diff --git a/fluid/sequence_tagging_for_ner/README.md b/fluid/sequence_tagging_for_ner/README.md index 761060c72000d0767e424975ea354556949dcfa1..4e4ce90c153f25323dca1a18232d3f392801441a 100644 --- a/fluid/sequence_tagging_for_ner/README.md +++ b/fluid/sequence_tagging_for_ner/README.md @@ -108,11 +108,23 @@ Baghdad NNP I-NP I-LOC 3. 运行命令 `python train.py` ,**需要注意:直接运行使用的是示例数据,请替换真实的标记数据。** ```text - commandline: --use_gpu=False --trainer_count=1 - Initing parameters.. - Init parameters done. - Pass 0, Batch 0, Cost 41.430110, {'ner_chunk.precision': 0.01587301678955555, 'ner_chunk.F1-score': 0.028368793427944183, 'ner_chunk.recall': 0.13333334028720856, 'error': 0.939393937587738} - Test with Pass 0, Batch 0, {'ner_chunk.precision': 0.0, 'ner_chunk.F1-score': 0.0, 'ner_chunk.recall': 0.0, 'error': 0.16260161995887756} + Pass 127, Batch 9525, Cost 4.0867705, Precision 0.3954984, Recall 0.37846154, F1_score0.38679245 + Pass 127, Batch 9530, Cost 3.137265, Precision 0.42971888, Recall 0.38351256, F1_score0.405303 + Pass 127, Batch 9535, Cost 3.6240938, Precision 0.4272152, Recall 0.41795665, F1_score0.4225352 + Pass 127, Batch 9540, Cost 3.5352352, Precision 0.48464164, Recall 0.4536741, F1_score0.46864685 + Pass 127, Batch 9545, Cost 4.1130385, Precision 0.40131578, Recall 0.3836478, F1_score0.39228293 + Pass 127, Batch 9550, Cost 3.6826708, Precision 0.43333334, Recall 0.43730888, F1_score0.43531203 + Pass 127, Batch 9555, Cost 3.6363933, Precision 0.42424244, Recall 0.3962264, F1_score0.4097561 + Pass 127, Batch 9560, Cost 3.6101768, Precision 0.51363635, Recall 0.353125, F1_score0.41851854 + Pass 127, Batch 9565, Cost 3.5935276, Precision 0.5152439, Recall 0.5, F1_score0.5075075 + Pass 127, Batch 9570, Cost 3.4987144, Precision 0.5, Recall 0.4330218, F1_score0.46410686 + Pass 127, Batch 9575, Cost 3.4659843, Precision 0.39864865, Recall 0.38064516, F1_score0.38943896 + Pass 127, Batch 9580, Cost 3.1702557, Precision 0.5, Recall 0.4490446, F1_score0.47315437 + Pass 127, Batch 9585, Cost 3.1587276, Precision 0.49377593, Recall 0.4089347, F1_score0.4473684 + Pass 127, Batch 9590, Cost 3.5043538, Precision 0.4556962, Recall 0.4600639, F1_score0.45786962 + Pass 127, Batch 9595, Cost 2.981989, Precision 0.44981414, Recall 0.45149255, F1_score0.4506518 + [TrainSet] pass_id:127 pass_precision:[0.46023396] pass_recall:[0.43197003] pass_f1_score:[0.44565433] + [TestSet] pass_id:127 pass_precision:[0.4708409] pass_recall:[0.47971722] pass_f1_score:[0.4752376] ``` ### 预测 1. 修改 [infer.py](./infer.py) 的 `main` 函数,指定:需要测试的模型的路径、测试数据、字典文件,预测标记文件的路径,默认参数如下: