diff --git a/modelcenter/community/CLTL/MedRoBERTa.nl/download_cn.md b/modelcenter/community/CLTL/MedRoBERTa.nl/download_cn.md
deleted file mode 100644
index 99630cfd20a6a71a1c4c845b49cd6fdceb347db1..0000000000000000000000000000000000000000
--- a/modelcenter/community/CLTL/MedRoBERTa.nl/download_cn.md
+++ /dev/null
@@ -1,23 +0,0 @@
-# 模型列表
-
-## CLTL/MedRoBERTa.nl
-
-| 模型名称 | 模型介绍 | 模型大小 | 模型下载 |
-| --- | --- | --- | --- |
-|CLTL/MedRoBERTa.nl| | 633.14MB | [merges.txt](https://bj.bcebos.com/paddlenlp/models/community/CLTL/MedRoBERTa.nl/merges.txt)
[model_config.json](https://bj.bcebos.com/paddlenlp/models/community/CLTL/MedRoBERTa.nl/model_config.json)
[model_state.pdparams](https://bj.bcebos.com/paddlenlp/models/community/CLTL/MedRoBERTa.nl/model_state.pdparams)
[tokenizer_config.json](https://bj.bcebos.com/paddlenlp/models/community/CLTL/MedRoBERTa.nl/tokenizer_config.json)
[vocab.json](https://bj.bcebos.com/paddlenlp/models/community/CLTL/MedRoBERTa.nl/vocab.json)
[vocab.txt](https://bj.bcebos.com/paddlenlp/models/community/CLTL/MedRoBERTa.nl/vocab.txt) |
-
-也可以通过`paddlenlp` cli 工具来下载对应的模型权重,使用步骤如下所示:
-
-* 安装paddlenlp
-
-```shell
-pip install --upgrade paddlenlp
-```
-
-* 下载命令行
-
-```shell
-paddlenlp download --cache-dir ./pretrained_models CLTL/MedRoBERTa.nl
-```
-
-有任何下载的问题都可以到[PaddleNLP](https://github.com/PaddlePaddle/PaddleNLP)中发Issue提问。
\ No newline at end of file
diff --git a/modelcenter/community/CLTL/MedRoBERTa.nl/download_en.md b/modelcenter/community/CLTL/MedRoBERTa.nl/download_en.md
deleted file mode 100644
index b894119dc6ac0a9671c67d1330a045a2f38f0bc0..0000000000000000000000000000000000000000
--- a/modelcenter/community/CLTL/MedRoBERTa.nl/download_en.md
+++ /dev/null
@@ -1,23 +0,0 @@
-# model list
-
-##
-
-| model | description | model_size | download |
-| --- | --- | --- | --- |
-|CLTL/MedRoBERTa.nl| | 633.14MB | [merges.txt](https://bj.bcebos.com/paddlenlp/models/community/CLTL/MedRoBERTa.nl/merges.txt)
[model_config.json](https://bj.bcebos.com/paddlenlp/models/community/CLTL/MedRoBERTa.nl/model_config.json)
[model_state.pdparams](https://bj.bcebos.com/paddlenlp/models/community/CLTL/MedRoBERTa.nl/model_state.pdparams)
[tokenizer_config.json](https://bj.bcebos.com/paddlenlp/models/community/CLTL/MedRoBERTa.nl/tokenizer_config.json)
[vocab.json](https://bj.bcebos.com/paddlenlp/models/community/CLTL/MedRoBERTa.nl/vocab.json)
[vocab.txt](https://bj.bcebos.com/paddlenlp/models/community/CLTL/MedRoBERTa.nl/vocab.txt) |
-
-or you can download all of model file with the following steps:
-
-* install paddlenlp
-
-```shell
-pip install --upgrade paddlenlp
-```
-
-* download model with cli tool
-
-```shell
-paddlenlp download --cache-dir ./pretrained_models CLTL/MedRoBERTa.nl
-```
-
-If you have any problems with it, you can post issue on [PaddleNLP](https://github.com/PaddlePaddle/PaddleNLP) to get support.
diff --git a/modelcenter/community/CLTL/MedRoBERTa.nl/info.yaml b/modelcenter/community/CLTL/MedRoBERTa.nl/info.yaml
deleted file mode 100644
index 45339330c77925060ae979c7eda4c2c4f7457784..0000000000000000000000000000000000000000
--- a/modelcenter/community/CLTL/MedRoBERTa.nl/info.yaml
+++ /dev/null
@@ -1,23 +0,0 @@
-Model_Info:
- name: "CLTL/MedRoBERTa.nl"
- description: "MedRoBERTa.nl"
- description_en: "MedRoBERTa.nl"
- icon: ""
- from_repo: "https://huggingface.co/CLTL/MedRoBERTa.nl"
-
-Task:
-- tag_en: "Natural Language Processing"
- tag: "自然语言处理"
- sub_tag_en: "Fill-Mask"
- sub_tag: "槽位填充"
-
-Example:
-
-Datasets: ""
-Publisher: "CLTL"
-License: "mit"
-Language: "Dutch"
-Paper:
-
-IfTraining: 0
-IfOnlineDemo: 0
\ No newline at end of file
diff --git a/modelcenter/community/Jean-Baptiste/roberta-large-ner-english/info.yaml b/modelcenter/community/Jean-Baptiste/roberta-large-ner-english/info.yaml
index 6a3aed3d35dce1da3a4c211c6a7e75ef87720dd1..2ce8d5173eb1e4e02d0b5cdd9c674d95c592bdce 100644
--- a/modelcenter/community/Jean-Baptiste/roberta-large-ner-english/info.yaml
+++ b/modelcenter/community/Jean-Baptiste/roberta-large-ner-english/info.yaml
@@ -1,23 +1,21 @@
+Datasets: conll2003
+Example: null
+IfOnlineDemo: 0
+IfTraining: 0
+Language: English
+License: mit
Model_Info:
- name: "Jean-Baptiste/roberta-large-ner-english"
- description: "roberta-large-ner-english: model fine-tuned from roberta-large for NER task"
- description_en: "roberta-large-ner-english: model fine-tuned from roberta-large for NER task"
- icon: ""
- from_repo: "https://huggingface.co/Jean-Baptiste/roberta-large-ner-english"
-
+ description: 'roberta-large-ner-english: model fine-tuned from roberta-large for
+ NER task'
+ description_en: 'roberta-large-ner-english: model fine-tuned from roberta-large
+ for NER task'
+ from_repo: https://huggingface.co/Jean-Baptiste/roberta-large-ner-english
+ icon: https://paddlenlp.bj.bcebos.com/models/community/transformer-layer.png
+ name: Jean-Baptiste/roberta-large-ner-english
+Paper: null
+Publisher: Jean-Baptiste
Task:
-- tag_en: "Natural Language Processing"
- tag: "自然语言处理"
- sub_tag_en: "Token Classification"
- sub_tag: "Token分类"
-
-Example:
-
-Datasets: "conll2003"
-Publisher: "Jean-Baptiste"
-License: "mit"
-Language: "English"
-Paper:
-
-IfTraining: 0
-IfOnlineDemo: 0
\ No newline at end of file
+- sub_tag: Token分类
+ sub_tag_en: Token Classification
+ tag: 自然语言处理
+ tag_en: Natural Language Processing
diff --git a/modelcenter/community/Jean-Baptiste/roberta-large-ner-english/introduction_cn.ipynb b/modelcenter/community/Jean-Baptiste/roberta-large-ner-english/introduction_cn.ipynb
new file mode 100644
index 0000000000000000000000000000000000000000..c9d1957e5e0c5304d0db9620b1f2df8b34bb5722
--- /dev/null
+++ b/modelcenter/community/Jean-Baptiste/roberta-large-ner-english/introduction_cn.ipynb
@@ -0,0 +1,96 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "id": "743f4950",
+ "metadata": {},
+ "source": [
+ "# roberta-large-ner-english: model fine-tuned from roberta-large for NER task\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "0d517a6d",
+ "metadata": {},
+ "source": [
+ "## Introduction\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "bbb5e934",
+ "metadata": {},
+ "source": [
+ "roberta-large-ner-english is an english NER model that was fine-tuned from roberta-large on conll2003 dataset.\n",
+ "Model was validated on emails/chat data and outperformed other models on this type of data specifically.\n",
+ "In particular the model seems to work better on entity that don't start with an upper case.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "a13117c3",
+ "metadata": {},
+ "source": [
+ "## How to use"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "b9e58955",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "!pip install --upgrade paddlenlp"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "db077413",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import paddle\n",
+ "from paddlenlp.transformers import AutoModel\n",
+ "\n",
+ "model = AutoModel.from_pretrained(\"Jean-Baptiste/roberta-large-ner-english\")\n",
+ "input_ids = paddle.randint(100, 200, shape=[1, 20])\n",
+ "print(model(input_ids))"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "86ae5e96",
+ "metadata": {},
+ "source": [
+ "For those who could be interested, here is a short article on how I used the results of this model to train a LSTM model for signature detection in emails:\n",
+ "https://medium.com/@jean-baptiste.polle/lstm-model-for-email-signature-detection-8e990384fefa\n",
+ "\n",
+ "\n",
+ "> 此模型介绍及权重来源于[https://huggingface.co/Jean-Baptiste/roberta-large-ner-english](https://huggingface.co/Jean-Baptiste/roberta-large-ner-english),并转换为飞桨模型格式。\n"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3 (ipykernel)",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.7.13"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 5
+}
diff --git a/modelcenter/community/Jean-Baptiste/roberta-large-ner-english/introduction_en.ipynb b/modelcenter/community/Jean-Baptiste/roberta-large-ner-english/introduction_en.ipynb
new file mode 100644
index 0000000000000000000000000000000000000000..55104d0923e6a85a9dcf011dfa1dde437245ac22
--- /dev/null
+++ b/modelcenter/community/Jean-Baptiste/roberta-large-ner-english/introduction_en.ipynb
@@ -0,0 +1,95 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "id": "b0541e6a",
+ "metadata": {},
+ "source": [
+ "# roberta-large-ner-english: model fine-tuned from roberta-large for NER task\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "c85540d7",
+ "metadata": {},
+ "source": [
+ "## Introduction\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "c2e2ebde",
+ "metadata": {},
+ "source": [
+ "roberta-large-ner-english is an english NER model that was fine-tuned from roberta-large on conll2003 dataset.\n",
+ "Model was validated on emails/chat data and outperformed other models on this type of data specifically.\n",
+ "In particular the model seems to work better on entity that don't start with an upper case.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "4f6d5dbe",
+ "metadata": {},
+ "source": [
+ "## How to use"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "a159cf92",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "!pip install --upgrade paddlenlp"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "daa60299",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import paddle\n",
+ "from paddlenlp.transformers import AutoModel\n",
+ "\n",
+ "model = AutoModel.from_pretrained(\"Jean-Baptiste/roberta-large-ner-english\")\n",
+ "input_ids = paddle.randint(100, 200, shape=[1, 20])\n",
+ "print(model(input_ids))"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "2a66154e",
+ "metadata": {},
+ "source": [
+ "For those who could be interested, here is a short article on how I used the results of this model to train a LSTM model for signature detection in emails:\n",
+ "https://medium.com/@jean-baptiste.polle/lstm-model-for-email-signature-detection-8e990384fefa\n",
+ "\n",
+ "> The model introduction and model weights originate from https://huggingface.co/Jean-Baptiste/roberta-large-ner-english and were converted to PaddlePaddle format for ease of use in PaddleNLP."
