturbAugmentor
from data_utils.augmentor.shift_perturb import ShiftPerturbAugmentor
from data_utils.augmentor.speed_perturb import SpeedPerturbAugmentor
from data_utils.augmentor.noise_perturb import NoisePerturbAugmentor
from data_utils.augmentor.impulse_response import ImpulseResponseAugmentor
from data_utils.augmentor.resample import ResampleAugmentor
from data_utils.augmentor.online_bayesian_normalization import \
OnlineBayesianNormalizationAugmentor
......@@ -24,20 +26,45 @@ class AugmentationPipeline(object):
.. code-block::
'[{"type": "volume",
"params": {"min_gain_dBFS": -15,
"max_gain_dBFS": 15},
"prob": 0.5},
{"type": "speed",
"params": {"min_speed_rate": 0.8,
"max_speed_rate": 1.2},
"prob": 0.5}
]'
[ {
"type": "noise",
"params": {"min_snr_dB": 10,
"max_snr_dB": 20,
"noise_manifest_path": "datasets/manifest.noise"},
"prob": 0.0
},
{
"type": "speed",
"params": {"min_speed_rate": 0.9,
"max_speed_rate": 1.1},
"prob": 1.0
},
{
"type": "shift",
"params": {"min_shift_ms": -5,
"max_shift_ms": 5},
"prob": 1.0
},
{
"type": "volume",
"params": {"min_gain_dBFS": -10,
"max_gain_dBFS": 10},
"prob": 0.0
},
{
"type": "bayesian_normal",
"params": {"target_db": -20,
"prior_db": -20,
"prior_samples": 100},
"prob": 0.0
}
]
This augmentation configuration inserts two augmentation models
into the pipeline, with one is VolumePerturbAugmentor and the other
SpeedPerturbAugmentor. "prob" indicates the probability of the current
augmentor to take effect.
augmentor to take effect. If "prob" is zero, the augmentor does not take
effect.
:param augmentation_config: Augmentation configuration in json string.
:type augmentation_config: str
......@@ -60,7 +87,7 @@ class AugmentationPipeline(object):
:type audio_segment: AudioSegmenet|SpeechSegment
"""
for augmentor, rate in zip(self._augmentors, self._rates):
if self._rng.uniform(0., 1.) <= rate:
if self._rng.uniform(0., 1.) < rate:
augmentor.transform_audio(audio_segment)
def _parse_pipeline_from(self, config_json):
......@@ -89,5 +116,9 @@ class AugmentationPipeline(object):
return ResampleAugmentor(self._rng, **params)
elif augmentor_type == "bayesian_normal":
return OnlineBayesianNormalizationAugmentor(self._rng, **params)
elif augmentor_type == "noise":
return NoisePerturbAugmentor(self._rng, **params)
elif augmentor_type == "impulse":
return ImpulseResponseAugmentor(self._rng, **params)
else:
raise ValueError("Unknown augmentor type [%s]." % augmentor_type)
"""Contains the impulse response augmentation model."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from data_utils.augmentor.base import AugmentorBase
from data_utils import utils
from data_utils.audio import AudioSegment
class ImpulseResponseAugmentor(AugmentorBase):
"""Augmentation model for adding impulse response effect.
:param rng: Random generator object.
:type rng: random.Random
:param impulse_manifest_path: Manifest path for impulse audio data.
:type impulse_manifest_path: basestring
"""
def __init__(self, rng, impulse_manifest_path):
self._rng = rng
self._impulse_manifest = utils.read_manifest(
manifest_path=impulse_manifest_path)
def transform_audio(self, audio_segment):
"""Add impulse response effect.
Note that this is an in-place transformation.
:param audio_segment: Audio segment to add effects to.
:type audio_segment: AudioSegmenet|SpeechSegment
"""
impulse_json = self._rng.sample(self._impulse_manifest, 1)[0]
impulse_segment = AudioSegment.from_file(impulse_json['audio_filepath'])
audio_segment.convolve(impulse_segment, allow_resample=True)
"""Contains the noise perturb augmentation model."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from data_utils.augmentor.base import AugmentorBase
from data_utils import utils
from data_utils.audio import AudioSegment
class NoisePerturbAugmentor(AugmentorBase):
"""Augmentation model for adding background noise.
:param rng: Random generator object.
:type rng: random.Random
:param min_snr_dB: Minimal signal noise ratio, in decibels.
:type min_snr_dB: float
:param max_snr_dB: Maximal signal noise ratio, in decibels.
:type max_snr_dB: float
:param noise_manifest_path: Manifest path for noise audio data.
:type noise_manifest_path: basestring
"""
def __init__(self, rng, min_snr_dB, max_snr_dB, noise_manifest_path):
self._min_snr_dB = min_snr_dB
self._max_snr_dB = max_snr_dB
self._rng = rng
self._noise_manifest = utils.read_manifest(
manifest_path=noise_manifest_path)
def transform_audio(self, audio_segment):
"""Add background noise audio.
Note that this is an in-place transformation.
:param audio_segment: Audio segment to add effects to.
:type audio_segment: AudioSegmenet|SpeechSegment
"""
noise_json = self._rng.sample(self._noise_manifest, 1)[0]
if noise_json['duration'] < audio_segment.duration:
raise RuntimeError("The duration of sampled noise audio is smaller "
"than the audio segment to add effects to.")
diff_duration = noise_json['duration'] - audio_segment.duration
start = self._rng.uniform(0, diff_duration)
end = start + audio_segment.duration
noise_segment = AudioSegment.slice_from_file(
noise_json['audio_filepath'], start=start, end=end)
snr_dB = self._rng.uniform(self._min_snr_dB, self._max_snr_dB)
audio_segment.add_noise(
noise_segment, snr_dB, allow_downsampling=True, rng=self._rng)
文件模式从 100755 更改为 100644
......@@ -72,7 +72,7 @@ class DataGenerator(object):
max_freq=None,
specgram_type='linear',
use_dB_normalization=True,
num_threads=multiprocessing.cpu_count(),
num_threads=multiprocessing.cpu_count() // 2,
random_seed=0):
self._max_duration = max_duration
self._min_duration = min_duration
......@@ -89,11 +89,27 @@ class DataGenerator(object):
self._num_threads = num_threads
self._rng = random.Random(random_seed)
self._epoch = 0
# for caching tar files info
self.tar2info = {}
self.tar2object = {}
def process_utterance(self, filename, transcript):
"""Load, augment, featurize and normalize for speech data.
:param filename: Audio filepath
:type filename: basestring
:param transcript: Transcription text.
:type transcript: basestring
:return: Tuple of audio feature tensor and list of token ids for
transcription.
:rtype: tuple of (2darray, list)
"""
speech_segment = SpeechSegment.from_file(filename, transcript)
self._augmentation_pipeline.transform_audio(speech_segment)
specgram, text_ids = self._speech_featurizer.featurize(speech_segment)
specgram = self._normalizer.apply(specgram)
return specgram, text_ids
def batch_reader_creator(self,
manifest_path,
batch_size,
......@@ -163,7 +179,7 @@ class DataGenerator(object):
manifest, batch_size, clipped=True)
elif shuffle_method == "instance_shuffle":
self._rng.shuffle(manifest)
elif not shuffle_method:
elif shuffle_method == None:
pass
else:
raise ValueError("Unknown shuffle method %s." %
......@@ -263,7 +279,7 @@ class DataGenerator(object):
yield instance
def mapper(instance):
return self._process_utterance(instance["audio_filepath"],
return self.process_utterance(instance["audio_filepath"],
instance["text"])
return paddle.reader.xmap_readers(
......
......@@ -166,21 +166,18 @@ class AudioFeaturizer(object):
"window size.")
# compute 13 cepstral coefficients, and the first one is replaced
# by log(frame energy)
mfcc_feat = mfcc(
mfcc_feat = np.transpose(
mfcc(
signal=samples,
samplerate=sample_rate,
winlen=0.001 * window_ms,
winstep=0.001 * stride_ms,
highfreq=max_freq)
highfreq=max_freq))
# Deltas
d_mfcc_feat = delta(mfcc_feat, 2)
# Deltas-Deltas
dd_mfcc_feat = delta(d_mfcc_feat, 2)
# concat above three features
concat_mfcc_feat = [
np.concatenate((mfcc_feat[i], d_mfcc_feat[i], dd_mfcc_feat[i]))
for i in xrange(len(mfcc_feat))
]
# transpose to be consistent with the linear specgram situation
concat_mfcc_feat = np.transpose(concat_mfcc_feat)
concat_mfcc_feat = np.concatenate(
(mfcc_feat, d_mfcc_feat, dd_mfcc_feat))
return concat_mfcc_feat
......@@ -115,7 +115,7 @@ class SpeechSegment(AudioSegment):
speech file.
:rtype: SpeechSegment
"""
audio = Audiosegment.slice_from_file(filepath, start, end)
audio = AudioSegment.slice_from_file(filepath, start, end)
return cls(audio.samples, audio.sample_rate, transcript)
@classmethod
......
......@@ -11,7 +11,7 @@ from __future__ import print_function
import distutils.util
import os
import wget
import sys
import tarfile
import argparse
import soundfile
......@@ -66,7 +66,7 @@ def download(url, md5sum, target_dir):
filepath = os.path.join(target_dir, url.split("/")[-1])
if not (os.path.exists(filepath) and md5file(filepath) == md5sum):
print("Downloading %s ..." % url)
wget.download(url, target_dir)
os.system("wget -c " + url + " -P " + target_dir)
print("\nMD5 Chesksum %s ..." % filepath)
if not md5file(filepath) == md5sum:
raise RuntimeError("MD5 checksum failed.")
......
"""Prepare CHiME3 background data.
Download, unpack and create manifest files.
Manifest file is a json-format file with each line containing the
meta data (i.e. audio filepath, transcript and audio duration)
of each audio file in the data set.
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import distutils.util
import os
import wget
import zipfile
import argparse
import soundfile
import json
from paddle.v2.dataset.common import md5file
DATA_HOME = os.path.expanduser('~/.cache/paddle/dataset/speech')
URL = "https://d4s.myairbridge.com/packagev2/AG0Y3DNBE5IWRRTV/?dlid=W19XG7T0NNHB027139H0EQ"
MD5 = "c3ff512618d7a67d4f85566ea1bc39ec"
parser = argparse.ArgumentParser(description=__doc__)
parser.add_argument(
"--target_dir",
default=DATA_HOME + "/chime3_background",
type=str,
help="Directory to save the dataset. (default: %(default)s)")
parser.add_argument(
"--manifest_filepath",
default="manifest.chime3.background",
type=str,
help="Filepath for output manifests. (default: %(default)s)")
args = parser.parse_args()
def download(url, md5sum, target_dir, filename=None):
"""Download file from url to target_dir, and check md5sum."""
if filename == None:
filename = url.split("/")[-1]
if not os.path.exists(target_dir): os.makedirs(target_dir)
filepath = os.path.join(target_dir, filename)
if not (os.path.exists(filepath) and md5file(filepath) == md5sum):
print("Downloading %s ..." % url)
wget.download(url, target_dir)
print("\nMD5 Chesksum %s ..." % filepath)
if not md5file(filepath) == md5sum:
raise RuntimeError("MD5 checksum failed.")
else:
print("File exists, skip downloading. (%s)" % filepath)
return filepath
def unpack(filepath, target_dir):
"""Unpack the file to the target_dir."""
print("Unpacking %s ..." % filepath)
if filepath.endswith('.zip'):
zip = zipfile.ZipFile(filepath, 'r')
zip.extractall(target_dir)
zip.close()
elif filepath.endswith('.tar') or filepath.endswith('.tar.gz'):
tar = zipfile.open(filepath)
tar.extractall(target_dir)
tar.close()
else:
raise ValueError("File format is not supported for unpacking.")
def create_manifest(data_dir, manifest_path):
"""Create a manifest json file summarizing the data set, with each line
containing the meta data (i.e. audio filepath, transcription text, audio
duration) of each audio file within the data set.
"""
print("Creating manifest %s ..." % manifest_path)
json_lines = []
for subfolder, _, filelist in sorted(os.walk(data_dir)):
for filename in filelist:
if filename.endswith('.wav'):
filepath = os.path.join(data_dir, subfolder, filename)
audio_data, samplerate = soundfile.read(filepath)
duration = float(len(audio_data)) / samplerate
json_lines.append(
json.dumps({
'audio_filepath': filepath,
'duration': duration,
'text': ''
}))
with open(manifest_path, 'w') as out_file:
for line in json_lines:
out_file.write(line + '\n')
def prepare_chime3(url, md5sum, target_dir, manifest_path):
"""Download, unpack and create summmary manifest file."""
if not os.path.exists(os.path.join(target_dir, "CHiME3")):
# download
filepath = download(url, md5sum, target_dir,
"myairbridge-AG0Y3DNBE5IWRRTV.zip")
# unpack
unpack(filepath, target_dir)
unpack(
os.path.join(target_dir, 'CHiME3_background_bus.zip'), target_dir)
unpack(
os.path.join(target_dir, 'CHiME3_background_caf.zip'), target_dir)
unpack(
os.path.join(target_dir, 'CHiME3_background_ped.zip'), target_dir)
unpack(
os.path.join(target_dir, 'CHiME3_background_str.zip'), target_dir)
else:
print("Skip downloading and unpacking. Data already exists in %s." %
target_dir)
# create manifest json file
create_manifest(target_dir, manifest_path)
def main():
prepare_chime3(
url=URL,
md5sum=MD5,
target_dir=args.target_dir,
manifest_path=args.manifest_filepath)
if __name__ == '__main__':
main()
cd noise
python chime3_background.py
if [ $? -ne 0 ]; then
echo "Prepare CHiME3 background noise failed. Terminated."
exit 1
fi
cd -
cat noise/manifest.* > manifest.noise
echo "All done."
......@@ -205,9 +205,9 @@ def ctc_beam_search_decoder_batch(probs_split,
:type num_processes: int
:param cutoff_prob: Cutoff probability in pruning,
default 1.0, no pruning.
:type cutoff_prob: float
:param num_processes: Number of parallel processes.
:type num_processes: int
:type cutoff_prob: float
:param ext_scoring_func: External scoring function for
partially decoded sentence, e.g. word count
or language model.
......
"""Client-end for the ASR demo."""
from pynput import keyboard
import struct
import socket
import sys
import argparse
import pyaudio
parser = argparse.ArgumentParser(description=__doc__)
parser.add_argument(
"--host_ip",
default="localhost",
type=str,
help="Server IP address. (default: %(default)s)")
parser.add_argument(
"--host_port",
default=8086,
type=int,
help="Server Port. (default: %(default)s)")
args = parser.parse_args()
is_recording = False
enable_trigger_record = True
def on_press(key):
"""On-press keyboard callback function."""
global is_recording, enable_trigger_record
if key == keyboard.Key.space:
if (not is_recording) and enable_trigger_record:
sys.stdout.write("Start Recording ... ")
sys.stdout.flush()
is_recording = True
def on_release(key):
"""On-release keyboard callback function."""
global is_recording, enable_trigger_record
if key == keyboard.Key.esc:
return False
elif key == keyboard.Key.space:
if is_recording == True:
is_recording = False
data_list = []
def callback(in_data, frame_count, time_info, status):
"""Audio recorder's stream callback function."""
global data_list, is_recording, enable_trigger_record
if is_recording:
data_list.append(in_data)
enable_trigger_record = False
elif len(data_list) > 0:
# Connect to server and send data
sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
sock.connect((args.host_ip, args.host_port))
sent = ''.join(data_list)
sock.sendall(struct.pack('>i', len(sent)) + sent)
print('Speech[length=%d] Sent.' % len(sent))
# Receive data from the server and shut down
received = sock.recv(1024)
print "Recognition Results: {}".format(received)
sock.close()
data_list = []
enable_trigger_record = True
return (in_data, pyaudio.paContinue)
def main():
# prepare audio recorder
p = pyaudio.PyAudio()
stream = p.open(
format=pyaudio.paInt32,
channels=1,
rate=16000,
input=True,
stream_callback=callback)
stream.start_stream()
# prepare keyboard listener
with keyboard.Listener(
on_press=on_press, on_release=on_release) as listener:
listener.join()
# close up
stream.stop_stream()
stream.close()
p.terminate()
if __name__ == "__main__":
main()
"""Server-end for the ASR demo."""
import os
import time
import random
import argparse
import distutils.util
from time import gmtime, strftime
import SocketServer
import struct
import wave
import paddle.v2 as paddle
from utils import print_arguments
from data_utils.data import DataGenerator
from model import DeepSpeech2Model
from data_utils.utils import read_manifest
parser = argparse.ArgumentParser(description=__doc__)
parser.add_argument(
"--host_ip",
default="localhost",
type=str,
help="Server IP address. (default: %(default)s)")
parser.add_argument(
"--host_port",
default=8086,
type=int,
help="Server Port. (default: %(default)s)")
parser.add_argument(
"--speech_save_dir",
default="demo_cache",
type=str,
help="Directory for saving demo speech. (default: %(default)s)")
parser.add_argument(
"--vocab_filepath",
default='datasets/vocab/eng_vocab.txt',
type=str,
help="Vocabulary filepath. (default: %(default)s)")
parser.add_argument(
"--mean_std_filepath",
default='mean_std.npz',
type=str,
help="Manifest path for normalizer. (default: %(default)s)")
parser.add_argument(
"--warmup_manifest_path",
default='datasets/manifest.test',
type=str,
help="Manifest path for warmup test. (default: %(default)s)")
parser.add_argument(
"--specgram_type",
default='linear',
type=str,
help="Feature type of audio data: 'linear' (power spectrum)"
" or 'mfcc'. (default: %(default)s)")
parser.add_argument(
"--num_conv_layers",
default=2,
type=int,
help="Convolution layer number. (default: %(default)s)")
parser.add_argument(
"--num_rnn_layers",
default=3,
type=int,
help="RNN layer number. (default: %(default)s)")
parser.add_argument(
"--rnn_layer_size",
default=512,
type=int,
help="RNN layer cell number. (default: %(default)s)")
parser.add_argument(
"--use_gpu",
default=True,
type=distutils.util.strtobool,
help="Use gpu or not. (default: %(default)s)")
parser.add_argument(
"--model_filepath",
default='checkpoints/params.latest.tar.gz',
type=str,
help="Model filepath. (default: %(default)s)")
parser.add_argument(
"--decode_method",
default='beam_search',
type=str,
help="Method for ctc decoding: best_path or beam_search. "
"(default: %(default)s)")
parser.add_argument(
"--beam_size",
default=100,
type=int,
help="Width for beam search decoding. (default: %(default)d)")
parser.add_argument(
"--language_model_path",
default="lm/data/common_crawl_00.prune01111.trie.klm",
type=str,
help="Path for language model. (default: %(default)s)")
parser.add_argument(
"--alpha",
default=0.36,
type=float,
help="Parameter associated with language model. (default: %(default)f)")
parser.add_argument(
"--beta",
default=0.25,
type=float,
help="Parameter associated with word count. (default: %(default)f)")
parser.add_argument(
"--cutoff_prob",
default=0.99,
type=float,
help="The cutoff probability of pruning"
"in beam search. (default: %(default)f)")
args = parser.parse_args()
class AsrTCPServer(SocketServer.TCPServer):
"""The ASR TCP Server."""
def __init__(self,
server_address,
RequestHandlerClass,
speech_save_dir,
audio_process_handler,
bind_and_activate=True):
self.speech_save_dir = speech_save_dir
self.audio_process_handler = audio_process_handler
SocketServer.TCPServer.__init__(
self, server_address, RequestHandlerClass, bind_and_activate=True)
class AsrRequestHandler(SocketServer.BaseRequestHandler):
"""The ASR request handler."""
def handle(self):
# receive data through TCP socket
chunk = self.request.recv(1024)
target_len = struct.unpack('>i', chunk[:4])[0]
data = chunk[4:]
while len(data) < target_len:
chunk = self.request.recv(1024)
data += chunk
# write to file
filename = self._write_to_file(data)
print("Received utterance[length=%d] from %s, saved to %s." %
(len(data), self.client_address[0], filename))
start_time = time.time()
transcript = self.server.audio_process_handler(filename)
finish_time = time.time()
print("Response Time: %f, Transcript: %s" %
(finish_time - start_time, transcript))
self.request.sendall(transcript)
def _write_to_file(self, data):
# prepare save dir and filename
if not os.path.exists(self.server.speech_save_dir):
os.mkdir(self.server.speech_save_dir)
timestamp = strftime("%Y%m%d%H%M%S", gmtime())
out_filename = os.path.join(
self.server.speech_save_dir,
timestamp + "_" + self.client_address[0] + ".wav")
# write to wav file
file = wave.open(out_filename, 'wb')
file.setnchannels(1)
file.setsampwidth(4)
file.setframerate(16000)
file.writeframes(data)
file.close()
return out_filename
def warm_up_test(audio_process_handler,
manifest_path,
num_test_cases,
random_seed=0):
"""Warming-up test."""
manifest = read_manifest(manifest_path)
rng = random.Random(random_seed)
samples = rng.sample(manifest, num_test_cases)
for idx, sample in enumerate(samples):
print("Warm-up Test Case %d: %s", idx, sample['audio_filepath'])
start_time = time.time()
transcript = audio_process_handler(sample['audio_filepath'])
finish_time = time.time()
print("Response Time: %f, Transcript: %s" %
(finish_time - start_time, transcript))
def start_server():
"""Start the ASR server"""
# prepare data generator
data_generator = DataGenerator(
vocab_filepath=args.vocab_filepath,
mean_std_filepath=args.mean_std_filepath,
augmentation_config='{}',
specgram_type=args.specgram_type,
num_threads=1)
# prepare ASR model
ds2_model = DeepSpeech2Model(
vocab_size=data_generator.vocab_size,
num_conv_layers=args.num_conv_layers,
num_rnn_layers=args.num_rnn_layers,
rnn_layer_size=args.rnn_layer_size,
pretrained_model_path=args.model_filepath)
# prepare ASR inference handler
def file_to_transcript(filename):
feature = data_generator.process_utterance(filename, "")
result_transcript = ds2_model.infer_batch(
infer_data=[feature],
decode_method=args.decode_method,
beam_alpha=args.alpha,
beam_beta=args.beta,
beam_size=args.beam_size,
cutoff_prob=args.cutoff_prob,
vocab_list=data_generator.vocab_list,
language_model_path=args.language_model_path,
num_processes=1)
return result_transcript[0]
# warming up with utterrances sampled from Librispeech
print('-----------------------------------------------------------')
print('Warming up ...')
warm_up_test(
audio_process_handler=file_to_transcript,
manifest_path=args.warmup_manifest_path,
num_test_cases=3)
print('-----------------------------------------------------------')
# start the server
server = AsrTCPServer(
server_address=(args.host_ip, args.host_port),
RequestHandlerClass=AsrRequestHandler,
speech_save_dir=args.speech_save_dir,
audio_process_handler=file_to_transcript)
print("ASR Server Started.")
server.serve_forever()
def main():
print_arguments(args)
paddle.init(use_gpu=args.use_gpu, trainer_count=1)
start_server()
if __name__ == "__main__":
main()
......@@ -5,20 +5,24 @@ from __future__ import print_function
import distutils.util
import argparse
import gzip
import multiprocessing
import paddle.v2 as paddle
from data_utils.data import DataGenerator
from model import deep_speech2
from decoder import *
from lm.lm_scorer import LmScorer
from model import DeepSpeech2Model
from error_rate import wer
import utils
parser = argparse.ArgumentParser(description=__doc__)
parser.add_argument(
"--batch_size",
default=100,
default=128,
type=int,
help="Minibatch size for evaluation. (default: %(default)s)")
parser.add_argument(
"--trainer_count",
default=8,
type=int,
help="Trainer number. (default: %(default)s)")
parser.add_argument(
"--num_conv_layers",
default=2,
......@@ -41,12 +45,12 @@ parser.add_argument(
help="Use gpu or not. (default: %(default)s)")
parser.add_argument(
"--num_threads_data",
default=multiprocessing.cpu_count(),
default=multiprocessing.cpu_count() // 2,
type=int,
help="Number of cpu threads for preprocessing data. (default: %(default)s)")
parser.add_argument(
"--num_processes_beam_search",
default=multiprocessing.cpu_count(),
default=multiprocessing.cpu_count() // 2,
type=int,
help="Number of cpu processes for beam search. (default: %(default)s)")
parser.add_argument(
......@@ -58,8 +62,8 @@ parser.add_argument(
"--decode_method",
default='beam_search',
type=str,
help="Method for ctc decoding, best_path or beam_search. (default: %(default)s)"
)
help="Method for ctc decoding, best_path or beam_search. "
"(default: %(default)s)")
parser.add_argument(
"--language_model_path",
default="lm/data/common_crawl_00.prune01111.trie.klm",
......@@ -67,12 +71,12 @@ parser.add_argument(
help="Path for language model. (default: %(default)s)")
parser.add_argument(
"--alpha",
default=0.26,
default=0.36,
type=float,
help="Parameter associated with language model. (default: %(default)f)")
parser.add_argument(
"--beta",
default=0.1,
default=0.25,
type=float,
help="Parameter associated with word count. (default: %(default)f)")
parser.add_argument(
......@@ -112,37 +116,12 @@ args = parser.parse_args()
def evaluate():
"""Evaluate on whole test data for DeepSpeech2."""