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3 (ipykernel)",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.7.13"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 5
+}
diff --git a/modelcenter/community/Langboat/mengzi-bert-base-fin/info.yaml b/modelcenter/community/Langboat/mengzi-bert-base-fin/info.yaml
index cc6af0eaa889cf17baeb4f790c20b4c1354e722f..09854d68e697c5815e0bbe80df20df57d6694e93 100644
--- a/modelcenter/community/Langboat/mengzi-bert-base-fin/info.yaml
+++ b/modelcenter/community/Langboat/mengzi-bert-base-fin/info.yaml
@@ -1,24 +1,21 @@
+Datasets: ''
+Example: null
+IfOnlineDemo: 0
+IfTraining: 0
+Language: Chinese
+License: apache-2.0
Model_Info:
- name: "Langboat/mengzi-bert-base-fin"
- description: "Mengzi-BERT base fin model (Chinese)"
- description_en: "Mengzi-BERT base fin model (Chinese)"
- icon: ""
- from_repo: "https://huggingface.co/Langboat/mengzi-bert-base-fin"
-
-Task:
-- tag_en: "Natural Language Processing"
- tag: "自然语言处理"
- sub_tag_en: "Fill-Mask"
- sub_tag: "槽位填充"
-
-Example:
-
-Datasets: ""
-Publisher: "Langboat"
-License: "apache-2.0"
-Language: "Chinese"
+ description: Mengzi-BERT base fin model (Chinese)
+ description_en: Mengzi-BERT base fin model (Chinese)
+ from_repo: https://huggingface.co/Langboat/mengzi-bert-base-fin
+ icon: https://paddlenlp.bj.bcebos.com/models/community/transformer-layer.png
+ name: Langboat/mengzi-bert-base-fin
Paper:
- - title: 'Mengzi: Towards Lightweight yet Ingenious Pre-trained Models for Chinese'
- url: 'http://arxiv.org/abs/2110.06696v2'
-IfTraining: 0
-IfOnlineDemo: 0
\ No newline at end of file
+- title: 'Mengzi: Towards Lightweight yet Ingenious Pre-trained Models for Chinese'
+ url: http://arxiv.org/abs/2110.06696v2
+Publisher: Langboat
+Task:
+- sub_tag: 槽位填充
+ sub_tag_en: Fill-Mask
+ tag: 自然语言处理
+ tag_en: Natural Language Processing
diff --git a/modelcenter/community/Langboat/mengzi-bert-base-fin/introduction_cn.ipynb b/modelcenter/community/Langboat/mengzi-bert-base-fin/introduction_cn.ipynb
new file mode 100644
index 0000000000000000000000000000000000000000..f3b7ee5a116c6aedb02489e692fb0fe8882b161a
--- /dev/null
+++ b/modelcenter/community/Langboat/mengzi-bert-base-fin/introduction_cn.ipynb
@@ -0,0 +1,100 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "id": "18d5c43e",
+ "metadata": {},
+ "source": [
+ "# Mengzi-BERT base fin model (Chinese)\n",
+ "Continue trained mengzi-bert-base with 20G financial news and research reports. Masked language modeling(MLM), part-of-speech(POS) tagging and sentence order prediction(SOP) are used as training task.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "9aa78f76",
+ "metadata": {},
+ "source": [
+ "[Mengzi: Towards Lightweight yet Ingenious Pre-trained Models for Chinese](https://arxiv.org/abs/2110.06696)\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "12bbac99",
+ "metadata": {},
+ "source": [
+ "## Usage\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "3b18fe48",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "!pip install --upgrade paddlenlp"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "1bb0e345",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import paddle\n",
+ "from paddlenlp.transformers import AutoModel\n",
+ "\n",
+ "model = AutoModel.from_pretrained(\"Langboat/mengzi-bert-base-fin\")\n",
+ "input_ids = paddle.randint(100, 200, shape=[1, 20])\n",
+ "print(model(input_ids))"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "a8d785f4",
+ "metadata": {},
+ "source": [
+ "```\n",
+ "@misc{zhang2021mengzi,\n",
+ "title={Mengzi: Towards Lightweight yet Ingenious Pre-trained Models for Chinese},\n",
+ "author={Zhuosheng Zhang and Hanqing Zhang and Keming Chen and Yuhang Guo and Jingyun Hua and Yulong Wang and Ming Zhou},\n",
+ "year={2021},\n",
+ "eprint={2110.06696},\n",
+ "archivePrefix={arXiv},\n",
+ "primaryClass={cs.CL}\n",
+ "}\n",
+ "```"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "ceb1547c",
+ "metadata": {},
+ "source": [
+ "> 此模型介绍及权重来源于[https://huggingface.co/Langboat/mengzi-bert-base-fin](https://huggingface.co/Langboat/mengzi-bert-base-fin),并转换为飞桨模型格式。\n"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3 (ipykernel)",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.7.13"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 5
+}
diff --git a/modelcenter/community/Langboat/mengzi-bert-base-fin/introduction_en.ipynb b/modelcenter/community/Langboat/mengzi-bert-base-fin/introduction_en.ipynb
new file mode 100644
index 0000000000000000000000000000000000000000..aa1693e004ded0fd806c079db0fff9527c488bb6
--- /dev/null
+++ b/modelcenter/community/Langboat/mengzi-bert-base-fin/introduction_en.ipynb
@@ -0,0 +1,100 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "id": "752656a4",
+ "metadata": {},
+ "source": [
+ "# Mengzi-BERT base fin model (Chinese)\n",
+ "Continue trained mengzi-bert-base with 20G financial news and research reports. Masked language modeling(MLM), part-of-speech(POS) tagging and sentence order prediction(SOP) are used as training task.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "26c65092",
+ "metadata": {},
+ "source": [
+ "[Mengzi: Towards Lightweight yet Ingenious Pre-trained Models for Chinese](https://arxiv.org/abs/2110.06696)\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "ea5404c7",
+ "metadata": {},
+ "source": [
+ "## Usage\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "ebeb5daa",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "!pip install --upgrade paddlenlp"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "d2c66056",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import paddle\n",
+ "from paddlenlp.transformers import AutoModel\n",
+ "\n",
+ "model = AutoModel.from_pretrained(\"Langboat/mengzi-bert-base-fin\")\n",
+ "input_ids = paddle.randint(100, 200, shape=[1, 20])\n",
+ "print(model(input_ids))"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "a39809dc",
+ "metadata": {},
+ "source": [
+ "```\n",
+ "@misc{zhang2021mengzi,\n",
+ "title={Mengzi: Towards Lightweight yet Ingenious Pre-trained Models for Chinese},\n",
+ "author={Zhuosheng Zhang and Hanqing Zhang and Keming Chen and Yuhang Guo and Jingyun Hua and Yulong Wang and Ming Zhou},\n",
+ "year={2021},\n",
+ "eprint={2110.06696},\n",
+ "archivePrefix={arXiv},\n",
+ "primaryClass={cs.CL}\n",
+ "}\n",
+ "```"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "f25bda96",
+ "metadata": {},
+ "source": [
+ "> The model introduction and model weights originate from https://huggingface.co/Langboat/mengzi-bert-base-fin and were converted to PaddlePaddle format for ease of use in PaddleNLP."
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3 (ipykernel)",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.7.13"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 5
+}
diff --git a/modelcenter/community/PlanTL-GOB-ES/roberta-base-biomedical-clinical-es/download_cn.md b/modelcenter/community/PlanTL-GOB-ES/roberta-base-biomedical-clinical-es/download_cn.md
deleted file mode 100644
index 2c18bc597ce856d56119006a4be1bb461da867f5..0000000000000000000000000000000000000000
--- a/modelcenter/community/PlanTL-GOB-ES/roberta-base-biomedical-clinical-es/download_cn.md
+++ /dev/null
@@ -1,23 +0,0 @@
-# 模型列表
-
-## PlanTL-GOB-ES/roberta-base-biomedical-clinical-es
-
-| 模型名称 | 模型介绍 | 模型大小 | 模型下载 |
-| --- | --- | --- | --- |
-|PlanTL-GOB-ES/roberta-base-biomedical-clinical-es| | 633.14MB | [merges.txt](https://bj.bcebos.com/paddlenlp/models/community/PlanTL-GOB-ES/roberta-base-biomedical-clinical-es/merges.txt)
[model_config.json](https://bj.bcebos.com/paddlenlp/models/community/PlanTL-GOB-ES/roberta-base-biomedical-clinical-es/model_config.json)
[model_state.pdparams](https://bj.bcebos.com/paddlenlp/models/community/PlanTL-GOB-ES/roberta-base-biomedical-clinical-es/model_state.pdparams)
[tokenizer_config.json](https://bj.bcebos.com/paddlenlp/models/community/PlanTL-GOB-ES/roberta-base-biomedical-clinical-es/tokenizer_config.json)
[vocab.json](https://bj.bcebos.com/paddlenlp/models/community/PlanTL-GOB-ES/roberta-base-biomedical-clinical-es/vocab.json)
[vocab.txt](https://bj.bcebos.com/paddlenlp/models/community/PlanTL-GOB-ES/roberta-base-biomedical-clinical-es/vocab.txt) |
-
-也可以通过`paddlenlp` cli 工具来下载对应的模型权重,使用步骤如下所示:
-
-* 安装paddlenlp
-
-```shell
-pip install --upgrade paddlenlp
-```
-
-* 下载命令行
-
-```shell
-paddlenlp download --cache-dir ./pretrained_models PlanTL-GOB-ES/roberta-base-biomedical-clinical-es
-```
-
-有任何下载的问题都可以到[PaddleNLP](https://github.com/PaddlePaddle/PaddleNLP)中发Issue提问。
\ No newline at end of file
diff --git a/modelcenter/community/PlanTL-GOB-ES/roberta-base-biomedical-clinical-es/download_en.md b/modelcenter/community/PlanTL-GOB-ES/roberta-base-biomedical-clinical-es/download_en.md
deleted file mode 100644
index e02124c15a2b866e2eea8c7bb13204b6b7fbad86..0000000000000000000000000000000000000000
--- a/modelcenter/community/PlanTL-GOB-ES/roberta-base-biomedical-clinical-es/download_en.md
+++ /dev/null
@@ -1,23 +0,0 @@
-# model list
-
-##
-
-| model | description | model_size | download |
-| --- | --- | --- | --- |
-|PlanTL-GOB-ES/roberta-base-biomedical-clinical-es| | 633.14MB | [merges.txt](https://bj.bcebos.com/paddlenlp/models/community/PlanTL-GOB-ES/roberta-base-biomedical-clinical-es/merges.txt)
[model_config.json](https://bj.bcebos.com/paddlenlp/models/community/PlanTL-GOB-ES/roberta-base-biomedical-clinical-es/model_config.json)
[model_state.pdparams](https://bj.bcebos.com/paddlenlp/models/community/PlanTL-GOB-ES/roberta-base-biomedical-clinical-es/model_state.pdparams)
[tokenizer_config.json](https://bj.bcebos.com/paddlenlp/models/community/PlanTL-GOB-ES/roberta-base-biomedical-clinical-es/tokenizer_config.json)
[vocab.json](https://bj.bcebos.com/paddlenlp/models/community/PlanTL-GOB-ES/roberta-base-biomedical-clinical-es/vocab.json)
[vocab.txt](https://bj.bcebos.com/paddlenlp/models/community/PlanTL-GOB-ES/roberta-base-biomedical-clinical-es/vocab.txt) |
-
-or you can download all of model file with the following steps:
-
-* install paddlenlp
-
-```shell
-pip install --upgrade paddlenlp
-```
-
-* download model with cli tool
-
-```shell
-paddlenlp download --cache-dir ./pretrained_models PlanTL-GOB-ES/roberta-base-biomedical-clinical-es
-```
-
-If you have any problems with it, you can post issue on [PaddleNLP](https://github.com/PaddlePaddle/PaddleNLP) to get support.
diff --git a/modelcenter/community/PlanTL-GOB-ES/roberta-base-biomedical-clinical-es/info.yaml b/modelcenter/community/PlanTL-GOB-ES/roberta-base-biomedical-clinical-es/info.yaml
deleted file mode 100644
index d23cc56d4d0f56bd526624057d5de1fabf86c02e..0000000000000000000000000000000000000000
--- a/modelcenter/community/PlanTL-GOB-ES/roberta-base-biomedical-clinical-es/info.yaml
+++ /dev/null
@@ -1,26 +0,0 @@
-Model_Info:
- name: "PlanTL-GOB-ES/roberta-base-biomedical-clinical-es"
- description: "Biomedical-clinical language model for Spanish"
- description_en: "Biomedical-clinical language model for Spanish"
- icon: ""
- from_repo: "https://huggingface.co/PlanTL-GOB-ES/roberta-base-biomedical-clinical-es"
-
-Task:
-- tag_en: "Natural Language Processing"
- tag: "自然语言处理"
- sub_tag_en: "Fill-Mask"
- sub_tag: "槽位填充"
-
-Example:
-
-Datasets: ""
-Publisher: "PlanTL-GOB-ES"
-License: "apache-2.0"
-Language: "Spanish"
-Paper:
- - title: 'Biomedical and Clinical Language Models for Spanish: On the Benefits of Domain-Specific Pretraining in a Mid-Resource Scenario'
- url: 'http://arxiv.org/abs/2109.03570v2'
- - title: 'Spanish Biomedical Crawled Corpus: A Large, Diverse Dataset for Spanish Biomedical Language Models'
- url: 'http://arxiv.org/abs/2109.07765v1'
-IfTraining: 0
-IfOnlineDemo: 0
\ No newline at end of file
diff --git a/modelcenter/community/PlanTL-GOB-ES/roberta-base-biomedical-es/download_cn.md b/modelcenter/community/PlanTL-GOB-ES/roberta-base-biomedical-es/download_cn.md
deleted file mode 100644
index 8c00871a8905a888d22a896578b33c5769ead066..0000000000000000000000000000000000000000
--- a/modelcenter/community/PlanTL-GOB-ES/roberta-base-biomedical-es/download_cn.md
+++ /dev/null
@@ -1,23 +0,0 @@
-# 模型列表
-
-## PlanTL-GOB-ES/roberta-base-biomedical-es
-
-| 模型名称 | 模型介绍 | 模型大小 | 模型下载 |
-| --- | --- | --- | --- |
-|PlanTL-GOB-ES/roberta-base-biomedical-es| | 633.14MB | [merges.txt](https://bj.bcebos.com/paddlenlp/models/community/PlanTL-GOB-ES/roberta-base-biomedical-es/merges.txt)
[model_config.json](https://bj.bcebos.com/paddlenlp/models/community/PlanTL-GOB-ES/roberta-base-biomedical-es/model_config.json)
[model_state.pdparams](https://bj.bcebos.com/paddlenlp/models/community/PlanTL-GOB-ES/roberta-base-biomedical-es/model_state.pdparams)
[tokenizer_config.json](https://bj.bcebos.com/paddlenlp/models/community/PlanTL-GOB-ES/roberta-base-biomedical-es/tokenizer_config.json)
[vocab.json](https://bj.bcebos.com/paddlenlp/models/community/PlanTL-GOB-ES/roberta-base-biomedical-es/vocab.json) |
-
-也可以通过`paddlenlp` cli 工具来下载对应的模型权重,使用步骤如下所示:
-
-* 安装paddlenlp
-
-```shell
-pip install --upgrade paddlenlp
-```
-
-* 下载命令行
-
-```shell
-paddlenlp download --cache-dir ./pretrained_models PlanTL-GOB-ES/roberta-base-biomedical-es
-```
-
-有任何下载的问题都可以到[PaddleNLP](https://github.com/PaddlePaddle/PaddleNLP)中发Issue提问。
\ No newline at end of file
diff --git a/modelcenter/community/PlanTL-GOB-ES/roberta-base-biomedical-es/download_en.md b/modelcenter/community/PlanTL-GOB-ES/roberta-base-biomedical-es/download_en.md
deleted file mode 100644
index fd457877b15aee403be205ffbcaf3cd8fd0bb9ca..0000000000000000000000000000000000000000
--- a/modelcenter/community/PlanTL-GOB-ES/roberta-base-biomedical-es/download_en.md
+++ /dev/null
@@ -1,23 +0,0 @@
-# model list
-
-##
-
-| model | description | model_size | download |
-| --- | --- | --- | --- |
-|PlanTL-GOB-ES/roberta-base-biomedical-es| | 633.14MB | [merges.txt](https://bj.bcebos.com/paddlenlp/models/community/PlanTL-GOB-ES/roberta-base-biomedical-es/merges.txt)
[model_config.json](https://bj.bcebos.com/paddlenlp/models/community/PlanTL-GOB-ES/roberta-base-biomedical-es/model_config.json)
[model_state.pdparams](https://bj.bcebos.com/paddlenlp/models/community/PlanTL-GOB-ES/roberta-base-biomedical-es/model_state.pdparams)
[tokenizer_config.json](https://bj.bcebos.com/paddlenlp/models/community/PlanTL-GOB-ES/roberta-base-biomedical-es/tokenizer_config.json)
[vocab.json](https://bj.bcebos.com/paddlenlp/models/community/PlanTL-GOB-ES/roberta-base-biomedical-es/vocab.json) |
-
-or you can download all of model file with the following steps:
-
-* install paddlenlp
-
-```shell
-pip install --upgrade paddlenlp
-```
-
-* download model with cli tool
-
-```shell
-paddlenlp download --cache-dir ./pretrained_models PlanTL-GOB-ES/roberta-base-biomedical-es
-```
-
-If you have any problems with it, you can post issue on [PaddleNLP](https://github.com/PaddlePaddle/PaddleNLP) to get support.