# initialize data generator
data_generator = DataGenerator(
vocab_filepath=args.vocab_filepath,
mean_std_filepath=args.mean_std_filepath,
augmentation_config='{}',
specgram_type=args.specgram_type,
num_threads=args.num_threads_data)
# create network config
# paddle.data_type.dense_array is used for variable batch input.
# The size 161 * 161 is only an placeholder value and the real shape
# of input batch data will be induced during training.
audio_data = paddle.layer.data(
name="audio_spectrogram", type=paddle.data_type.dense_array(161 * 161))
text_data = paddle.layer.data(
name="transcript_text",
type=paddle.data_type.integer_value_sequence(data_generator.vocab_size))
output_probs = deep_speech2(
audio_data=audio_data,
text_data=text_data,
dict_size=data_generator.vocab_size,
num_conv_layers=args.num_conv_layers,
num_rnn_layers=args.num_rnn_layers,
rnn_size=args.rnn_layer_size,
is_inference=True)
# load parameters
parameters = paddle.parameters.Parameters.from_tar(
gzip.open(args.model_filepath))
# prepare infer data
batch_reader = data_generator.batch_reader_creator(
manifest_path=args.decode_manifest_path,
batch_size=args.batch_size,
......@@ -150,61 +129,39 @@ def evaluate():
sortagrad=False,
shuffle_method=None)
# define inferer
inferer = paddle.inference.Inference(
output_layer=output_probs, parameters=parameters)
# initialize external scorer for beam search decoding
if args.decode_method == 'beam_search':
ext_scorer = LmScorer(args.alpha, args.beta, args.language_model_path)
ds2_model = DeepSpeech2Model(
vocab_size=data_generator.vocab_size,
num_conv_layers=args.num_conv_layers,
num_rnn_layers=args.num_rnn_layers,
rnn_layer_size=args.rnn_layer_size,
pretrained_model_path=args.model_filepath)
wer_counter, wer_sum = 0, 0.0
wer_sum, num_ins = 0.0, 0
for infer_data in batch_reader():
# run inference
infer_results = inferer.infer(input=infer_data)
num_steps = len(infer_results) // len(infer_data)
probs_split = [
infer_results[i * num_steps:(i + 1) * num_steps]
for i in xrange(0, len(infer_data))
]
# target transcription
target_transcription = [
''.join([
data_generator.vocab_list[index] for index in infer_data[i][1]
]) for i, probs in enumerate(probs_split)
]
# decode and print
# best path decode
if args.decode_method == "best_path":
for i, probs in enumerate(probs_split):
output_transcription = ctc_best_path_decoder(
probs_seq=probs, vocabulary=data_generator.vocab_list)
wer_sum += wer(target_transcription[i], output_transcription)
wer_counter += 1
# beam search decode
elif args.decode_method == "beam_search":
# beam search using multiple processes
beam_search_results = ctc_beam_search_decoder_batch(
probs_split=probs_split,
vocabulary=data_generator.vocab_list,
result_transcripts = ds2_model.infer_batch(
infer_data=infer_data,
decode_method=args.decode_method,
beam_alpha=args.alpha,
beam_beta=args.beta,
beam_size=args.beam_size,
blank_id=len(data_generator.vocab_list),
num_processes=args.num_processes_beam_search,
ext_scoring_func=ext_scorer,
cutoff_prob=args.cutoff_prob, )
for i, beam_search_result in enumerate(beam_search_results):
wer_sum += wer(target_transcription[i],
beam_search_result[0][1])
wer_counter += 1
else:
raise ValueError("Decoding method [%s] is not supported." %
decode_method)
print("Final WER = %f" % (wer_sum / wer_counter))
cutoff_prob=args.cutoff_prob,
vocab_list=data_generator.vocab_list,
language_model_path=args.language_model_path,
num_processes=args.num_processes_beam_search)
target_transcripts = [
''.join([data_generator.vocab_list[token] for token in transcript])
for _, transcript in infer_data
]
for target, result in zip(target_transcripts, result_transcripts):
wer_sum += wer(target, result)
num_ins += 1
print("WER (%d/?) = %f" % (num_ins, wer_sum / num_ins))
print("Final WER (%d/%d) = %f" % (num_ins, num_ins, wer_sum / num_ins))
def main():
paddle.init(use_gpu=args.use_gpu, trainer_count=1)
utils.print_arguments(args)
paddle.init(use_gpu=args.use_gpu, trainer_count=args.trainer_count)
evaluate()
......
......@@ -4,14 +4,11 @@ from __future__ import division
from __future__ import print_function
import argparse
import gzip
import distutils.util
import multiprocessing
import paddle.v2 as paddle
from data_utils.data import DataGenerator
from model import deep_speech2
from decoder import *
from lm.lm_scorer import LmScorer
from model import DeepSpeech2Model
from error_rate import wer
import utils
......@@ -43,12 +40,12 @@ parser.add_argument(
help="Use gpu or not. (default: %(default)s)")
parser.add_argument(
"--num_threads_data",
default=multiprocessing.cpu_count(),
default=1,
type=int,
help="Number of cpu threads for preprocessing data. (default: %(default)s)")
parser.add_argument(
"--num_processes_beam_search",
default=multiprocessing.cpu_count(),
default=multiprocessing.cpu_count() // 2,
type=int,
help="Number of cpu processes for beam search. (default: %(default)s)")
parser.add_argument(
......@@ -57,6 +54,11 @@ parser.add_argument(
type=str,
help="Feature type of audio data: 'linear' (power spectrum)"
" or 'mfcc'. (default: %(default)s)")
parser.add_argument(
"--trainer_count",
default=8,
type=int,
help="Trainer number. (default: %(default)s)")
parser.add_argument(
"--mean_std_filepath",
default='mean_std.npz',
......@@ -81,18 +83,13 @@ parser.add_argument(
"--decode_method",
default='beam_search',
type=str,
help="Method for ctc decoding: best_path or beam_search. (default: %(default)s)"
)
help="Method for ctc decoding: best_path or beam_search. "
"(default: %(default)s)")
parser.add_argument(
"--beam_size",
default=500,
type=int,
help="Width for beam search decoding. (default: %(default)d)")
parser.add_argument(
"--num_results_per_sample",
default=1,
type=int,
help="Number of output per sample in beam search. (default: %(default)d)")
parser.add_argument(
"--language_model_path",
default="lm/data/common_crawl_00.prune01111.trie.klm",
......@@ -100,12 +97,12 @@ parser.add_argument(
help="Path for language model. (default: %(default)s)")
parser.add_argument(
"--alpha",
default=0.26,
default=0.36,
type=float,
help="Parameter associated with language model. (default: %(default)f)")
parser.add_argument(
"--beta",
default=0.1,
default=0.25,
type=float,
help="Parameter associated with word count. (default: %(default)f)")
parser.add_argument(
......@@ -119,37 +116,12 @@ args = parser.parse_args()
def infer():
"""Inference for DeepSpeech2."""
# initialize data generator
data_generator = DataGenerator(
vocab_filepath=args.vocab_filepath,
mean_std_filepath=args.mean_std_filepath,
augmentation_config='{}',
specgram_type=args.specgram_type,
num_threads=args.num_threads_data)
# create network config
# paddle.data_type.dense_array is used for variable batch input.
# The size 161 * 161 is only an placeholder value and the real shape
# of input batch data will be induced during training.
audio_data = paddle.layer.data(
name="audio_spectrogram", type=paddle.data_type.dense_array(161 * 161))
text_data = paddle.layer.data(
name="transcript_text",
type=paddle.data_type.integer_value_sequence(data_generator.vocab_size))
output_probs = deep_speech2(
audio_data=audio_data,
text_data=text_data,
dict_size=data_generator.vocab_size,
num_conv_layers=args.num_conv_layers,
num_rnn_layers=args.num_rnn_layers,
rnn_size=args.rnn_layer_size,
is_inference=True)
# load parameters
parameters = paddle.parameters.Parameters.from_tar(
gzip.open(args.model_filepath))
# prepare infer data
batch_reader = data_generator.batch_reader_creator(
manifest_path=args.decode_manifest_path,
batch_size=args.num_samples,
......@@ -158,66 +130,36 @@ def infer():
shuffle_method=None)
infer_data = batch_reader().next()
# run inference
infer_results = paddle.infer(
output_layer=output_probs, parameters=parameters, input=infer_data)
num_steps = len(infer_results) // len(infer_data)
probs_split = [
infer_results[i * num_steps:(i + 1) * num_steps]
for i in xrange(len(infer_data))
]
ds2_model = DeepSpeech2Model(
vocab_size=data_generator.vocab_size,
num_conv_layers=args.num_conv_layers,
num_rnn_layers=args.num_rnn_layers,
rnn_layer_size=args.rnn_layer_size,
pretrained_model_path=args.model_filepath)
result_transcripts = ds2_model.infer_batch(
infer_data=infer_data,
decode_method=args.decode_method,
beam_alpha=args.alpha,
beam_beta=args.beta,
beam_size=args.beam_size,
cutoff_prob=args.cutoff_prob,
vocab_list=data_generator.vocab_list,
language_model_path=args.language_model_path,
num_processes=args.num_processes_beam_search)
# targe transcription
target_transcription = [
''.join(
[data_generator.vocab_list[index] for index in infer_data[i][1]])
for i, probs in enumerate(probs_split)
target_transcripts = [
''.join([data_generator.vocab_list[token] for token in transcript])
for _, transcript in infer_data
]
## decode and print
# best path decode
wer_sum, wer_counter = 0, 0
if args.decode_method == "best_path":
for i, probs in enumerate(probs_split):
best_path_transcription = ctc_best_path_decoder(
probs_seq=probs, vocabulary=data_generator.vocab_list)
for target, result in zip(target_transcripts, result_transcripts):
print("\nTarget Transcription: %s\nOutput Transcription: %s" %
(target_transcription[i], best_path_transcription))
wer_cur = wer(target_transcription[i], best_path_transcription)
wer_sum += wer_cur
wer_counter += 1
print("cur wer = %f, average wer = %f" %
(wer_cur, wer_sum / wer_counter))
# beam search decode
elif args.decode_method == "beam_search":
ext_scorer = LmScorer(args.alpha, args.beta, args.language_model_path)
beam_search_batch_results = ctc_beam_search_decoder_batch(
probs_split=probs_split,
vocabulary=data_generator.vocab_list,
beam_size=args.beam_size,
blank_id=len(data_generator.vocab_list),
num_processes=args.num_processes_beam_search,
cutoff_prob=args.cutoff_prob,
ext_scoring_func=ext_scorer, )
for i, beam_search_result in enumerate(beam_search_batch_results):
print("\nTarget Transcription:\t%s" % target_transcription[i])
for index in xrange(args.num_results_per_sample):
result = beam_search_result[index]
#output: index, log prob, beam result
print("Beam %d: %f \t%s" % (index, result[0], result[1]))
wer_cur = wer(target_transcription[i], beam_search_result[0][1])
wer_sum += wer_cur
wer_counter += 1
print("cur wer = %f , average wer = %f" %
(wer_cur, wer_sum / wer_counter))
else:
raise ValueError("Decoding method [%s] is not supported." %
decode_method)
(target, result))
print("Current wer = %f" % wer(target, result))
def main():
utils.print_arguments(args)
paddle.init(use_gpu=args.use_gpu, trainer_count=1)
paddle.init(use_gpu=args.use_gpu, trainer_count=args.trainer_count)
infer()
......
"""Contains DeepSpeech2 layers."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import paddle.v2 as paddle
def conv_bn_layer(input, filter_size, num_channels_in, num_channels_out, stride,
padding, act):
"""Convolution layer with batch normalization.
:param input: Input layer.
:type input: LayerOutput
:param filter_size: The x dimension of a filter kernel. Or input a tuple for
two image dimension.
:type filter_size: int|tuple|list
:param num_channels_in: Number of input channels.
:type num_channels_in: int
:type num_channels_out: Number of output channels.
:type num_channels_in: out
:param padding: The x dimension of the padding. Or input a tuple for two
image dimension.
:type padding: int|tuple|list
:param act: Activation type.
:type act: BaseActivation
:return: Batch norm layer after convolution layer.
:rtype: LayerOutput
"""
conv_layer = paddle.layer.img_conv(
input=input,
filter_size=filter_size,
num_channels=num_channels_in,
num_filters=num_channels_out,
stride=stride,
padding=padding,
act=paddle.activation.Linear(),
bias_attr=False)
return paddle.layer.batch_norm(input=conv_layer, act=act)
def bidirectional_simple_rnn_bn_layer(name, input, size, act):
"""Bidirectonal simple rnn layer with sequence-wise batch normalization.
The batch normalization is only performed on input-state weights.
:param name: Name of the layer.
:type name: string
:param input: Input layer.
:type input: LayerOutput
:param size: Number of RNN cells.
:type size: int
:param act: Activation type.
:type act: BaseActivation
:return: Bidirectional simple rnn layer.
:rtype: LayerOutput
"""
# input-hidden weights shared across bi-direcitonal rnn.
input_proj = paddle.layer.fc(
input=input, size=size, act=paddle.activation.Linear(), bias_attr=False)
# batch norm is only performed on input-state projection
input_proj_bn = paddle.layer.batch_norm(
input=input_proj, act=paddle.activation.Linear())
# forward and backward in time
forward_simple_rnn = paddle.layer.recurrent(
input=input_proj_bn, act=act, reverse=False)
backward_simple_rnn = paddle.layer.recurrent(
input=input_proj_bn, act=act, reverse=True)
return paddle.layer.concat(input=[forward_simple_rnn, backward_simple_rnn])
def conv_group(input, num_stacks):
"""Convolution group with stacked convolution layers.
:param input: Input layer.
:type input: LayerOutput
:param num_stacks: Number of stacked convolution layers.
:type num_stacks: int
:return: Output layer of the convolution group.
:rtype: LayerOutput
"""
conv = conv_bn_layer(
input=input,
filter_size=(11, 41),
num_channels_in=1,
num_channels_out=32,
stride=(3, 2),
padding=(5, 20),
act=paddle.activation.BRelu())
for i in xrange(num_stacks - 1):
conv = conv_bn_layer(
input=conv,
filter_size=(11, 21),
num_channels_in=32,
num_channels_out=32,
stride=(1, 2),
padding=(5, 10),
act=paddle.activation.BRelu())
output_num_channels = 32
output_height = 160 // pow(2, num_stacks) + 1
return conv, output_num_channels, output_height
def rnn_group(input, size, num_stacks):
"""RNN group with stacked bidirectional simple RNN layers.
:param input: Input layer.
:type input: LayerOutput
:param size: Number of RNN cells in each layer.
:type size: int
:param num_stacks: Number of stacked rnn layers.
:type num_stacks: int
:return: Output layer of the RNN group.
:rtype: LayerOutput
"""
output = input
for i in xrange(num_stacks):
output = bidirectional_simple_rnn_bn_layer(
name=str(i), input=output, size=size, act=paddle.activation.BRelu())
return output
def deep_speech2(audio_data,
text_data,
dict_size,
num_conv_layers=2,
num_rnn_layers=3,
rnn_size=256):
"""
The whole DeepSpeech2 model structure (a simplified version).
:param audio_data: Audio spectrogram data layer.
:type audio_data: LayerOutput
:param text_data: Transcription text data layer.
:type text_data: LayerOutput
:param dict_size: Dictionary size for tokenized transcription.
:type dict_size: int
:param num_conv_layers: Number of stacking convolution layers.
:type num_conv_layers: int
:param num_rnn_layers: Number of stacking RNN layers.
:type num_rnn_layers: int
:param rnn_size: RNN layer size (number of RNN cells).
:type rnn_size: int
:return: A tuple of an output unnormalized log probability layer (
before softmax) and a ctc cost layer.
:rtype: tuple of LayerOutput
"""
# convolution group
conv_group_output, conv_group_num_channels, conv_group_height = conv_group(
input=audio_data, num_stacks=num_conv_layers)
# convert data form convolution feature map to sequence of vectors
conv2seq = paddle.layer.block_expand(
input=conv_group_output,
num_channels=conv_group_num_channels,
stride_x=1,
stride_y=1,
block_x=1,
block_y=conv_group_height)
# rnn group
rnn_group_output = rnn_group(
input=conv2seq, size=rnn_size, num_stacks=num_rnn_layers)
fc = paddle.layer.fc(
input=rnn_group_output,
size=dict_size + 1,
act=paddle.activation.Linear(),
bias_attr=True)
# probability distribution with softmax
log_probs = paddle.layer.mixed(
input=paddle.layer.identity_projection(input=fc),
act=paddle.activation.Softmax())
# ctc cost
ctc_loss = paddle.layer.warp_ctc(
input=fc,
label=text_data,
size=dict_size + 1,
blank=dict_size,
norm_by_times=True)
return log_probs, ctc_loss
......@@ -3,141 +3,240 @@ from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import sys
import os
import time
import gzip
from decoder import *
from lm.lm_scorer import LmScorer
import paddle.v2 as paddle
from layer import *
def conv_bn_layer(input, filter_size, num_channels_in, num_channels_out, stride,
padding, act):
"""
Convolution layer with batch normalization.