diff --git a/modelcenter/community/PlanTL-GOB-ES/roberta-base-biomedical-es/info.yaml b/modelcenter/community/PlanTL-GOB-ES/roberta-base-biomedical-es/info.yaml
deleted file mode 100644
index 184ef9cb9c870a85a66f0a62f25df0da259e9ce5..0000000000000000000000000000000000000000
--- a/modelcenter/community/PlanTL-GOB-ES/roberta-base-biomedical-es/info.yaml
+++ /dev/null
@@ -1,26 +0,0 @@
-Model_Info:
- name: "PlanTL-GOB-ES/roberta-base-biomedical-es"
- description: "Biomedical language model for Spanish"
- description_en: "Biomedical language model for Spanish"
- icon: ""
- from_repo: "https://huggingface.co/PlanTL-GOB-ES/roberta-base-biomedical-es"
-
-Task:
-- tag_en: "Natural Language Processing"
- tag: "自然语言处理"
- sub_tag_en: "Fill-Mask"
- sub_tag: "槽位填充"
-
-Example:
-
-Datasets: ""
-Publisher: "PlanTL-GOB-ES"
-License: "apache-2.0"
-Language: "Spanish"
-Paper:
- - title: 'Biomedical and Clinical Language Models for Spanish: On the Benefits of Domain-Specific Pretraining in a Mid-Resource Scenario'
- url: 'http://arxiv.org/abs/2109.03570v2'
- - title: 'Spanish Biomedical Crawled Corpus: A Large, Diverse Dataset for Spanish Biomedical Language Models'
- url: 'http://arxiv.org/abs/2109.07765v1'
-IfTraining: 0
-IfOnlineDemo: 0
\ No newline at end of file
diff --git a/modelcenter/community/PlanTL-GOB-ES/roberta-base-ca/download_cn.md b/modelcenter/community/PlanTL-GOB-ES/roberta-base-ca/download_cn.md
deleted file mode 100644
index fd0c67bd9b9b554ee4cc92c852ebf251107bc717..0000000000000000000000000000000000000000
--- a/modelcenter/community/PlanTL-GOB-ES/roberta-base-ca/download_cn.md
+++ /dev/null
@@ -1,23 +0,0 @@
-# 模型列表
-
-## PlanTL-GOB-ES/roberta-base-ca
-
-| 模型名称 | 模型介绍 | 模型大小 | 模型下载 |
-| --- | --- | --- | --- |
-|PlanTL-GOB-ES/roberta-base-ca| | 633.14MB | [merges.txt](https://bj.bcebos.com/paddlenlp/models/community/PlanTL-GOB-ES/roberta-base-ca/merges.txt)
[model_config.json](https://bj.bcebos.com/paddlenlp/models/community/PlanTL-GOB-ES/roberta-base-ca/model_config.json)
[model_state.pdparams](https://bj.bcebos.com/paddlenlp/models/community/PlanTL-GOB-ES/roberta-base-ca/model_state.pdparams)
[tokenizer_config.json](https://bj.bcebos.com/paddlenlp/models/community/PlanTL-GOB-ES/roberta-base-ca/tokenizer_config.json)
[vocab.json](https://bj.bcebos.com/paddlenlp/models/community/PlanTL-GOB-ES/roberta-base-ca/vocab.json) |
-
-也可以通过`paddlenlp` cli 工具来下载对应的模型权重,使用步骤如下所示:
-
-* 安装paddlenlp
-
-```shell
-pip install --upgrade paddlenlp
-```
-
-* 下载命令行
-
-```shell
-paddlenlp download --cache-dir ./pretrained_models PlanTL-GOB-ES/roberta-base-ca
-```
-
-有任何下载的问题都可以到[PaddleNLP](https://github.com/PaddlePaddle/PaddleNLP)中发Issue提问。
\ No newline at end of file
diff --git a/modelcenter/community/PlanTL-GOB-ES/roberta-base-ca/download_en.md b/modelcenter/community/PlanTL-GOB-ES/roberta-base-ca/download_en.md
deleted file mode 100644
index d40a5d8178c34df23cf16559556c829d2fc05080..0000000000000000000000000000000000000000
--- a/modelcenter/community/PlanTL-GOB-ES/roberta-base-ca/download_en.md
+++ /dev/null
@@ -1,23 +0,0 @@
-# model list
-
-##
-
-| model | description | model_size | download |
-| --- | --- | --- | --- |
-|PlanTL-GOB-ES/roberta-base-ca| | 633.14MB | [merges.txt](https://bj.bcebos.com/paddlenlp/models/community/PlanTL-GOB-ES/roberta-base-ca/merges.txt)
[model_config.json](https://bj.bcebos.com/paddlenlp/models/community/PlanTL-GOB-ES/roberta-base-ca/model_config.json)
[model_state.pdparams](https://bj.bcebos.com/paddlenlp/models/community/PlanTL-GOB-ES/roberta-base-ca/model_state.pdparams)
[tokenizer_config.json](https://bj.bcebos.com/paddlenlp/models/community/PlanTL-GOB-ES/roberta-base-ca/tokenizer_config.json)
[vocab.json](https://bj.bcebos.com/paddlenlp/models/community/PlanTL-GOB-ES/roberta-base-ca/vocab.json) |
-
-or you can download all of model file with the following steps:
-
-* install paddlenlp
-
-```shell
-pip install --upgrade paddlenlp
-```
-
-* download model with cli tool
-
-```shell
-paddlenlp download --cache-dir ./pretrained_models PlanTL-GOB-ES/roberta-base-ca
-```
-
-If you have any problems with it, you can post issue on [PaddleNLP](https://github.com/PaddlePaddle/PaddleNLP) to get support.
diff --git a/modelcenter/community/PlanTL-GOB-ES/roberta-base-ca/info.yaml b/modelcenter/community/PlanTL-GOB-ES/roberta-base-ca/info.yaml
deleted file mode 100644
index 12005967fcdd7a4c2c33c09db2c2729efdfaf260..0000000000000000000000000000000000000000
--- a/modelcenter/community/PlanTL-GOB-ES/roberta-base-ca/info.yaml
+++ /dev/null
@@ -1,23 +0,0 @@
-Model_Info:
- name: "PlanTL-GOB-ES/roberta-base-ca"
- description: "BERTa: RoBERTa-based Catalan language model"
- description_en: "BERTa: RoBERTa-based Catalan language model"
- icon: ""
- from_repo: "https://huggingface.co/PlanTL-GOB-ES/roberta-base-ca"
-
-Task:
-- tag_en: "Natural Language Processing"
- tag: "自然语言处理"
- sub_tag_en: "Fill-Mask"
- sub_tag: "槽位填充"
-
-Example:
-
-Datasets: ""
-Publisher: "PlanTL-GOB-ES"
-License: "apache-2.0"
-Language: "Catalan"
-Paper:
-
-IfTraining: 0
-IfOnlineDemo: 0
\ No newline at end of file
diff --git a/modelcenter/community/Recognai/bert-base-spanish-wwm-cased-xnli/info.yaml b/modelcenter/community/Recognai/bert-base-spanish-wwm-cased-xnli/info.yaml
index aa750c2d1bf10a526dc5df654808f4dce50167d6..b755f75e5cf1d95d3e41fbf9c34fc0b2e6926453 100644
--- a/modelcenter/community/Recognai/bert-base-spanish-wwm-cased-xnli/info.yaml
+++ b/modelcenter/community/Recognai/bert-base-spanish-wwm-cased-xnli/info.yaml
@@ -1,27 +1,23 @@
+Datasets: xnli
+Example: null
+IfOnlineDemo: 0
+IfTraining: 0
+Language: Spanish
+License: mit
Model_Info:
- name: "Recognai/bert-base-spanish-wwm-cased-xnli"
- description: "bert-base-spanish-wwm-cased-xnli"
- description_en: "bert-base-spanish-wwm-cased-xnli"
- icon: ""
- from_repo: "https://huggingface.co/Recognai/bert-base-spanish-wwm-cased-xnli"
-
+ description: bert-base-spanish-wwm-cased-xnli
+ description_en: bert-base-spanish-wwm-cased-xnli
+ from_repo: https://huggingface.co/Recognai/bert-base-spanish-wwm-cased-xnli
+ icon: https://paddlenlp.bj.bcebos.com/models/community/transformer-layer.png
+ name: Recognai/bert-base-spanish-wwm-cased-xnli
+Paper: null
+Publisher: Recognai
Task:
-- tag_en: "Natural Language Processing"
- tag: "自然语言处理"
- sub_tag_en: "Zero-Shot Classification"
- sub_tag: "零样本分类"
-- tag_en: "Natural Language Processing"
- tag: "自然语言处理"
- sub_tag_en: "Text Classification"
- sub_tag: "文本分类"
-
-Example:
-
-Datasets: "xnli"
-Publisher: "Recognai"
-License: "mit"
-Language: "Spanish"
-Paper:
-
-IfTraining: 0
-IfOnlineDemo: 0
\ No newline at end of file
+- sub_tag: 零样本分类
+ sub_tag_en: Zero-Shot Classification
+ tag: 自然语言处理
+ tag_en: Natural Language Processing
+- sub_tag: 文本分类
+ sub_tag_en: Text Classification
+ tag: 自然语言处理
+ tag_en: Natural Language Processing
diff --git a/modelcenter/community/Recognai/bert-base-spanish-wwm-cased-xnli/introduction_cn.ipynb b/modelcenter/community/Recognai/bert-base-spanish-wwm-cased-xnli/introduction_cn.ipynb
new file mode 100644
index 0000000000000000000000000000000000000000..9d9c2bfcc756f1e53f5df00ed0d96ca03f90c7e9
--- /dev/null
+++ b/modelcenter/community/Recognai/bert-base-spanish-wwm-cased-xnli/introduction_cn.ipynb
@@ -0,0 +1,109 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "id": "0b1e9532",
+ "metadata": {},
+ "source": [
+ "# bert-base-spanish-wwm-cased-xnli\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "2b09a9af",
+ "metadata": {},
+ "source": [
+ "## Model description\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "e348457b",
+ "metadata": {},
+ "source": [
+ "This model is a fine-tuned version of the [spanish BERT model](https://huggingface.co/dccuchile/bert-base-spanish-wwm-cased) with the Spanish portion of the XNLI dataset. \n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "6643a3b7",
+ "metadata": {},
+ "source": [
+ "### How to use\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "8475d429",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "!pip install --upgrade paddlenlp"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "ced3e559",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import paddle\n",
+ "from paddlenlp.transformers import AutoModel\n",
+ "\n",
+ "model = AutoModel.from_pretrained(\"Recognai/bert-base-spanish-wwm-cased-xnli\")\n",
+ "input_ids = paddle.randint(100, 200, shape=[1, 20])\n",
+ "print(model(input_ids))"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "47419faf",
+ "metadata": {},
+ "source": [
+ "## Eval results\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "9b87e64b",
+ "metadata": {},
+ "source": [
+ "Accuracy for the test set:\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "7be74f6f",
+ "metadata": {},
+ "source": [
+ "| | XNLI-es |\n",
+ "|-----------------------------|---------|\n",
+ "|bert-base-spanish-wwm-cased-xnli | 79.9% |\n",
+ "> 此模型介绍及权重来源于[https://huggingface.co/Recognai/bert-base-spanish-wwm-cased-xnli](https://huggingface.co/Recognai/bert-base-spanish-wwm-cased-xnli),并转换为飞桨模型格式。\n"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3 (ipykernel)",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.7.13"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 5
+}
diff --git a/modelcenter/community/Recognai/bert-base-spanish-wwm-cased-xnli/introduction_en.ipynb b/modelcenter/community/Recognai/bert-base-spanish-wwm-cased-xnli/introduction_en.ipynb
new file mode 100644
index 0000000000000000000000000000000000000000..f6b85d3b839431cb71a8ffbd3ffcdca783dcd358
--- /dev/null
+++ b/modelcenter/community/Recognai/bert-base-spanish-wwm-cased-xnli/introduction_en.ipynb
@@ -0,0 +1,98 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "id": "7a8a1587",
+ "metadata": {},
+ "source": [
+ "# bert-base-spanish-wwm-cased-xnli\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "210c8e3a",
+ "metadata": {},
+ "source": [
+ "## Model description\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "fe16ef03",
+ "metadata": {},
+ "source": [
+ "This model is a fine-tuned version of the spanish BERT model with the Spanish portion of the XNLI dataset.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "b23d27b0",
+ "metadata": {},
+ "source": [
+ "## How to use\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "37e5b840",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "!pip install --upgrade paddlenlp"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "117b1e15",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import paddle\n",
+ "from paddlenlp.transformers import AutoModel\n",
+ "\n",
+ "model = AutoModel.from_pretrained(\"Recognai/bert-base-spanish-wwm-cased-xnli\")\n",
+ "input_ids = paddle.randint(100, 200, shape=[1, 20])\n",
+ "print(model(input_ids))"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "65669489",
+ "metadata": {},
+ "source": [
+ "## Eval results\n",
+ "\n",
+ "Accuracy for the test set:\n",
+ "\n",
+ "| | XNLI-es |\n",
+ "|-----------------------------|---------|\n",
+ "|bert-base-spanish-wwm-cased-xnli | 79.9% |\n",
+ "\n",
+ "> The model introduction and model weights originate from https://huggingface.co/Recognai/bert-base-spanish-wwm-cased-xnli and were converted to PaddlePaddle format for ease of use in PaddleNLP."