"""
conv_layer = paddle.layer.img_conv(
input=input,
filter_size=filter_size,
num_channels=num_channels_in,
num_filters=num_channels_out,
stride=stride,
padding=padding,
act=paddle.activation.Linear(),
bias_attr=False)
return paddle.layer.batch_norm(input=conv_layer, act=act)
def bidirectional_simple_rnn_bn_layer(name, input, size, act):
"""
Bidirectonal simple rnn layer with sequence-wise batch normalization.
The batch normalization is only performed on input-state weights.
"""
# input-hidden weights shared across bi-direcitonal rnn.
input_proj = paddle.layer.fc(
input=input, size=size, act=paddle.activation.Linear(), bias_attr=False)
# batch norm is only performed on input-state projection
input_proj_bn = paddle.layer.batch_norm(
input=input_proj, act=paddle.activation.Linear())
# forward and backward in time
forward_simple_rnn = paddle.layer.recurrent(
input=input_proj_bn, act=act, reverse=False)
backward_simple_rnn = paddle.layer.recurrent(
input=input_proj_bn, act=act, reverse=True)
return paddle.layer.concat(input=[forward_simple_rnn, backward_simple_rnn])
def conv_group(input, num_stacks):
"""
Convolution group with several stacking convolution layers.
"""
conv = conv_bn_layer(
input=input,
filter_size=(11, 41),
num_channels_in=1,
num_channels_out=32,
stride=(3, 2),
padding=(5, 20),
act=paddle.activation.BRelu())
for i in xrange(num_stacks - 1):
conv = conv_bn_layer(
input=conv,
filter_size=(11, 21),
num_channels_in=32,
num_channels_out=32,
stride=(1, 2),
padding=(5, 10),
act=paddle.activation.BRelu())
output_num_channels = 32
output_height = 160 // pow(2, num_stacks) + 1
return conv, output_num_channels, output_height
def rnn_group(input, size, num_stacks):
"""
RNN group with several stacking RNN layers.
"""
output = input
for i in xrange(num_stacks):
output = bidirectional_simple_rnn_bn_layer(
name=str(i), input=output, size=size, act=paddle.activation.BRelu())
return output
def deep_speech2(audio_data,
text_data,
dict_size,
num_conv_layers=2,
num_rnn_layers=3,
rnn_size=256,
is_inference=False):
"""
The whole DeepSpeech2 model structure (a simplified version).
:param audio_data: Audio spectrogram data layer.
:type audio_data: LayerOutput
:param text_data: Transcription text data layer.
:type text_data: LayerOutput
:param dict_size: Dictionary size for tokenized transcription.
:type dict_size: int
class DeepSpeech2Model(object):
"""DeepSpeech2Model class.
:param vocab_size: Decoding vocabulary size.
:type vocab_size: int
:param num_conv_layers: Number of stacking convolution layers.
:type num_conv_layers: int
:param num_rnn_layers: Number of stacking RNN layers.
:type num_rnn_layers: int
:param rnn_size: RNN layer size (number of RNN cells).
:type rnn_size: int
:param is_inference: False in the training mode, and True in the
inferene mode.
:type is_inference: bool
:return: If is_inference set False, return a ctc cost layer;
if is_inference set True, return a sequence layer of output
probability distribution.
:rtype: tuple of LayerOutput
:param rnn_layer_size: RNN layer size (number of RNN cells).
:type rnn_layer_size: int
:param pretrained_model_path: Pretrained model path. If None, will train
from stratch.
:type pretrained_model_path: basestring|None
"""
def __init__(self, vocab_size, num_conv_layers, num_rnn_layers,
rnn_layer_size, pretrained_model_path):
self._create_network(vocab_size, num_conv_layers, num_rnn_layers,
rnn_layer_size)
self._create_parameters(pretrained_model_path)
self._inferer = None
self._loss_inferer = None
self._ext_scorer = None
def train(self,
train_batch_reader,
dev_batch_reader,
feeding_dict,
learning_rate,
gradient_clipping,
num_passes,
output_model_dir,
num_iterations_print=100):
"""Train the model.
:param train_batch_reader: Train data reader.
:type train_batch_reader: callable
:param dev_batch_reader: Validation data reader.
:type dev_batch_reader: callable
:param feeding_dict: Feeding is a map of field name and tuple index
of the data that reader returns.
:type feeding_dict: dict|list
:param learning_rate: Learning rate for ADAM optimizer.
:type learning_rate: float
:param gradient_clipping: Gradient clipping threshold.
:type gradient_clipping: float
:param num_passes: Number of training epochs.
:type num_passes: int
:param num_iterations_print: Number of training iterations for printing
a training loss.
:type rnn_iteratons_print: int
:param output_model_dir: Directory for saving the model (every pass).
:type output_model_dir: basestring
"""
# prepare model output directory
if not os.path.exists(output_model_dir):
os.mkdir(output_model_dir)
# prepare optimizer and trainer
optimizer = paddle.optimizer.Adam(
learning_rate=learning_rate,
gradient_clipping_threshold=gradient_clipping)
trainer = paddle.trainer.SGD(
cost=self._loss,
parameters=self._parameters,
update_equation=optimizer)
# create event handler
def event_handler(event):
global start_time, cost_sum, cost_counter
if isinstance(event, paddle.event.EndIteration):
cost_sum += event.cost
cost_counter += 1
if (event.batch_id + 1) % num_iterations_print == 0:
output_model_path = os.path.join(output_model_dir,
"params.latest.tar.gz")
with gzip.open(output_model_path, 'w') as f:
self._parameters.to_tar(f)
print("\nPass: %d, Batch: %d, TrainCost: %f" %
(event.pass_id, event.batch_id + 1,
cost_sum / cost_counter))
cost_sum, cost_counter = 0.0, 0
else:
sys.stdout.write('.')
sys.stdout.flush()
if isinstance(event, paddle.event.BeginPass):
start_time = time.time()
cost_sum, cost_counter = 0.0, 0
if isinstance(event, paddle.event.EndPass):
result = trainer.test(
reader=dev_batch_reader, feeding=feeding_dict)
output_model_path = os.path.join(
output_model_dir, "params.pass-%d.tar.gz" % event.pass_id)
with gzip.open(output_model_path, 'w') as f:
self._parameters.to_tar(f)
print("\n------- Time: %d sec, Pass: %d, ValidationCost: %s" %
(time.time() - start_time, event.pass_id, result.cost))
# run train
trainer.train(
reader=train_batch_reader,
event_handler=event_handler,
num_passes=num_passes,
feeding=feeding_dict)
def infer_loss_batch(self, infer_data):
"""Model inference. Infer the ctc loss for a batch of speech
utterances.
:param infer_data: List of utterances to infer, with each utterance a
tuple of audio features and transcription text (empty
string).
:type infer_data: list
:return: List of ctc loss.
:rtype: List of float
"""
# convolution group
conv_group_output, conv_group_num_channels, conv_group_height = conv_group(
input=audio_data, num_stacks=num_conv_layers)
# convert data form convolution feature map to sequence of vectors
conv2seq = paddle.layer.block_expand(
input=conv_group_output,
num_channels=conv_group_num_channels,
stride_x=1,
stride_y=1,
block_x=1,
block_y=conv_group_height)
# rnn group
rnn_group_output = rnn_group(
input=conv2seq, size=rnn_size, num_stacks=num_rnn_layers)
fc = paddle.layer.fc(
input=rnn_group_output,
size=dict_size + 1,
act=paddle.activation.Linear(),
bias_attr=True)
if is_inference:
# probability distribution with softmax
return paddle.layer.mixed(
input=paddle.layer.identity_projection(input=fc),
act=paddle.activation.Softmax())
# define inferer
if self._loss_inferer == None:
self._loss_inferer = paddle.inference.Inference(
output_layer=self._loss, parameters=self._parameters)
# run inference
return self._loss_inferer.infer(input=infer_data)
def infer_batch(self, infer_data, decode_method, beam_alpha, beam_beta,
beam_size, cutoff_prob, vocab_list, language_model_path,
num_processes):
"""Model inference. Infer the transcription for a batch of speech
utterances.
:param infer_data: List of utterances to infer, with each utterance
consisting of a tuple of audio features and
transcription text (empty string).
:type infer_data: list
:param decode_method: Decoding method name, 'best_path' or
'beam search'.
:param decode_method: string
:param beam_alpha: Parameter associated with language model.
:type beam_alpha: float
:param beam_beta: Parameter associated with word count.
:type beam_beta: float
:param beam_size: Width for Beam search.
:type beam_size: int
:param cutoff_prob: Cutoff probability in pruning,
default 1.0, no pruning.