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3 (ipykernel)",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.7.13"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 5
+}
diff --git a/modelcenter/community/allenai/macaw-3b/download_cn.md b/modelcenter/community/allenai/macaw-3b/download_cn.md
deleted file mode 100644
index ea3e3a94233f93f84b610d428b369671eaa2f5a0..0000000000000000000000000000000000000000
--- a/modelcenter/community/allenai/macaw-3b/download_cn.md
+++ /dev/null
@@ -1,23 +0,0 @@
-# 模型列表
-
-## allenai/macaw-3b
-
-| 模型名称 | 模型介绍 | 模型大小 | 模型下载 |
-| --- | --- | --- | --- |
-|allenai/macaw-3b| | 10.99G | [model_config.json](https://bj.bcebos.com/paddlenlp/models/community/allenai/macaw-3b/model_config.json)
[model_state.pdparams](https://bj.bcebos.com/paddlenlp/models/community/allenai/macaw-3b/model_state.pdparams)
[tokenizer_config.json](https://bj.bcebos.com/paddlenlp/models/community/allenai/macaw-3b/tokenizer_config.json) |
-
-也可以通过`paddlenlp` cli 工具来下载对应的模型权重,使用步骤如下所示:
-
-* 安装paddlenlp
-
-```shell
-pip install --upgrade paddlenlp
-```
-
-* 下载命令行
-
-```shell
-paddlenlp download --cache-dir ./pretrained_models allenai/macaw-3b
-```
-
-有任何下载的问题都可以到[PaddleNLP](https://github.com/PaddlePaddle/PaddleNLP)中发Issue提问。
\ No newline at end of file
diff --git a/modelcenter/community/allenai/macaw-3b/download_en.md b/modelcenter/community/allenai/macaw-3b/download_en.md
deleted file mode 100644
index 2744e84a97f39490321a1ee9b93397f5318e0c6f..0000000000000000000000000000000000000000
--- a/modelcenter/community/allenai/macaw-3b/download_en.md
+++ /dev/null
@@ -1,23 +0,0 @@
-# model list
-
-##
-
-| model | description | model_size | download |
-| --- | --- | --- | --- |
-|allenai/macaw-3b| | 10.99G | [model_config.json](https://bj.bcebos.com/paddlenlp/models/community/allenai/macaw-3b/model_config.json)
[model_state.pdparams](https://bj.bcebos.com/paddlenlp/models/community/allenai/macaw-3b/model_state.pdparams)
[tokenizer_config.json](https://bj.bcebos.com/paddlenlp/models/community/allenai/macaw-3b/tokenizer_config.json) |
-
-or you can download all of model file with the following steps:
-
-* install paddlenlp
-
-```shell
-pip install --upgrade paddlenlp
-```
-
-* download model with cli tool
-
-```shell
-paddlenlp download --cache-dir ./pretrained_models allenai/macaw-3b
-```
-
-If you have any problems with it, you can post issue on [PaddleNLP](https://github.com/PaddlePaddle/PaddleNLP) to get support.
diff --git a/modelcenter/community/allenai/macaw-3b/info.yaml b/modelcenter/community/allenai/macaw-3b/info.yaml
deleted file mode 100644
index 6d099b7b8cc4e07b75dac74fba808666ba3c91d7..0000000000000000000000000000000000000000
--- a/modelcenter/community/allenai/macaw-3b/info.yaml
+++ /dev/null
@@ -1,23 +0,0 @@
-Model_Info:
- name: "allenai/macaw-3b"
- description: "macaw-3b"
- description_en: "macaw-3b"
- icon: ""
- from_repo: "https://huggingface.co/allenai/macaw-3b"
-
-Task:
-- tag_en: "Natural Language Processing"
- tag: "自然语言处理"
- sub_tag_en: "Text2Text Generation"
- sub_tag: "文本生成"
-
-Example:
-
-Datasets: ""
-Publisher: "allenai"
-License: "apache-2.0"
-Language: "English"
-Paper:
-
-IfTraining: 0
-IfOnlineDemo: 0
\ No newline at end of file
diff --git a/modelcenter/community/allenai/macaw-large/info.yaml b/modelcenter/community/allenai/macaw-large/info.yaml
index 36e157f121240478a2edaed2e74768e77ba5ee9d..1e3d1e0d044bff6845249d75768409cc03006b53 100644
--- a/modelcenter/community/allenai/macaw-large/info.yaml
+++ b/modelcenter/community/allenai/macaw-large/info.yaml
@@ -1,23 +1,19 @@
+Datasets: ''
+Example: null
+IfOnlineDemo: 0
+IfTraining: 0
+Language: English
+License: apache-2.0
Model_Info:
- name: "allenai/macaw-large"
- description: "macaw-large"
- description_en: "macaw-large"
- icon: ""
- from_repo: "https://huggingface.co/allenai/macaw-large"
-
+ description: macaw-large
+ description_en: macaw-large
+ from_repo: https://huggingface.co/allenai/macaw-large
+ icon: https://paddlenlp.bj.bcebos.com/models/community/transformer-layer.png
+ name: allenai/macaw-large
+Paper: null
+Publisher: allenai
Task:
-- tag_en: "Natural Language Processing"
- tag: "自然语言处理"
- sub_tag_en: "Text2Text Generation"
- sub_tag: "文本生成"
-
-Example:
-
-Datasets: ""
-Publisher: "allenai"
-License: "apache-2.0"
-Language: "English"
-Paper:
-
-IfTraining: 0
-IfOnlineDemo: 0
\ No newline at end of file
+- sub_tag: 文本生成
+ sub_tag_en: Text2Text Generation
+ tag: 自然语言处理
+ tag_en: Natural Language Processing
diff --git a/modelcenter/community/allenai/macaw-large/introduction_cn.ipynb b/modelcenter/community/allenai/macaw-large/introduction_cn.ipynb
new file mode 100644
index 0000000000000000000000000000000000000000..905d2152e0249a2ef550a52e72d7dfdbfb37df48
--- /dev/null
+++ b/modelcenter/community/allenai/macaw-large/introduction_cn.ipynb
@@ -0,0 +1,91 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "id": "d50965ae",
+ "metadata": {},
+ "source": [
+ "# macaw-large\n",
+ "\n",
+ "## Model description\n",
+ "\n",
+ "Macaw (Multi-angle c(q)uestion answering) is a ready-to-use model capable of\n",
+ "general question answering,\n",
+ "showing robustness outside the domains it was trained on. It has been trained in \"multi-angle\" fashion,\n",
+ "which means it can handle a flexible set of input and output \"slots\"\n",
+ "(question, answer, multiple-choice options, context, and explanation) .\n",
+ "\n",
+ "Macaw was built on top of [T5](https://github.com/google-research/text-to-text-transfer-transformer) and comes in\n",
+ "three sizes: macaw-11b, macaw-3b,\n",
+ "and macaw-large, as well as an answer-focused version featured on\n",
+ "various leaderboards macaw-answer-11b.\n",
+ "\n",
+ "See https://github.com/allenai/macaw for more details."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "1c0bce56",
+ "metadata": {},
+ "source": [
+ "## How to Use"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "cb7a2c88",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "!pip install --upgrade paddlenlp"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "b0fd69ae",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import paddle\n",
+ "from paddlenlp.transformers import AutoModel\n",
+ "\n",
+ "model = AutoModel.from_pretrained(\"allenai/macaw-large\")\n",
+ "input_ids = paddle.randint(100, 200, shape=[1, 20])\n",
+ "print(model(input_ids))"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "955d0705",
+ "metadata": {},
+ "source": [
+ "## Reference\n",
+ "\n",
+ "> 此模型介绍及权重来源于[https://huggingface.co/allenai/macaw-large](https://huggingface.co/allenai/macaw-large),并转换为飞桨模型格式。"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3 (ipykernel)",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.7.13"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 5
+}
diff --git a/modelcenter/community/allenai/macaw-large/introduction_en.ipynb b/modelcenter/community/allenai/macaw-large/introduction_en.ipynb
new file mode 100644
index 0000000000000000000000000000000000000000..440ebda1e1109ce40b4923cc8f0e45535a43e9f9
--- /dev/null
+++ b/modelcenter/community/allenai/macaw-large/introduction_en.ipynb
@@ -0,0 +1,91 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "id": "f5a296e3",
+ "metadata": {},
+ "source": [
+ "# macaw-large\n",
+ "\n",
+ "## Model description\n",
+ "\n",
+ "Macaw (Multi-angle c(q)uestion answering) is a ready-to-use model capable of\n",
+ "general question answering,\n",
+ "showing robustness outside the domains it was trained on. It has been trained in \"multi-angle\" fashion,\n",
+ "which means it can handle a flexible set of input and output \"slots\"\n",
+ "(question, answer, multiple-choice options, context, and explanation) .\n",
+ "\n",
+ "Macaw was built on top of [T5](https://github.com/google-research/text-to-text-transfer-transformer) and comes in\n",
+ "three sizes: macaw-11b, macaw-3b,\n",
+ "and macaw-large, as well as an answer-focused version featured on\n",
+ "various leaderboards macaw-answer-11b.\n",
+ "\n",
+ "See https://github.com/allenai/macaw for more details."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "27cf8ebc",
+ "metadata": {},
+ "source": [
+ "## How to Use"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "027c735c",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "!pip install --upgrade paddlenlp"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "8f52c07a",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import paddle\n",
+ "from paddlenlp.transformers import AutoModel\n",
+ "\n",
+ "model = AutoModel.from_pretrained(\"allenai/macaw-large\")\n",
+ "input_ids = paddle.randint(100, 200, shape=[1, 20])\n",
+ "print(model(input_ids))"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "ce759903",
+ "metadata": {},
+ "source": [
+ "## Reference\n",
+ "\n",
+ "> The model introduction and model weights originate from [https://huggingface.co/allenai/macaw-large](https://huggingface.co/allenai/macaw-large) and were converted to PaddlePaddle format for ease of use in PaddleNLP."
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3 (ipykernel)",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.7.13"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 5
+}
diff --git a/modelcenter/community/allenai/specter/info.yaml b/modelcenter/community/allenai/specter/info.yaml
index e769843ac85d6fefba864b424bc6e3296184a8cc..43f2f03a982a8efa24879c38549edb6fda78f36b 100644
--- a/modelcenter/community/allenai/specter/info.yaml
+++ b/modelcenter/community/allenai/specter/info.yaml
@@ -1,24 +1,22 @@
+Datasets: ''
+Example: null
+IfOnlineDemo: 0
+IfTraining: 0
+Language: English
+License: apache-2.0
Model_Info:
- name: "allenai/specter"
- description: "SPECTER"
- description_en: "SPECTER"
- icon: ""
- from_repo: "https://huggingface.co/allenai/specter"
-
-Task:
-- tag_en: "Natural Language Processing"
- tag: "自然语言处理"
- sub_tag_en: "Feature Extraction"
- sub_tag: "特征抽取"
-
-Example:
-
-Datasets: ""
-Publisher: "allenai"
-License: "apache-2.0"
-Language: "English"
+ description: SPECTER
+ description_en: SPECTER
+ from_repo: https://huggingface.co/allenai/specter
+ icon: https://paddlenlp.bj.bcebos.com/models/community/transformer-layer.png
+ name: allenai/specter
Paper:
- - title: 'SPECTER: Document-level Representation Learning using Citation-informed Transformers'
- url: 'http://arxiv.org/abs/2004.07180v4'
-IfTraining: 0
-IfOnlineDemo: 0
\ No newline at end of file
+- title: 'SPECTER: Document-level Representation Learning using Citation-informed
+ Transformers'
+ url: http://arxiv.org/abs/2004.07180v4
+Publisher: allenai
+Task:
+- sub_tag: 特征抽取
+ sub_tag_en: Feature Extraction
+ tag: 自然语言处理
+ tag_en: Natural Language Processing
diff --git a/modelcenter/community/allenai/specter/introduction_cn.ipynb b/modelcenter/community/allenai/specter/introduction_cn.ipynb
new file mode 100644
index 0000000000000000000000000000000000000000..32ced08c68082a3703bb86db8953dd25422275b0
--- /dev/null
+++ b/modelcenter/community/allenai/specter/introduction_cn.ipynb
@@ -0,0 +1,86 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "id": "a5b54f39",
+ "metadata": {},
+ "source": [
+ "## SPECTER\n",
+ "\n",
+ "SPECTER is a pre-trained language model to generate document-level embedding of documents. It is pre-trained on a a powerful signal of document-level relatedness: the citation graph. Unlike existing pretrained language models, SPECTER can be easily applied to downstream applications without task-specific fine-tuning.\n",
+ "\n",
+ "Paper: [SPECTER: Document-level Representation Learning using Citation-informed Transformers](https://arxiv.org/pdf/2004.07180.pdf)\n",
+ "\n",
+ "Original Repo: [Github](https://github.com/allenai/specter)\n",
+ "\n",
+ "Evaluation Benchmark: [SciDocs](https://github.com/allenai/scidocs)\n",
+ "\n",
+ "Authors: *Arman Cohan, Sergey Feldman, Iz Beltagy, Doug Downey, Daniel S. Weld*"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "e279b43d",
+ "metadata": {},
+ "source": [
+ "## How to Use"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "3dcf4e0b",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "!pip install --upgrade paddlenlp"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "7348a84e",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import paddle\n",
+ "from paddlenlp.transformers import AutoModel\n",
+ "\n",
+ "model = AutoModel.from_pretrained(\"allenai/specter\")\n",
+ "input_ids = paddle.randint(100, 200, shape=[1, 20])\n",
+ "print(model(input_ids))"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "89c70552",
+ "metadata": {},
+ "source": [
+ "## Reference\n",
+ "\n",
+ "> 此模型介绍及权重来源于[https://huggingface.co/allenai/specter](https://huggingface.co/allenai/specter),并转换为飞桨模型格式。"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3 (ipykernel)",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.7.13"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 5
+}
diff --git a/modelcenter/community/allenai/specter/introduction_en.ipynb b/modelcenter/community/allenai/specter/introduction_en.ipynb
new file mode 100644
index 0000000000000000000000000000000000000000..a77c6968c20725126df481f285e40f5c212e18c1
--- /dev/null
+++ b/modelcenter/community/allenai/specter/introduction_en.ipynb
@@ -0,0 +1,86 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "id": "a09f5723",
+ "metadata": {},
+ "source": [
+ "## SPECTER\n",
+ "\n",
+ "SPECTER is a pre-trained language model to generate document-level embedding of documents. It is pre-trained on a a powerful signal of document-level relatedness: the citation graph. Unlike existing pretrained language models, SPECTER can be easily applied to downstream applications without task-specific fine-tuning.\n",
+ "\n",
+ "Paper: [SPECTER: Document-level Representation Learning using Citation-informed Transformers](https://arxiv.org/pdf/2004.07180.pdf)\n",
+ "\n",
+ "Original Repo: [Github](https://github.com/allenai/specter)\n",
+ "\n",
+ "Evaluation Benchmark: [SciDocs](https://github.com/allenai/scidocs)\n",
+ "\n",
+ "Authors: *Arman Cohan, Sergey Feldman, Iz Beltagy, Doug Downey, Daniel S. Weld*"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "b62bbb59",
+ "metadata": {},
+ "source": [
+ "## How to Use"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "2dff923a",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "!pip install --upgrade paddlenlp"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "e60739cc",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import paddle\n",
+ "from paddlenlp.transformers import AutoModel\n",
+ "\n",
+ "model = AutoModel.from_pretrained(\"allenai/specter\")\n",
+ "input_ids = paddle.randint(100, 200, shape=[1, 20])\n",
+ "print(model(input_ids))"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "cd668864",
+ "metadata": {},
+ "source": [
+ "## Reference\n",
+ "\n",
+ "> The model introduction and model weights originate from [https://huggingface.co/allenai/specter](https://huggingface.co/allenai/specter) and were converted to PaddlePaddle format for ease of use in PaddleNLP."
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3 (ipykernel)",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.7.13"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 5
+}
diff --git a/modelcenter/community/alvaroalon2/biobert_chemical_ner/info.yaml b/modelcenter/community/alvaroalon2/biobert_chemical_ner/info.yaml
index 69a8f31f00f18613f54a9702aaad4a0dc7a180b4..b74d72c7f6622cb7cee3e4eb6647e1f5a916b942 100644
--- a/modelcenter/community/alvaroalon2/biobert_chemical_ner/info.yaml
+++ b/modelcenter/community/alvaroalon2/biobert_chemical_ner/info.yaml
@@ -1,23 +1,19 @@
+Datasets: ''
+Example: null
+IfOnlineDemo: 0
+IfTraining: 0
+Language: English
+License: apache-2.0
Model_Info:
- name: "alvaroalon2/biobert_chemical_ner"
- description: ""
- description_en: ""
- icon: ""
- from_repo: "https://huggingface.co/alvaroalon2/biobert_chemical_ner"
-
+ description: ''
+ description_en: ''
+ from_repo: https://huggingface.co/alvaroalon2/biobert_chemical_ner
+ icon: https://paddlenlp.bj.bcebos.com/models/community/transformer-layer.png
+ name: alvaroalon2/biobert_chemical_ner
+Paper: null
+Publisher: alvaroalon2
Task:
-- tag_en: "Natural Language Processing"
- tag: "自然语言处理"
- sub_tag_en: "Token Classification"
- sub_tag: "Token分类"
-
-Example:
-
-Datasets: ""
-Publisher: "alvaroalon2"
-License: "apache-2.0"
-Language: "English"
-Paper:
-
-IfTraining: 0
-IfOnlineDemo: 0
\ No newline at end of file
+- sub_tag: Token分类
+ sub_tag_en: Token Classification
+ tag: 自然语言处理
+ tag_en: Natural Language Processing
diff --git a/modelcenter/community/alvaroalon2/biobert_chemical_ner/introduction_cn.ipynb b/modelcenter/community/alvaroalon2/biobert_chemical_ner/introduction_cn.ipynb
new file mode 100644
index 0000000000000000000000000000000000000000..45be868eed071ad92d289dbbbbda0c05bc636fa7
--- /dev/null
+++ b/modelcenter/community/alvaroalon2/biobert_chemical_ner/introduction_cn.ipynb
@@ -0,0 +1,80 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "id": "0b8f2339",
+ "metadata": {},
+ "source": [
+ "## Overview\n",
+ "\n",
+ "BioBERT model fine-tuned in NER task with BC5CDR-chemicals and BC4CHEMD corpus.\n",
+ "\n",
+ "This was fine-tuned in order to use it in a BioNER/BioNEN system which is available at: https://github.com/librairy/bio-ner"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "934c3f34",
+ "metadata": {},
+ "source": [
+ "## How to Use"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "a8516341",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "!pip install --upgrade paddlenlp"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "70114f31",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import paddle\n",
+ "from paddlenlp.transformers import AutoModel\n",
+ "\n",
+ "model = AutoModel.from_pretrained(\"alvaroalon2/biobert_chemical_ner\")\n",
+ "input_ids = paddle.randint(100, 200, shape=[1, 20])\n",
+ "print(model(input_ids))"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "fb7b2eb8",
+ "metadata": {},
+ "source": [
+ "## Reference\n",
+ "\n",
+ "> 此模型介绍及权重来源于:[https://huggingface.co/alvaroalon2/biobert_chemical_ner](https://huggingface.co/alvaroalon2/biobert_chemical_ner),并转换为飞桨模型格式。"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3 (ipykernel)",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.7.13"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 5
+}
diff --git a/modelcenter/community/alvaroalon2/biobert_chemical_ner/introduction_en.ipynb b/modelcenter/community/alvaroalon2/biobert_chemical_ner/introduction_en.ipynb
new file mode 100644
index 0000000000000000000000000000000000000000..8563b24e26bd2e89f9fc7cb618c056f042795b99
--- /dev/null
+++ b/modelcenter/community/alvaroalon2/biobert_chemical_ner/introduction_en.ipynb
@@ -0,0 +1,80 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "id": "f769316b",
+ "metadata": {},
+ "source": [
+ "## Overview\n",
+ "\n",
+ "BioBERT model fine-tuned in NER task with BC5CDR-chemicals and BC4CHEMD corpus.\n",
+ "\n",
+ "This was fine-tuned in order to use it in a BioNER/BioNEN system which is available at: https://github.com/librairy/bio-ner"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "3a77ed26",
+ "metadata": {},
+ "source": [
+ "## How to Use"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "202a3ef9",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "!pip install --upgrade paddlenlp"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "fc11d032",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import paddle\n",
+ "from paddlenlp.transformers import AutoModel\n",
+ "\n",
+ "model = AutoModel.from_pretrained(\"alvaroalon2/biobert_chemical_ner\")\n",
+ "input_ids = paddle.randint(100, 200, shape=[1, 20])\n",
+ "print(model(input_ids))"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "762dee96",
+ "metadata": {},
+ "source": [
+ "## Reference\n",
+ "\n",
+ "> The model introduction and model weights originate from [https://huggingface.co/alvaroalon2/biobert_chemical_ner](https://huggingface.co/alvaroalon2/biobert_chemical_ner) and were converted to PaddlePaddle format for ease of use in PaddleNLP."
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3 (ipykernel)",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.7.13"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 5
+}
diff --git a/modelcenter/community/alvaroalon2/biobert_diseases_ner/info.yaml b/modelcenter/community/alvaroalon2/biobert_diseases_ner/info.yaml
index 7ad8dcfaccadde4827caf69d87f2d3c2f251718e..afdeef099a99b7d31b1093b36d7fa6b693dc4adb 100644
--- a/modelcenter/community/alvaroalon2/biobert_diseases_ner/info.yaml
+++ b/modelcenter/community/alvaroalon2/biobert_diseases_ner/info.yaml
@@ -1,23 +1,19 @@
+Datasets: ncbi_disease
+Example: null
+IfOnlineDemo: 0
+IfTraining: 0
+Language: English
+License: apache-2.0
Model_Info:
- name: "alvaroalon2/biobert_diseases_ner"
- description: ""
- description_en: ""
- icon: ""
- from_repo: "https://huggingface.co/alvaroalon2/biobert_diseases_ner"
-
+ description: ''
+ description_en: ''
+ from_repo: https://huggingface.co/alvaroalon2/biobert_diseases_ner
+ icon: https://paddlenlp.bj.bcebos.com/models/community/transformer-layer.png
+ name: alvaroalon2/biobert_diseases_ner
+Paper: null
+Publisher: alvaroalon2
Task:
-- tag_en: "Natural Language Processing"
- tag: "自然语言处理"
- sub_tag_en: "Token Classification"
- sub_tag: "Token分类"
-
-Example:
-
-Datasets: "ncbi_disease"
-Publisher: "alvaroalon2"
-License: "apache-2.0"
-Language: "English"
-Paper:
-
-IfTraining: 0
-IfOnlineDemo: 0
\ No newline at end of file
+- sub_tag: Token分类
+ sub_tag_en: Token Classification
+ tag: 自然语言处理
+ tag_en: Natural Language Processing
diff --git a/modelcenter/community/alvaroalon2/biobert_diseases_ner/introduction_cn.ipynb b/modelcenter/community/alvaroalon2/biobert_diseases_ner/introduction_cn.ipynb
new file mode 100644
index 0000000000000000000000000000000000000000..8889791c4fa54d33a6ec0540853151ac9a7019d5
--- /dev/null
+++ b/modelcenter/community/alvaroalon2/biobert_diseases_ner/introduction_cn.ipynb
@@ -0,0 +1,80 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "id": "578bdb21",
+ "metadata": {},
+ "source": [
+ "## Overview\n",
+ "\n",
+ "BioBERT model fine-tuned in NER task with BC5CDR-diseases and NCBI-diseases corpus\n",
+ "\n",
+ "This was fine-tuned in order to use it in a BioNER/BioNEN system which is available at: https://github.com/librairy/bio-ner"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "d18b8736",
+ "metadata": {},
+ "source": [
+ "## How to Use"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "9b304ea9",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "!pip install --upgrade paddlenlp"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "49b790e5",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import paddle\n",
+ "from paddlenlp.transformers import AutoModel\n",
+ "\n",
+ "model = AutoModel.from_pretrained(\"alvaroalon2/biobert_diseases_ner\")\n",
+ "input_ids = paddle.randint(100, 200, shape=[1, 20])\n",
+ "print(model(input_ids))"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "ab48464f",
+ "metadata": {},
+ "source": [
+ "## Reference\n",
+ "\n",
+ "> 此模型介绍及权重来源于[https://huggingface.co/alvaroalon2/biobert_diseases_ner](https://huggingface.co/alvaroalon2/biobert_diseases_ner),并转换为飞桨模型格式。"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3 (ipykernel)",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.7.13"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 5
+}
diff --git a/modelcenter/community/alvaroalon2/biobert_diseases_ner/introduction_en.ipynb b/modelcenter/community/alvaroalon2/biobert_diseases_ner/introduction_en.ipynb
new file mode 100644
index 0000000000000000000000000000000000000000..57467eb8b5be402d7ffe27c82496fb4b269948f8
--- /dev/null
+++ b/modelcenter/community/alvaroalon2/biobert_diseases_ner/introduction_en.ipynb
@@ -0,0 +1,80 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "id": "98591560",
+ "metadata": {},
+ "source": [
+ "## Overview\n",
+ "\n",
+ "BioBERT model fine-tuned in NER task with BC5CDR-diseases and NCBI-diseases corpus\n",
+ "\n",
+ "This was fine-tuned in order to use it in a BioNER/BioNEN system which is available at: https://github.com/librairy/bio-ner"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "da577da0",
+ "metadata": {},
+ "source": [
+ "## How to Use"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "0ee7d4df",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "!pip install --upgrade paddlenlp"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "c6dfd3c0",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import paddle\n",
+ "from paddlenlp.transformers import AutoModel\n",
+ "\n",
+ "model = AutoModel.from_pretrained(\"alvaroalon2/biobert_diseases_ner\")\n",
+ "input_ids = paddle.randint(100, 200, shape=[1, 20])\n",
+ "print(model(input_ids))"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "7a58f3ef",
+ "metadata": {},
+ "source": [
+ "## Reference\n",
+ "\n",
+ "> The model introduction and model weights originate from [https://huggingface.co/alvaroalon2/biobert_diseases_ner](https://huggingface.co/alvaroalon2/biobert_diseases_ner) and were converted to PaddlePaddle format for ease of use in PaddleNLP."
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3 (ipykernel)",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.7.13"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 5
+}
diff --git a/modelcenter/community/alvaroalon2/biobert_genetic_ner/info.yaml b/modelcenter/community/alvaroalon2/biobert_genetic_ner/info.yaml
index 21eda8a541babc4407a6fa4b51f8d43173acafdd..8f05713ccf04b769124e5a0fd8797497e09b808d 100644
--- a/modelcenter/community/alvaroalon2/biobert_genetic_ner/info.yaml
+++ b/modelcenter/community/alvaroalon2/biobert_genetic_ner/info.yaml
@@ -1,23 +1,19 @@
+Datasets: ''
+Example: null
+IfOnlineDemo: 0
+IfTraining: 0
+Language: English
+License: apache-2.0
Model_Info:
- name: "alvaroalon2/biobert_genetic_ner"
- description: ""
- description_en: ""
- icon: ""
- from_repo: "https://huggingface.co/alvaroalon2/biobert_genetic_ner"
-
+ description: ''
+ description_en: ''
+ from_repo: https://huggingface.co/alvaroalon2/biobert_genetic_ner
+ icon: https://paddlenlp.bj.bcebos.com/models/community/transformer-layer.png
+ name: alvaroalon2/biobert_genetic_ner
+Paper: null
+Publisher: alvaroalon2
Task:
-- tag_en: "Natural Language Processing"
- tag: "自然语言处理"
- sub_tag_en: "Token Classification"
- sub_tag: "Token分类"
-
-Example:
-
-Datasets: ""
-Publisher: "alvaroalon2"
-License: "apache-2.0"
-Language: "English"
-Paper:
-
-IfTraining: 0
-IfOnlineDemo: 0
\ No newline at end of file
+- sub_tag: Token分类
+ sub_tag_en: Token Classification
+ tag: 自然语言处理
+ tag_en: Natural Language Processing
diff --git a/modelcenter/community/alvaroalon2/biobert_genetic_ner/introduction_cn.ipynb b/modelcenter/community/alvaroalon2/biobert_genetic_ner/introduction_cn.ipynb
new file mode 100644
index 0000000000000000000000000000000000000000..2ffaebf129a962d840b6c47c3d005406af89146b
--- /dev/null
+++ b/modelcenter/community/alvaroalon2/biobert_genetic_ner/introduction_cn.ipynb
@@ -0,0 +1,80 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "id": "795618b9",
+ "metadata": {},
+ "source": [
+ "## Overview\n",
+ "\n",
+ "BioBERT model fine-tuned in NER task with JNLPBA and BC2GM corpus for genetic class entities.\n",
+ "\n",
+ "This was fine-tuned in order to use it in a BioNER/BioNEN system which is available at: https://github.com/librairy/bio-ner"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "bf1bde1a",
+ "metadata": {},
+ "source": [
+ "## How to Use"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "90bf4208",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "!pip install --upgrade paddlenlp"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "c3f9ddc9",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import paddle\n",
+ "from paddlenlp.transformers import AutoModel\n",
+ "\n",
+ "model = AutoModel.from_pretrained(\"alvaroalon2/biobert_genetic_ner\")\n",
+ "input_ids = paddle.randint(100, 200, shape=[1, 20])\n",
+ "print(model(input_ids))"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "45bef570",
+ "metadata": {},
+ "source": [
+ "## Reference\n",
+ "\n",
+ "> 此模型介绍及权重来源于[https://huggingface.co/alvaroalon2/biobert_genetic_ner](https://huggingface.co/alvaroalon2/biobert_genetic_ner),并转换为飞桨模型格式。"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3 (ipykernel)",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.7.13"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 5
+}
diff --git a/modelcenter/community/alvaroalon2/biobert_genetic_ner/introduction_en.ipynb b/modelcenter/community/alvaroalon2/biobert_genetic_ner/introduction_en.ipynb
new file mode 100644
index 0000000000000000000000000000000000000000..9a2380a53449b6a4918cea189f5d1f9a7b257935
--- /dev/null
+++ b/modelcenter/community/alvaroalon2/biobert_genetic_ner/introduction_en.ipynb
@@ -0,0 +1,80 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "id": "eeb5731b",
+ "metadata": {},
+ "source": [
+ "## Overview\n",
+ "\n",
+ "BioBERT model fine-tuned in NER task with JNLPBA and BC2GM corpus for genetic class entities.\n",
+ "\n",
+ "This was fine-tuned in order to use it in a BioNER/BioNEN system which is available at: https://github.com/librairy/bio-ner"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "3501c0f5",
+ "metadata": {},
+ "source": [
+ "## How to Use"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "da1caa55",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "!pip install --upgrade paddlenlp"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "a8a173da",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import paddle\n",
+ "from paddlenlp.transformers import AutoModel\n",
+ "\n",
+ "model = AutoModel.from_pretrained(\"alvaroalon2/biobert_genetic_ner\")\n",
+ "input_ids = paddle.randint(100, 200, shape=[1, 20])\n",
+ "print(model(input_ids))"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "0c74ebfe",
+ "metadata": {},
+ "source": [
+ "## Reference\n",
+ "\n",
+ "> The model introduction and model weights originate from [https://huggingface.co/alvaroalon2/biobert_genetic_ner](https://huggingface.co/alvaroalon2/biobert_genetic_ner) and were converted to PaddlePaddle format for ease of use in PaddleNLP."