:type cutoff_prob: float
:param vocab_list: List of tokens in the vocabulary, for decoding.
:type vocab_list: list
:param language_model_path: Filepath for language model.
:type language_model_path: basestring|None
:param num_processes: Number of processes (CPU) for decoder.
:type num_processes: int
:return: List of transcription texts.
:rtype: List of basestring
"""
# define inferer
if self._inferer == None:
self._inferer = paddle.inference.Inference(
output_layer=self._log_probs, parameters=self._parameters)
# run inference
infer_results = self._inferer.infer(input=infer_data)
num_steps = len(infer_results) // len(infer_data)
probs_split = [
infer_results[i * num_steps:(i + 1) * num_steps]
for i in xrange(0, len(infer_data))
]
# run decoder
results = []
if decode_method == "best_path":
# best path decode
for i, probs in enumerate(probs_split):
output_transcription = ctc_best_path_decoder(
probs_seq=probs, vocabulary=data_generator.vocab_list)
results.append(output_transcription)
elif decode_method == "beam_search":
# initialize external scorer
if self._ext_scorer == None:
self._ext_scorer = LmScorer(beam_alpha, beam_beta,
language_model_path)
self._loaded_lm_path = language_model_path
else:
self._ext_scorer.reset_params(beam_alpha, beam_beta)
assert self._loaded_lm_path == language_model_path
# beam search decode
beam_search_results = ctc_beam_search_decoder_batch(
probs_split=probs_split,
vocabulary=vocab_list,
beam_size=beam_size,
blank_id=len(vocab_list),
num_processes=num_processes,
ext_scoring_func=self._ext_scorer,
cutoff_prob=cutoff_prob)
results = [result[0][1] for result in beam_search_results]
else:
# ctc cost
return paddle.layer.warp_ctc(
input=fc,
label=text_data,
size=dict_size + 1,
blank=dict_size,
norm_by_times=True)
raise ValueError("Decoding method [%s] is not supported." %
decode_method)
return results
def _create_parameters(self, model_path=None):
"""Load or create model parameters."""
if model_path is None:
self._parameters = paddle.parameters.create(self._loss)
else:
self._parameters = paddle.parameters.Parameters.from_tar(
gzip.open(model_path))
def _create_network(self, vocab_size, num_conv_layers, num_rnn_layers,
rnn_layer_size):
"""Create data layers and model network."""
# paddle.data_type.dense_array is used for variable batch input.
# The size 161 * 161 is only an placeholder value and the real shape
# of input batch data will be induced during training.
audio_data = paddle.layer.data(
name="audio_spectrogram",
type=paddle.data_type.dense_array(161 * 161))
text_data = paddle.layer.data(
name="transcript_text",
type=paddle.data_type.integer_value_sequence(vocab_size))
self._log_probs, self._loss = deep_speech2(
audio_data=audio_data,
text_data=text_data,
dict_size=vocab_size,
num_conv_layers=num_conv_layers,
num_rnn_layers=num_rnn_layers,
rnn_size=rnn_layer_size)
wget==3.2
scipy==0.13.1
resampy==0.1.5
https://github.com/kpu/kenlm/archive/master.zip
SoundFile==0.9.0.post1
python_speech_features
https://github.com/luotao1/kenlm/archive/master.zip
......@@ -9,25 +9,21 @@ if [ $? != 0 ]; then
exit 1
fi
# install package Soundfile
curl -O "http://www.mega-nerd.com/libsndfile/files/libsndfile-1.0.28.tar.gz"
# install package libsndfile
python -c "import soundfile"
if [ $? != 0 ]; then
echo "Install package libsndfile into default system path."
curl -O "http://www.mega-nerd.com/libsndfile/files/libsndfile-1.0.28.tar.gz"
if [ $? != 0 ]; then
echo "Download libsndfile-1.0.28.tar.gz failed !!!"
exit 1
fi
tar -zxvf libsndfile-1.0.28.tar.gz
cd libsndfile-1.0.28
./configure && make && make install
cd ..
rm -rf libsndfile-1.0.28
rm libsndfile-1.0.28.tar.gz
fi
tar -zxvf libsndfile-1.0.28.tar.gz
cd libsndfile-1.0.28
./configure && make && make install
cd -
rm -rf libsndfile-1.0.28
rm libsndfile-1.0.28.tar.gz
pip install SoundFile==0.9.0.post1
if [ $? != 0 ]; then
echo "Install SoundFile failed !!!"
exit 1
fi
# prepare ./checkpoints
mkdir checkpoints
echo "Install all dependencies successfully."
"""Test Setup."""
import unittest
import numpy as np
import os
class TestSetup(unittest.TestCase):
def test_soundfile(self):
import soundfile as sf
# floating point data is typically limited to the interval [-1.0, 1.0],
# but smaller/larger values are supported as well
data = np.array([[1.75, -1.75], [1.0, -1.0], [0.5, -0.5],
[0.25, -0.25]])
file = 'test.wav'
sf.write(file, data, 44100, format='WAV', subtype='FLOAT')
read, fs = sf.read(file)
self.assertTrue(np.all(read == data))
self.assertEqual(fs, 44100)
os.remove(file)
if __name__ == '__main__':
unittest.main()
......@@ -3,15 +3,11 @@ from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import sys
import os
import argparse
import gzip
import time
import distutils.util
import multiprocessing
import paddle.v2 as paddle
from model import deep_speech2
from model import DeepSpeech2Model
from data_utils.data import DataGenerator
import utils
......@@ -23,6 +19,12 @@ parser.add_argument(
default=200,
type=int,
help="Training pass number. (default: %(default)s)")
parser.add_argument(
"--num_iterations_print",
default=100,
type=int,
help="Number of iterations for every train cost printing. "
"(default: %(default)s)")
parser.add_argument(
"--num_conv_layers",
default=2,
......@@ -84,7 +86,7 @@ parser.add_argument(
help="Trainer number. (default: %(default)s)")
parser.add_argument(
"--num_threads_data",
default=multiprocessing.cpu_count(),
default=multiprocessing.cpu_count() // 2,
type=int,
help="Number of cpu threads for preprocessing data. (default: %(default)s)")
parser.add_argument(
......@@ -114,11 +116,14 @@ parser.add_argument(
help="If set None, the training will start from scratch. "
"Otherwise, the training will resume from "
"the existing model of this path. (default: %(default)s)")
parser.add_argument(
"--output_model_dir",
default="./checkpoints",
type=str,
help="Directory for saving models. (default: %(default)s)")
parser.add_argument(
"--augmentation_config",
default='[{"type": "shift", '
'"params": {"min_shift_ms": -5, "max_shift_ms": 5},'
'"prob": 1.0}]',
default=open('conf/augmentation.config', 'r').read(),
type=str,
help="Augmentation configuration in json-format. "
"(default: %(default)s)")
......@@ -127,10 +132,7 @@ args = parser.parse_args()
def train():
"""DeepSpeech2 training."""
# initialize data generator
def data_generator():
return DataGenerator(
train_generator = DataGenerator(
vocab_filepath=args.vocab_filepath,
mean_std_filepath=args.mean_std_filepath,
augmentation_config=args.augmentation_config,
......@@ -138,89 +140,40 @@ def train():
min_duration=args.min_duration,
specgram_type=args.specgram_type,
num_threads=args.num_threads_data)
train_generator = data_generator()
test_generator = data_generator()
# create network config
# paddle.data_type.dense_array is used for variable batch input.
# The size 161 * 161 is only an placeholder value and the real shape
# of input batch data will be induced during training.
audio_data = paddle.layer.data(
name="audio_spectrogram", type=paddle.data_type.dense_array(161 * 161))
text_data = paddle.layer.data(
name="transcript_text",
type=paddle.data_type.integer_value_sequence(
train_generator.vocab_size))
cost = deep_speech2(
audio_data=audio_data,
text_data=text_data,
dict_size=train_generator.vocab_size,
num_conv_layers=args.num_conv_layers,
num_rnn_layers=args.num_rnn_layers,
rnn_size=args.rnn_layer_size,
is_inference=False)
# create/load parameters and optimizer
if args.init_model_path is None:
parameters = paddle.parameters.create(cost)
else:
if not os.path.isfile(args.init_model_path):
raise IOError("Invalid model!")