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3 (ipykernel)",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.7.13"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 5
+}
diff --git a/modelcenter/community/amberoad/bert-multilingual-passage-reranking-msmarco/info.yaml b/modelcenter/community/amberoad/bert-multilingual-passage-reranking-msmarco/info.yaml
index a39179da2bdd444205aa57b104eed487f512836c..e3f575c6f727eed60fad8b2b120b8b97ab38b31c 100644
--- a/modelcenter/community/amberoad/bert-multilingual-passage-reranking-msmarco/info.yaml
+++ b/modelcenter/community/amberoad/bert-multilingual-passage-reranking-msmarco/info.yaml
@@ -1,24 +1,21 @@
+Datasets: ''
+Example: null
+IfOnlineDemo: 0
+IfTraining: 0
+Language: ''
+License: apache-2.0
Model_Info:
- name: "amberoad/bert-multilingual-passage-reranking-msmarco"
- description: "Passage Reranking Multilingual BERT 🔃 🌍"
- description_en: "Passage Reranking Multilingual BERT 🔃 🌍"
- icon: ""
- from_repo: "https://huggingface.co/amberoad/bert-multilingual-passage-reranking-msmarco"
-
-Task:
-- tag_en: "Natural Language Processing"
- tag: "自然语言处理"
- sub_tag_en: "Text Classification"
- sub_tag: "文本分类"
-
-Example:
-
-Datasets: ""
-Publisher: "amberoad"
-License: "apache-2.0"
-Language: ""
+ description: Passage Reranking Multilingual BERT 🔃 🌍
+ description_en: Passage Reranking Multilingual BERT 🔃 🌍
+ from_repo: https://huggingface.co/amberoad/bert-multilingual-passage-reranking-msmarco
+ icon: https://paddlenlp.bj.bcebos.com/models/community/transformer-layer.png
+ name: amberoad/bert-multilingual-passage-reranking-msmarco
Paper:
- - title: 'Passage Re-ranking with BERT'
- url: 'http://arxiv.org/abs/1901.04085v5'
-IfTraining: 0
-IfOnlineDemo: 0
\ No newline at end of file
+- title: Passage Re-ranking with BERT
+ url: http://arxiv.org/abs/1901.04085v5
+Publisher: amberoad
+Task:
+- sub_tag: 文本分类
+ sub_tag_en: Text Classification
+ tag: 自然语言处理
+ tag_en: Natural Language Processing
diff --git a/modelcenter/community/amberoad/bert-multilingual-passage-reranking-msmarco/introduction_cn.ipynb b/modelcenter/community/amberoad/bert-multilingual-passage-reranking-msmarco/introduction_cn.ipynb
new file mode 100644
index 0000000000000000000000000000000000000000..89bcaabc66fae1d3b5308a49f76bc350dbfb5b3d
--- /dev/null
+++ b/modelcenter/community/amberoad/bert-multilingual-passage-reranking-msmarco/introduction_cn.ipynb
@@ -0,0 +1,134 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "id": "83244d63",
+ "metadata": {},
+ "source": [
+ "# Passage Reranking Multilingual BERT 🔃 🌍\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "4c8c922a",
+ "metadata": {},
+ "source": [
+ "## Model description\n",
+ "**Input:** Supports over 100 Languages. See [List of supported languages](https://github.com/google-research/bert/blob/master/multilingual.md#list-of-languages) for all available.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "8b40d5de",
+ "metadata": {},
+ "source": [
+ "**Purpose:** This module takes a search query [1] and a passage [2] and calculates if the passage matches the query.\n",
+ "It can be used as an improvement for Elasticsearch Results and boosts the relevancy by up to 100%.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "c9d89366",
+ "metadata": {},
+ "source": [
+ "**Architecture:** On top of BERT there is a Densly Connected NN which takes the 768 Dimensional [CLS] Token as input and provides the output ([Arxiv](https://arxiv.org/abs/1901.04085)).\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "29745195",
+ "metadata": {},
+ "source": [
+ "**Output:** Just a single value between between -10 and 10. Better matching query,passage pairs tend to have a higher a score.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "010a4d92",
+ "metadata": {},
+ "source": [
+ "## Intended uses & limitations\n",
+ "Both query[1] and passage[2] have to fit in 512 Tokens.\n",
+ "As you normally want to rerank the first dozens of search results keep in mind the inference time of approximately 300 ms/query.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "a9f2dea7",
+ "metadata": {},
+ "source": [
+ "## How to use\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "8d023555",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "!pip install --upgrade paddlenlp"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "4c83eef3",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import paddle\n",
+ "from paddlenlp.transformers import AutoModel\n",
+ "\n",
+ "model = AutoModel.from_pretrained(\"amberoad/bert-multilingual-passage-reranking-msmarco\")\n",
+ "input_ids = paddle.randint(100, 200, shape=[1, 20])\n",
+ "print(model(input_ids))"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "2611b122",
+ "metadata": {},
+ "source": [
+ "## Training data\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "ba62fbe0",
+ "metadata": {},
+ "source": [
+ "This model is trained using the [**Microsoft MS Marco Dataset**](https://microsoft.github.io/msmarco/ \"Microsoft MS Marco\"). This training dataset contains approximately 400M tuples of a query, relevant and non-relevant passages. All datasets used for training and evaluating are listed in this [table](https://github.com/microsoft/MSMARCO-Passage-Ranking#data-information-and-formating). The used dataset for training is called *Train Triples Large*, while the evaluation was made on *Top 1000 Dev*. There are 6,900 queries in total in the development dataset, where each query is mapped to top 1,000 passage retrieved using BM25 from MS MARCO corpus.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "afc188f2",
+ "metadata": {},
+ "source": [
+ "> 此模型介绍及权重来源于[https://huggingface.co/amberoad/bert-multilingual-passage-reranking-msmarco](https://huggingface.co/amberoad/bert-multilingual-passage-reranking-msmarco),并转换为飞桨模型格式。\n"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3 (ipykernel)",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.7.13"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 5
+}
diff --git a/modelcenter/community/amberoad/bert-multilingual-passage-reranking-msmarco/introduction_en.ipynb b/modelcenter/community/amberoad/bert-multilingual-passage-reranking-msmarco/introduction_en.ipynb
new file mode 100644
index 0000000000000000000000000000000000000000..1ed4de6cc2e064c836ec076f802892f03ca5be7f
--- /dev/null
+++ b/modelcenter/community/amberoad/bert-multilingual-passage-reranking-msmarco/introduction_en.ipynb
@@ -0,0 +1,134 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "id": "22c47298",
+ "metadata": {},
+ "source": [
+ "# Passage Reranking Multilingual BERT 🔃 🌍\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "0bb73e0f",
+ "metadata": {},
+ "source": [
+ "## Model description\n",
+ "**Input:** Supports over 100 Languages. See [List of supported languages](https://github.com/google-research/bert/blob/master/multilingual.md#list-of-languages) for all available.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "fedf5cb8",
+ "metadata": {},
+ "source": [
+ "**Purpose:** This module takes a search query [1] and a passage [2] and calculates if the passage matches the query.\n",
+ "It can be used as an improvement for Elasticsearch Results and boosts the relevancy by up to 100%.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "146e3be4",
+ "metadata": {},
+ "source": [
+ "**Architecture:** On top of BERT there is a Densly Connected NN which takes the 768 Dimensional [CLS] Token as input and provides the output ([Arxiv](https://arxiv.org/abs/1901.04085)).\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "772c5c82",
+ "metadata": {},
+ "source": [
+ "**Output:** Just a single value between between -10 and 10. Better matching query,passage pairs tend to have a higher a score.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "e5974e46",
+ "metadata": {},
+ "source": [
+ "## Intended uses & limitations\n",
+ "Both query[1] and passage[2] have to fit in 512 Tokens.\n",
+ "As you normally want to rerank the first dozens of search results keep in mind the inference time of approximately 300 ms/query.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "7d878609",
+ "metadata": {},
+ "source": [
+ "## How to use\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "e0941f1f",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "!pip install --upgrade paddlenlp"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "3bc201bf",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import paddle\n",
+ "from paddlenlp.transformers import AutoModel\n",
+ "\n",
+ "model = AutoModel.from_pretrained(\"amberoad/bert-multilingual-passage-reranking-msmarco\")\n",
+ "input_ids = paddle.randint(100, 200, shape=[1, 20])\n",
+ "print(model(input_ids))"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "674ccc3a",
+ "metadata": {},
+ "source": [
+ "## Training data\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "4404adda",
+ "metadata": {},
+ "source": [
+ "This model is trained using the [**Microsoft MS Marco Dataset**](https://microsoft.github.io/msmarco/ \"Microsoft MS Marco\"). This training dataset contains approximately 400M tuples of a query, relevant and non-relevant passages. All datasets used for training and evaluating are listed in this [table](https://github.com/microsoft/MSMARCO-Passage-Ranking#data-information-and-formating). The used dataset for training is called *Train Triples Large*, while the evaluation was made on *Top 1000 Dev*. There are 6,900 queries in total in the development dataset, where each query is mapped to top 1,000 passage retrieved using BM25 from MS MARCO corpus.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "79af5e42",
+ "metadata": {},
+ "source": [
+ "> The model introduction and model weights originate from [https://huggingface.co/amberoad/bert-multilingual-passage-reranking-msmarco](https://huggingface.co/amberoad/bert-multilingual-passage-reranking-msmarco) and were converted to PaddlePaddle format for ease of use in PaddleNLP.\n"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3 (ipykernel)",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.7.13"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 5
+}
diff --git a/modelcenter/community/asi/gpt-fr-cased-base/download_cn.md b/modelcenter/community/asi/gpt-fr-cased-base/download_cn.md
deleted file mode 100644
index 9d84603a41c82d5e6d8d7f2311abf791b34190fb..0000000000000000000000000000000000000000
--- a/modelcenter/community/asi/gpt-fr-cased-base/download_cn.md
+++ /dev/null
@@ -1,23 +0,0 @@
-# 模型列表
-
-## asi/gpt-fr-cased-base
-
-| 模型名称 | 模型介绍 | 模型大小 | 模型下载 |
-| --- | --- | --- | --- |
-|asi/gpt-fr-cased-base| | 4.12G | [merges.txt](https://bj.bcebos.com/paddlenlp/models/community/asi/gpt-fr-cased-base/merges.txt)
[model_config.json](https://bj.bcebos.com/paddlenlp/models/community/asi/gpt-fr-cased-base/model_config.json)
[model_state.pdparams](https://bj.bcebos.com/paddlenlp/models/community/asi/gpt-fr-cased-base/model_state.pdparams)
[tokenizer_config.json](https://bj.bcebos.com/paddlenlp/models/community/asi/gpt-fr-cased-base/tokenizer_config.json)
[vocab.json](https://bj.bcebos.com/paddlenlp/models/community/asi/gpt-fr-cased-base/vocab.json) |
-
-也可以通过`paddlenlp` cli 工具来下载对应的模型权重,使用步骤如下所示:
-
-* 安装paddlenlp
-
-```shell
-pip install --upgrade paddlenlp
-```
-
-* 下载命令行
-
-```shell
-paddlenlp download --cache-dir ./pretrained_models asi/gpt-fr-cased-base
-```
-
-有任何下载的问题都可以到[PaddleNLP](https://github.com/PaddlePaddle/PaddleNLP)中发Issue提问。
\ No newline at end of file
diff --git a/modelcenter/community/asi/gpt-fr-cased-base/download_en.md b/modelcenter/community/asi/gpt-fr-cased-base/download_en.md
deleted file mode 100644
index ef91aa99d6b45695d3b53c36d9ea6356ce7803f0..0000000000000000000000000000000000000000
--- a/modelcenter/community/asi/gpt-fr-cased-base/download_en.md
+++ /dev/null
@@ -1,23 +0,0 @@
-# model list
-
-##
-
-| model | description | model_size | download |
-| --- | --- | --- | --- |
-|asi/gpt-fr-cased-base| | 4.12G | [merges.txt](https://bj.bcebos.com/paddlenlp/models/community/asi/gpt-fr-cased-base/merges.txt)
[model_config.json](https://bj.bcebos.com/paddlenlp/models/community/asi/gpt-fr-cased-base/model_config.json)
[model_state.pdparams](https://bj.bcebos.com/paddlenlp/models/community/asi/gpt-fr-cased-base/model_state.pdparams)
[tokenizer_config.json](https://bj.bcebos.com/paddlenlp/models/community/asi/gpt-fr-cased-base/tokenizer_config.json)
[vocab.json](https://bj.bcebos.com/paddlenlp/models/community/asi/gpt-fr-cased-base/vocab.json) |
-
-or you can download all of model file with the following steps:
-
-* install paddlenlp
-
-```shell
-pip install --upgrade paddlenlp
-```
-
-* download model with cli tool
-
-```shell
-paddlenlp download --cache-dir ./pretrained_models asi/gpt-fr-cased-base
-```
-
-If you have any problems with it, you can post issue on [PaddleNLP](https://github.com/PaddlePaddle/PaddleNLP) to get support.