parameters = paddle.parameters.Parameters.from_tar(
gzip.open(args.init_model_path))
optimizer = paddle.optimizer.Adam(
learning_rate=args.adam_learning_rate, gradient_clipping_threshold=400)
trainer = paddle.trainer.SGD(
cost=cost, parameters=parameters, update_equation=optimizer)
# prepare data reader
dev_generator = DataGenerator(
vocab_filepath=args.vocab_filepath,
mean_std_filepath=args.mean_std_filepath,
augmentation_config="{}",
specgram_type=args.specgram_type,
num_threads=args.num_threads_data)
train_batch_reader = train_generator.batch_reader_creator(
manifest_path=args.train_manifest_path,
batch_size=args.batch_size,
min_batch_size=args.trainer_count,
sortagrad=args.use_sortagrad if args.init_model_path is None else False,
shuffle_method=args.shuffle_method)
test_batch_reader = test_generator.batch_reader_creator(
dev_batch_reader = dev_generator.batch_reader_creator(
manifest_path=args.dev_manifest_path,
batch_size=args.batch_size,
min_batch_size=1, # must be 1, but will have errors.
sortagrad=False,
shuffle_method=None)
# create event handler
def event_handler(event):
global start_time, cost_sum, cost_counter
if isinstance(event, paddle.event.EndIteration):
cost_sum += event.cost
cost_counter += 1
if (event.batch_id + 1) % 100 == 0:
print("\nPass: %d, Batch: %d, TrainCost: %f" % (
event.pass_id, event.batch_id + 1, cost_sum / cost_counter))
cost_sum, cost_counter = 0.0, 0
with gzip.open("checkpoints/params.latest.tar.gz", 'w') as f:
parameters.to_tar(f)
else:
sys.stdout.write('.')
sys.stdout.flush()
if isinstance(event, paddle.event.BeginPass):
start_time = time.time()
cost_sum, cost_counter = 0.0, 0
if isinstance(event, paddle.event.EndPass):
result = trainer.test(
reader=test_batch_reader, feeding=test_generator.feeding)
print("\n------- Time: %d sec, Pass: %d, ValidationCost: %s" %
(time.time() - start_time, event.pass_id, result.cost))
with gzip.open("checkpoints/params.pass-%d.tar.gz" % event.pass_id,
'w') as f:
parameters.to_tar(f)
# run train
trainer.train(
reader=train_batch_reader,
event_handler=event_handler,
ds2_model = DeepSpeech2Model(
vocab_size=train_generator.vocab_size,
num_conv_layers=args.num_conv_layers,
num_rnn_layers=args.num_rnn_layers,
rnn_layer_size=args.rnn_layer_size,
pretrained_model_path=args.init_model_path)
ds2_model.train(
train_batch_reader=train_batch_reader,
dev_batch_reader=dev_batch_reader,
feeding_dict=train_generator.feeding,
learning_rate=args.adam_learning_rate,
gradient_clipping=400,
num_passes=args.num_passes,
feeding=train_generator.feeding)
num_iterations_print=args.num_iterations_print,
output_model_dir=args.output_model_dir)
def main():
......
......@@ -3,14 +3,13 @@ from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy as np
import distutils.util
import argparse
import gzip
import multiprocessing
import paddle.v2 as paddle
from data_utils.data import DataGenerator
from model import deep_speech2
from decoder import *
from lm.lm_scorer import LmScorer
from model import DeepSpeech2Model
from error_rate import wer
import utils
......@@ -40,14 +39,19 @@ parser.add_argument(
default=True,
type=distutils.util.strtobool,
help="Use gpu or not. (default: %(default)s)")
parser.add_argument(
"--trainer_count",
default=8,
type=int,
help="Trainer number. (default: %(default)s)")
parser.add_argument(
"--num_threads_data",
default=multiprocessing.cpu_count(),
default=1,
type=int,
help="Number of cpu threads for preprocessing data. (default: %(default)s)")
parser.add_argument(
"--num_processes_beam_search",
default=multiprocessing.cpu_count(),
default=multiprocessing.cpu_count() // 2,
type=int,
help="Number of cpu processes for beam search. (default: %(default)s)")
parser.add_argument(
......@@ -62,10 +66,10 @@ parser.add_argument(
type=str,
help="Manifest path for normalizer. (default: %(default)s)")
parser.add_argument(
"--decode_manifest_path",
default='datasets/manifest.test',
"--tune_manifest_path",
default='datasets/manifest.dev',
type=str,
help="Manifest path for decoding. (default: %(default)s)")
help="Manifest path for tuning. (default: %(default)s)")
parser.add_argument(
"--model_filepath",
default='checkpoints/params.latest.tar.gz',
......@@ -127,96 +131,64 @@ args = parser.parse_args()
def tune():
"""Tune parameters alpha and beta on one minibatch."""
if not args.num_alphas >= 0:
raise ValueError("num_alphas must be non-negative!")
if not args.num_betas >= 0:
raise ValueError("num_betas must be non-negative!")
# initialize data generator
data_generator = DataGenerator(
vocab_filepath=args.vocab_filepath,
mean_std_filepath=args.mean_std_filepath,
augmentation_config='{}',
specgram_type=args.specgram_type,
num_threads=args.num_threads_data)
# create network config
# paddle.data_type.dense_array is used for variable batch input.
# The size 161 * 161 is only an placeholder value and the real shape
# of input batch data will be induced during training.
audio_data = paddle.layer.data(
name="audio_spectrogram", type=paddle.data_type.dense_array(161 * 161))
text_data = paddle.layer.data(
name="transcript_text",
type=paddle.data_type.integer_value_sequence(data_generator.vocab_size))
output_probs = deep_speech2(
audio_data=audio_data,
text_data=text_data,
dict_size=data_generator.vocab_size,
num_conv_layers=args.num_conv_layers,
num_rnn_layers=args.num_rnn_layers,
rnn_size=args.rnn_layer_size,
is_inference=True)
# load parameters
parameters = paddle.parameters.Parameters.from_tar(
gzip.open(args.model_filepath))
# prepare infer data
batch_reader = data_generator.batch_reader_creator(
manifest_path=args.decode_manifest_path,
manifest_path=args.tune_manifest_path,
batch_size=args.num_samples,
sortagrad=False,
shuffle_method=None)
# get one batch data for tuning
infer_data = batch_reader().next()
# run inference
infer_results = paddle.infer(
output_layer=output_probs, parameters=parameters, input=infer_data)
num_steps = len(infer_results) // len(infer_data)
probs_split = [
infer_results[i * num_steps:(i + 1) * num_steps]
for i in xrange(0, len(infer_data))
tune_data = batch_reader().next()
target_transcripts = [
''.join([data_generator.vocab_list[token] for token in transcript])
for _, transcript in tune_data
]
ds2_model = DeepSpeech2Model(
vocab_size=data_generator.vocab_size,
num_conv_layers=args.num_conv_layers,
num_rnn_layers=args.num_rnn_layers,
rnn_layer_size=args.rnn_layer_size,
pretrained_model_path=args.model_filepath)
# create grid for search
cand_alphas = np.linspace(args.alpha_from, args.alpha_to, args.num_alphas)
cand_betas = np.linspace(args.beta_from, args.beta_to, args.num_betas)
params_grid = [(alpha, beta) for alpha in cand_alphas
for beta in cand_betas]
ext_scorer = LmScorer(args.alpha_from, args.beta_from,
args.language_model_path)
## tune parameters in loop
for alpha, beta in params_grid:
wer_sum, wer_counter = 0, 0
# reset scorer
ext_scorer.reset_params(alpha, beta)
# beam search using multiple processes
beam_search_results = ctc_beam_search_decoder_batch(
probs_split=probs_split,
vocabulary=data_generator.vocab_list,
result_transcripts = ds2_model.infer_batch(
infer_data=tune_data,
decode_method='beam_search',
beam_alpha=alpha,
beam_beta=beta,
beam_size=args.beam_size,
cutoff_prob=args.cutoff_prob,
blank_id=len(data_generator.vocab_list),
num_processes=args.num_processes_beam_search,
ext_scoring_func=ext_scorer, )
for i, beam_search_result in enumerate(beam_search_results):
target_transcription = ''.join([
data_generator.vocab_list[index] for index in infer_data[i][1]
])
wer_sum += wer(target_transcription, beam_search_result[0][1])
wer_counter += 1
vocab_list=data_generator.vocab_list,
language_model_path=args.language_model_path,
num_processes=args.num_processes_beam_search)
wer_sum, num_ins = 0.0, 0
for target, result in zip(target_transcripts, result_transcripts):
wer_sum += wer(target, result)
num_ins += 1
print("alpha = %f\tbeta = %f\tWER = %f" %
(alpha, beta, wer_sum / wer_counter))
(alpha, beta, wer_sum / num_ins))
def main():
paddle.init(use_gpu=args.use_gpu, trainer_count=1)
utils.print_arguments(args)
paddle.init(use_gpu=args.use_gpu, trainer_count=args.trainer_count)
tune()
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册