diff --git a/modelcenter/community/asi/gpt-fr-cased-base/info.yaml b/modelcenter/community/asi/gpt-fr-cased-base/info.yaml
deleted file mode 100644
index 4ea7fef9fae559cb4bb5a6333d4d39fc445d4f95..0000000000000000000000000000000000000000
--- a/modelcenter/community/asi/gpt-fr-cased-base/info.yaml
+++ /dev/null
@@ -1,23 +0,0 @@
-Model_Info:
- name: "asi/gpt-fr-cased-base"
- description: "Model description"
- description_en: "Model description"
- icon: ""
- from_repo: "https://huggingface.co/asi/gpt-fr-cased-base"
-
-Task:
-- tag_en: "Natural Language Processing"
- tag: "自然语言处理"
- sub_tag_en: "Text Generation"
- sub_tag: "文本生成"
-
-Example:
-
-Datasets: ""
-Publisher: "asi"
-License: "apache-2.0"
-Language: "French"
-Paper:
-
-IfTraining: 0
-IfOnlineDemo: 0
\ No newline at end of file
diff --git a/modelcenter/community/asi/gpt-fr-cased-small/download_cn.md b/modelcenter/community/asi/gpt-fr-cased-small/download_cn.md
deleted file mode 100644
index 2612b89c4fd2722663f49e946c8e3114db240fd9..0000000000000000000000000000000000000000
--- a/modelcenter/community/asi/gpt-fr-cased-small/download_cn.md
+++ /dev/null
@@ -1,23 +0,0 @@
-# 模型列表
-
-## asi/gpt-fr-cased-small
-
-| 模型名称 | 模型介绍 | 模型大小 | 模型下载 |
-| --- | --- | --- | --- |
-|asi/gpt-fr-cased-small| | 620.45MB | [merges.txt](https://bj.bcebos.com/paddlenlp/models/community/asi/gpt-fr-cased-small/merges.txt)
[model_config.json](https://bj.bcebos.com/paddlenlp/models/community/asi/gpt-fr-cased-small/model_config.json)
[model_state.pdparams](https://bj.bcebos.com/paddlenlp/models/community/asi/gpt-fr-cased-small/model_state.pdparams)
[tokenizer_config.json](https://bj.bcebos.com/paddlenlp/models/community/asi/gpt-fr-cased-small/tokenizer_config.json)
[vocab.json](https://bj.bcebos.com/paddlenlp/models/community/asi/gpt-fr-cased-small/vocab.json) |
-
-也可以通过`paddlenlp` cli 工具来下载对应的模型权重,使用步骤如下所示:
-
-* 安装paddlenlp
-
-```shell
-pip install --upgrade paddlenlp
-```
-
-* 下载命令行
-
-```shell
-paddlenlp download --cache-dir ./pretrained_models asi/gpt-fr-cased-small
-```
-
-有任何下载的问题都可以到[PaddleNLP](https://github.com/PaddlePaddle/PaddleNLP)中发Issue提问。
\ No newline at end of file
diff --git a/modelcenter/community/asi/gpt-fr-cased-small/download_en.md b/modelcenter/community/asi/gpt-fr-cased-small/download_en.md
deleted file mode 100644
index 90fc068c2fa8a27dee691e2d2523e183ae8e0201..0000000000000000000000000000000000000000
--- a/modelcenter/community/asi/gpt-fr-cased-small/download_en.md
+++ /dev/null
@@ -1,23 +0,0 @@
-# model list
-
-##
-
-| model | description | model_size | download |
-| --- | --- | --- | --- |
-|asi/gpt-fr-cased-small| | 620.45MB | [merges.txt](https://bj.bcebos.com/paddlenlp/models/community/asi/gpt-fr-cased-small/merges.txt)
[model_config.json](https://bj.bcebos.com/paddlenlp/models/community/asi/gpt-fr-cased-small/model_config.json)
[model_state.pdparams](https://bj.bcebos.com/paddlenlp/models/community/asi/gpt-fr-cased-small/model_state.pdparams)
[tokenizer_config.json](https://bj.bcebos.com/paddlenlp/models/community/asi/gpt-fr-cased-small/tokenizer_config.json)
[vocab.json](https://bj.bcebos.com/paddlenlp/models/community/asi/gpt-fr-cased-small/vocab.json) |
-
-or you can download all of model file with the following steps:
-
-* install paddlenlp
-
-```shell
-pip install --upgrade paddlenlp
-```
-
-* download model with cli tool
-
-```shell
-paddlenlp download --cache-dir ./pretrained_models asi/gpt-fr-cased-small
-```
-
-If you have any problems with it, you can post issue on [PaddleNLP](https://github.com/PaddlePaddle/PaddleNLP) to get support.
diff --git a/modelcenter/community/asi/gpt-fr-cased-small/info.yaml b/modelcenter/community/asi/gpt-fr-cased-small/info.yaml
deleted file mode 100644
index a973da78de262e77d22704757ceb7b864f32a180..0000000000000000000000000000000000000000
--- a/modelcenter/community/asi/gpt-fr-cased-small/info.yaml
+++ /dev/null
@@ -1,23 +0,0 @@
-Model_Info:
- name: "asi/gpt-fr-cased-small"
- description: "Model description"
- description_en: "Model description"
- icon: ""
- from_repo: "https://huggingface.co/asi/gpt-fr-cased-small"
-
-Task:
-- tag_en: "Natural Language Processing"
- tag: "自然语言处理"
- sub_tag_en: "Text Generation"
- sub_tag: "文本生成"
-
-Example:
-
-Datasets: ""
-Publisher: "asi"
-License: "apache-2.0"
-Language: "French"
-Paper:
-
-IfTraining: 0
-IfOnlineDemo: 0
\ No newline at end of file
diff --git a/modelcenter/community/benjamin/gerpt2-large/info.yaml b/modelcenter/community/benjamin/gerpt2-large/info.yaml
index 9a55dab1418829cd8193fd2ae8dd742cb1e09857..08e299f7789d6176b8fb26fcf21a9a6088067f78 100644
--- a/modelcenter/community/benjamin/gerpt2-large/info.yaml
+++ b/modelcenter/community/benjamin/gerpt2-large/info.yaml
@@ -1,23 +1,19 @@
+Datasets: ''
+Example: null
+IfOnlineDemo: 0
+IfTraining: 0
+Language: German
+License: mit
Model_Info:
- name: "benjamin/gerpt2-large"
- description: "GerPT2"
- description_en: "GerPT2"
- icon: ""
- from_repo: "https://huggingface.co/benjamin/gerpt2-large"
-
+ description: GerPT2
+ description_en: GerPT2
+ from_repo: https://huggingface.co/benjamin/gerpt2-large
+ icon: https://paddlenlp.bj.bcebos.com/models/community/transformer-layer.png
+ name: benjamin/gerpt2-large
+Paper: null
+Publisher: benjamin
Task:
-- tag_en: "Natural Language Processing"
- tag: "自然语言处理"
- sub_tag_en: "Text Generation"
- sub_tag: "文本生成"
-
-Example:
-
-Datasets: ""
-Publisher: "benjamin"
-License: "mit"
-Language: "German"
-Paper:
-
-IfTraining: 0
-IfOnlineDemo: 0
\ No newline at end of file
+- sub_tag: 文本生成
+ sub_tag_en: Text Generation
+ tag: 自然语言处理
+ tag_en: Natural Language Processing
diff --git a/modelcenter/community/benjamin/gerpt2-large/introduction_cn.ipynb b/modelcenter/community/benjamin/gerpt2-large/introduction_cn.ipynb
new file mode 100644
index 0000000000000000000000000000000000000000..8708c5505f41990adca3751af8a909a2d3569152
--- /dev/null
+++ b/modelcenter/community/benjamin/gerpt2-large/introduction_cn.ipynb
@@ -0,0 +1,147 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "id": "e42aa4df",
+ "metadata": {},
+ "source": [
+ "# GerPT2\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "08fd6403",
+ "metadata": {},
+ "source": [
+ "See the GPT2 model card for considerations on limitations and bias. See the GPT2 documentation for details on GPT2.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "8295e28d",
+ "metadata": {},
+ "source": [
+ "## Comparison to dbmdz/german-gpt2\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "c0f50f67",
+ "metadata": {},
+ "source": [
+ "I evaluated both GerPT2-large and the other German GPT2, dbmdz/german-gpt2 on the [CC-100](http://data.statmt.org/cc-100/) dataset and on the German Wikipedia:\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "6ecdc149",
+ "metadata": {},
+ "source": [
+ "| | CC-100 (PPL) | Wikipedia (PPL) |\n",
+ "|-------------------|--------------|-----------------|\n",
+ "| dbmdz/german-gpt2 | 49.47 | 62.92 |\n",
+ "| GerPT2 | 24.78 | 35.33 |\n",
+ "| GerPT2-large | __16.08__ | __23.26__ |\n",
+ "| | | |\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "3cddd6a8",
+ "metadata": {},
+ "source": [
+ "See the script `evaluate.py` in the [GerPT2 Github repository](https://github.com/bminixhofer/gerpt2) for the code.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "d838da15",
+ "metadata": {},
+ "source": [
+ "## Usage\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "476bf523",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "!pip install --upgrade paddlenlp"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "8f509fec",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import paddle\n",
+ "from paddlenlp.transformers import AutoModel\n",
+ "\n",
+ "model = AutoModel.from_pretrained(\"benjamin/gerpt2-large\")\n",
+ "input_ids = paddle.randint(100, 200, shape=[1, 20])\n",
+ "print(model(input_ids))"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "d135a538",
+ "metadata": {},
+ "source": [
+ "```\n",
+ "@misc{Minixhofer_GerPT2_German_large_2020,\n",
+ "author = {Minixhofer, Benjamin},\n",
+ "doi = {10.5281/zenodo.5509984},\n",
+ "month = {12},\n",
+ "title = {{GerPT2: German large and small versions of GPT2}},\n",
+ "url = {https://github.com/bminixhofer/gerpt2},\n",
+ "year = {2020}\n",
+ "}\n",
+ "```"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "63e09ad7",
+ "metadata": {},
+ "source": [
+ "## Acknowledgements\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "d9dc51e1",
+ "metadata": {},
+ "source": [
+ "Thanks to [Hugging Face](https://huggingface.co) for awesome tools and infrastructure.\n",
+ "Huge thanks to [Artus Krohn-Grimberghe](https://twitter.com/artuskg) at [LYTiQ](https://www.lytiq.de/) for making this possible by sponsoring the resources used for training.\n",
+ "\n",
+ "> 此模型介绍及权重来源于[https://huggingface.co/benjamin/gerpt2-large](https://huggingface.co/benjamin/gerpt2-large),并转换为飞桨模型格式。\n"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3 (ipykernel)",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.7.13"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 5
+}
diff --git a/modelcenter/community/benjamin/gerpt2-large/introduction_en.ipynb b/modelcenter/community/benjamin/gerpt2-large/introduction_en.ipynb
new file mode 100644
index 0000000000000000000000000000000000000000..ace582d90183c66efc268dc286c0865d4e7d34c7
--- /dev/null
+++ b/modelcenter/community/benjamin/gerpt2-large/introduction_en.ipynb
@@ -0,0 +1,147 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "id": "85c2e1a7",
+ "metadata": {},
+ "source": [
+ "# GerPT2\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "595fe7cb",
+ "metadata": {},
+ "source": [
+ "See the GPT2 model card for considerations on limitations and bias. See the GPT2 documentation for details on GPT2.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "5b4f950b",
+ "metadata": {},
+ "source": [
+ "## Comparison to dbmdz/german-gpt2\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "95be6eb8",
+ "metadata": {},
+ "source": [
+ "I evaluated both GerPT2-large and the other German GPT2, dbmdz/german-gpt2 on the [CC-100](http://data.statmt.org/cc-100/) dataset and on the German Wikipedia:\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "8acd14be",
+ "metadata": {},
+ "source": [
+ "| | CC-100 (PPL) | Wikipedia (PPL) |\n",
+ "|-------------------|--------------|-----------------|\n",
+ "| dbmdz/german-gpt2 | 49.47 | 62.92 |\n",
+ "| GerPT2 | 24.78 | 35.33 |\n",
+ "| GerPT2-large | __16.08__ | __23.26__ |\n",
+ "| | | |\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "6fa10d79",
+ "metadata": {},
+ "source": [
+ "See the script `evaluate.py` in the [GerPT2 Github repository](https://github.com/bminixhofer/gerpt2) for the code.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "a8514e1e",
+ "metadata": {},
+ "source": [
+ "## Usage\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "4bc62c63",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "!pip install --upgrade paddlenlp"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "63f78302",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import paddle\n",
+ "from paddlenlp.transformers import AutoModel\n",
+ "\n",
+ "model = AutoModel.from_pretrained(\"benjamin/gerpt2-large\")\n",
+ "input_ids = paddle.randint(100, 200, shape=[1, 20])\n",
+ "print(model(input_ids))"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "563152f3",
+ "metadata": {},
+ "source": [
+ "```\n",
+ "@misc{Minixhofer_GerPT2_German_large_2020,\n",
+ "author = {Minixhofer, Benjamin},\n",
+ "doi = {10.5281/zenodo.5509984},\n",
+ "month = {12},\n",
+ "title = {{GerPT2: German large and small versions of GPT2}},\n",
+ "url = {https://github.com/bminixhofer/gerpt2},\n",
+ "year = {2020}\n",
+ "}\n",
+ "```"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "b0d67d21",
+ "metadata": {},
+ "source": [
+ "## Acknowledgements\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "474c1c61",
+ "metadata": {},
+ "source": [
+ "Thanks to [Hugging Face](https://huggingface.co) for awesome tools and infrastructure.\n",
+ "Huge thanks to [Artus Krohn-Grimberghe](https://twitter.com/artuskg) at [LYTiQ](https://www.lytiq.de/) for making this possible by sponsoring the resources used for training.\n",
+ "\n",
+ "> The model introduction and model weights originate from [https://huggingface.co/benjamin/gerpt2-large](https://huggingface.co/benjamin/gerpt2-large) and were converted to PaddlePaddle format for ease of use in PaddleNLP.\n"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3 (ipykernel)",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.7.13"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 5
+}
diff --git a/modelcenter/community/benjamin/gerpt2/download_cn.md b/modelcenter/community/benjamin/gerpt2/download_cn.md
deleted file mode 100644
index bf32fc75643592b38db361514687daf7f38ebd0c..0000000000000000000000000000000000000000
--- a/modelcenter/community/benjamin/gerpt2/download_cn.md
+++ /dev/null
@@ -1,23 +0,0 @@
-# 模型列表
-
-## benjamin/gerpt2
-
-| 模型名称 | 模型介绍 | 模型大小 | 模型下载 |
-| --- | --- | --- | --- |
-|benjamin/gerpt2| | 621.95MB | [merges.txt](https://bj.bcebos.com/paddlenlp/models/community/benjamin/gerpt2/merges.txt)
[model_config.json](https://bj.bcebos.com/paddlenlp/models/community/benjamin/gerpt2/model_config.json)
[model_state.pdparams](https://bj.bcebos.com/paddlenlp/models/community/benjamin/gerpt2/model_state.pdparams)
[tokenizer_config.json](https://bj.bcebos.com/paddlenlp/models/community/benjamin/gerpt2/tokenizer_config.json)
[vocab.json](https://bj.bcebos.com/paddlenlp/models/community/benjamin/gerpt2/vocab.json) |
-
-也可以通过`paddlenlp` cli 工具来下载对应的模型权重,使用步骤如下所示:
-
-* 安装paddlenlp
-
-```shell
-pip install --upgrade paddlenlp
-```
-
-* 下载命令行
-
-```shell
-paddlenlp download --cache-dir ./pretrained_models benjamin/gerpt2
-```
-
-有任何下载的问题都可以到[PaddleNLP](https://github.com/PaddlePaddle/PaddleNLP)中发Issue提问。
\ No newline at end of file
diff --git a/modelcenter/community/benjamin/gerpt2/download_en.md b/modelcenter/community/benjamin/gerpt2/download_en.md
deleted file mode 100644
index 8612e1bd3b50d2db10ac5f30c9bb82c756db654e..0000000000000000000000000000000000000000
--- a/modelcenter/community/benjamin/gerpt2/download_en.md
+++ /dev/null
@@ -1,23 +0,0 @@
-# model list
-
-##
-
-| model | description | model_size | download |
-| --- | --- | --- | --- |
-|benjamin/gerpt2| | 621.95MB | [merges.txt](https://bj.bcebos.com/paddlenlp/models/community/benjamin/gerpt2/merges.txt)
[model_config.json](https://bj.bcebos.com/paddlenlp/models/community/benjamin/gerpt2/model_config.json)
[model_state.pdparams](https://bj.bcebos.com/paddlenlp/models/community/benjamin/gerpt2/model_state.pdparams)
[tokenizer_config.json](https://bj.bcebos.com/paddlenlp/models/community/benjamin/gerpt2/tokenizer_config.json)
[vocab.json](https://bj.bcebos.com/paddlenlp/models/community/benjamin/gerpt2/vocab.json) |
-
-or you can download all of model file with the following steps:
-
-* install paddlenlp
-
-```shell
-pip install --upgrade paddlenlp
-```
-
-* download model with cli tool
-
-```shell
-paddlenlp download --cache-dir ./pretrained_models benjamin/gerpt2
-```
-
-If you have any problems with it, you can post issue on [PaddleNLP](https://github.com/PaddlePaddle/PaddleNLP) to get support.
diff --git a/modelcenter/community/benjamin/gerpt2/info.yaml b/modelcenter/community/benjamin/gerpt2/info.yaml
deleted file mode 100644
index 184514de8b89f4b64d57d09cc86aef1e88cc7dc9..0000000000000000000000000000000000000000
--- a/modelcenter/community/benjamin/gerpt2/info.yaml
+++ /dev/null
@@ -1,23 +0,0 @@
-Model_Info:
- name: "benjamin/gerpt2"
- description: "GerPT2"
- description_en: "GerPT2"
- icon: ""
- from_repo: "https://huggingface.co/benjamin/gerpt2"
-
-Task:
-- tag_en: "Natural Language Processing"
- tag: "自然语言处理"
- sub_tag_en: "Text Generation"
- sub_tag: "文本生成"
-
-Example:
-
-Datasets: ""
-Publisher: "benjamin"
-License: "mit"
-Language: "German"
-Paper:
-
-IfTraining: 0
-IfOnlineDemo: 0
\ No newline at end of file
diff --git a/modelcenter/community/beomi/kcbert-base/info.yaml b/modelcenter/community/beomi/kcbert-base/info.yaml
index ca0df343f8e30fde8d5255165730917c891b42ee..4eab796867458954a75e0eec15744ef554e9e4d2 100644
--- a/modelcenter/community/beomi/kcbert-base/info.yaml
+++ b/modelcenter/community/beomi/kcbert-base/info.yaml
@@ -1,24 +1,21 @@
+Datasets: ''
+Example: null
+IfOnlineDemo: 0
+IfTraining: 0
+Language: Korean
+License: apache-2.0
Model_Info:
- name: "beomi/kcbert-base"
- description: "KcBERT: Korean comments BERT"
- description_en: "KcBERT: Korean comments BERT"
- icon: ""
- from_repo: "https://huggingface.co/beomi/kcbert-base"
-
-Task:
-- tag_en: "Natural Language Processing"
- tag: "自然语言处理"
- sub_tag_en: "Fill-Mask"
- sub_tag: "槽位填充"
-
-Example:
-
-Datasets: ""
-Publisher: "beomi"
-License: "apache-2.0"
-Language: "Korean"
+ description: 'KcBERT: Korean comments BERT'
+ description_en: 'KcBERT: Korean comments BERT'
+ from_repo: https://huggingface.co/beomi/kcbert-base
+ icon: https://paddlenlp.bj.bcebos.com/models/community/transformer-layer.png
+ name: beomi/kcbert-base
Paper:
- - title: 'BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding'
- url: 'http://arxiv.org/abs/1810.04805v2'
-IfTraining: 0
-IfOnlineDemo: 0
\ No newline at end of file
+- title: 'BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding'
+ url: http://arxiv.org/abs/1810.04805v2
+Publisher: beomi
+Task:
+- sub_tag: 槽位填充
+ sub_tag_en: Fill-Mask
+ tag: 自然语言处理
+ tag_en: Natural Language Processing
diff --git a/modelcenter/community/beomi/kcbert-base/introduction_cn.ipynb b/modelcenter/community/beomi/kcbert-base/introduction_cn.ipynb
new file mode 100644
index 0000000000000000000000000000000000000000..7b84df160ec69325d72ddc4abad2348ca8fa95ca
--- /dev/null
+++ b/modelcenter/community/beomi/kcbert-base/introduction_cn.ipynb
@@ -0,0 +1,278 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "id": "8a51a2c8",
+ "metadata": {},
+ "source": [
+ "# KcBERT: Korean comments BERT\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "29c7e5a4",
+ "metadata": {},
+ "source": [
+ "Kaggle에 학습을 위해 정제한(아래 `clean`처리를 거친) Dataset을 공개하였습니다!\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "95a25c77",
+ "metadata": {},
+ "source": [
+ "직접 다운받으셔서 다양한 Task에 학습을 진행해보세요 :)\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "edd96db1",
+ "metadata": {},
+ "source": [
+ "공개된 한국어 BERT는 대부분 한국어 위키, 뉴스 기사, 책 등 잘 정제된 데이터를 기반으로 학습한 모델입니다. 한편, 실제로 NSMC와 같은 댓글형 데이터셋은 정제되지 않았고 구어체 특징에 신조어가 많으며, 오탈자 등 공식적인 글쓰기에서 나타나지 않는 표현들이 빈번하게 등장합니다.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "a2df738b",
+ "metadata": {},
+ "source": [
+ "KcBERT는 위와 같은 특성의 데이터셋에 적용하기 위해, 네이버 뉴스에서 댓글과 대댓글을 수집해, 토크나이저와 BERT모델을 처음부터 학습한 Pretrained BERT 모델입니다.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "a0eb4ad8",
+ "metadata": {},
+ "source": [
+ "KcBERT는 Huggingface의 Transformers 라이브러리를 통해 간편히 불러와 사용할 수 있습니다. (별도의 파일 다운로드가 필요하지 않습니다.)\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "d1c07267",
+ "metadata": {},
+ "source": [
+ "## KcBERT Performance\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "52872aa3",
+ "metadata": {},
+ "source": [
+ "- Finetune 코드는 https://github.com/Beomi/KcBERT-finetune 에서 찾아보실 수 있습니다.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "fa15ccaf",
+ "metadata": {},
+ "source": [
+ "| | Size
(용량) | **NSMC**
(acc) | **Naver NER**
(F1) | **PAWS**
(acc) | **KorNLI**
(acc) | **KorSTS**
(spearman) | **Question Pair**
(acc) | **KorQuaD (Dev)**
(EM/F1) |\n",
+ "| :-------------------- | :---: | :----------------: | :--------------------: | :----------------: | :------------------: | :-----------------------: | :-------------------------: | :---------------------------: |\n",
+ "| KcBERT-Base | 417M | 89.62 | 84.34 | 66.95 | 74.85 | 75.57 | 93.93 | 60.25 / 84.39 |\n",
+ "| KcBERT-Large | 1.2G | **90.68** | 85.53 | 70.15 | 76.99 | 77.49 | 94.06 | 62.16 / 86.64 |\n",
+ "| KoBERT | 351M | 89.63 | 86.11 | 80.65 | 79.00 | 79.64 | 93.93 | 52.81 / 80.27 |\n",
+ "| XLM-Roberta-Base | 1.03G | 89.49 | 86.26 | 82.95 | 79.92 | 79.09 | 93.53 | 64.70 / 88.94 |\n",
+ "| HanBERT | 614M | 90.16 | **87.31** | 82.40 | **80.89** | 83.33 | 94.19 | 78.74 / 92.02 |\n",
+ "| KoELECTRA-Base | 423M | **90.21** | 86.87 | 81.90 | 80.85 | 83.21 | 94.20 | 61.10 / 89.59 |\n",
+ "| KoELECTRA-Base-v2 | 423M | 89.70 | 87.02 | **83.90** | 80.61 | **84.30** | **94.72** | **84.34 / 92.58** |\n",
+ "| DistilKoBERT | 108M | 88.41 | 84.13 | 62.55 | 70.55 | 73.21 | 92.48 | 54.12 / 77.80 |\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "5193845f",
+ "metadata": {},
+ "source": [
+ "\\*HanBERT의 Size는 Bert Model과 Tokenizer DB를 합친 것입니다.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "93aecc1a",
+ "metadata": {},
+ "source": [
+ "\\***config의 세팅을 그대로 하여 돌린 결과이며, hyperparameter tuning을 추가적으로 할 시 더 좋은 성능이 나올 수 있습니다.**\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "6f889bbd",
+ "metadata": {},
+ "source": [
+ "## How to use\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "465d2dee",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "!pip install --upgrade paddlenlp"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "f884ed37",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import paddle\n",
+ "from paddlenlp.transformers import AutoModel\n",
+ "\n",
+ "model = AutoModel.from_pretrained(\"beomi/kcbert-base\")\n",
+ "input_ids = paddle.randint(100, 200, shape=[1, 20])\n",
+ "print(model(input_ids))"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "a92e65b7",
+ "metadata": {},
+ "source": [
+ "```\n",
+ "@inproceedings{lee2020kcbert,\n",
+ "title={KcBERT: Korean Comments BERT},\n",
+ "author={Lee, Junbum},\n",
+ "booktitle={Proceedings of the 32nd Annual Conference on Human and Cognitive Language Technology},\n",
+ "pages={437--440},\n",
+ "year={2020}\n",
+ "}\n",
+ "```"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "21364621",
+ "metadata": {},
+ "source": [
+ "- 논문집 다운로드 링크: http://hclt.kr/dwn/?v=bG5iOmNvbmZlcmVuY2U7aWR4OjMy (*혹은 http://hclt.kr/symp/?lnb=conference )\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "45cdafe0",
+ "metadata": {},
+ "source": [
+ "## Acknowledgement\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "a741fcf0",
+ "metadata": {},
+ "source": [
+ "KcBERT Model을 학습하는 GCP/TPU 환경은 TFRC 프로그램의 지원을 받았습니다.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "1c9655e9",
+ "metadata": {},
+ "source": [
+ "모델 학습 과정에서 많은 조언을 주신 [Monologg](https://github.com/monologg/) 님 감사합니다 :)\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "85cb1e08",
+ "metadata": {},
+ "source": [
+ "## Reference\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "227d89d2",
+ "metadata": {},
+ "source": [
+ "### Github Repos\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "5e8f4de7",
+ "metadata": {},
+ "source": [
+ "- [BERT by Google](https://github.com/google-research/bert)\n",
+ "- [KoBERT by SKT](https://github.com/SKTBrain/KoBERT)\n",
+ "- [KoELECTRA by Monologg](https://github.com/monologg/KoELECTRA/)\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "730bfede",
+ "metadata": {},
+ "source": [
+ "- [Transformers by Huggingface](https://github.com/huggingface/transformers)\n",
+ "- [Tokenizers by Hugginface](https://github.com/huggingface/tokenizers)\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "66dbd496",
+ "metadata": {},
+ "source": [
+ "### Papers\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "84fe619a",
+ "metadata": {},
+ "source": [
+ "- [BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding](https://arxiv.org/abs/1810.04805)\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "63bb3dd3",
+ "metadata": {},
+ "source": [
+ "### Blogs\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "a5aa5385",
+ "metadata": {},
+ "source": [
+ "- [Monologg님의 KoELECTRA 학습기](https://monologg.kr/categories/NLP/ELECTRA/)\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "bcbd3600",
+ "metadata": {},
+ "source": [
+ "> 此模型介绍及权重来源于[https://huggingface.co/beomi/kcbert-base](https://huggingface.co/beomi/kcbert-base),并转换为飞桨模型格式。\n"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3 (ipykernel)",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.7.13"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 5
+}
diff --git a/modelcenter/community/beomi/kcbert-base/introduction_en.ipynb b/modelcenter/community/beomi/kcbert-base/introduction_en.ipynb
new file mode 100644
index 0000000000000000000000000000000000000000..3de8412cb7b4e50e7062db70c6d23f9b26a42592
--- /dev/null
+++ b/modelcenter/community/beomi/kcbert-base/introduction_en.ipynb
@@ -0,0 +1,278 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "id": "21e8b000",
+ "metadata": {},
+ "source": [
+ "# KcBERT: Korean comments BERT\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "336ee0b8",
+ "metadata": {},
+ "source": [
+ "Kaggle에 학습을 위해 정제한(아래 `clean`처리를 거친) Dataset을 공개하였습니다!\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "691c1f27",
+ "metadata": {},
+ "source": [
+ "직접 다운받으셔서 다양한 Task에 학습을 진행해보세요 :)\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "36ec915c",
+ "metadata": {},
+ "source": [
+ "공개된 한국어 BERT는 대부분 한국어 위키, 뉴스 기사, 책 등 잘 정제된 데이터를 기반으로 학습한 모델입니다. 한편, 실제로 NSMC와 같은 댓글형 데이터셋은 정제되지 않았고 구어체 특징에 신조어가 많으며, 오탈자 등 공식적인 글쓰기에서 나타나지 않는 표현들이 빈번하게 등장합니다.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "b5b8d7d7",
+ "metadata": {},
+ "source": [
+ "KcBERT는 위와 같은 특성의 데이터셋에 적용하기 위해, 네이버 뉴스에서 댓글과 대댓글을 수집해, 토크나이저와 BERT모델을 처음부터 학습한 Pretrained BERT 모델입니다.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "b0095da8",
+ "metadata": {},
+ "source": [
+ "KcBERT는 Huggingface의 Transformers 라이브러리를 통해 간편히 불러와 사용할 수 있습니다. (별도의 파일 다운로드가 필요하지 않습니다.)\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "4bf51d97",
+ "metadata": {},
+ "source": [
+ "## KcBERT Performance\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "9679c8b9",
+ "metadata": {},
+ "source": [
+ "- Finetune 코드는 https://github.com/Beomi/KcBERT-finetune 에서 찾아보실 수 있습니다.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "486782a2",
+ "metadata": {},
+ "source": [
+ "| | Size
(용량) | **NSMC**
(acc) | **Naver NER**
(F1) | **PAWS**
(acc) | **KorNLI**
(acc) | **KorSTS**
(spearman) | **Question Pair**
(acc) | **KorQuaD (Dev)**
(EM/F1) |\n",
+ "| :-------------------- | :---: | :----------------: | :--------------------: | :----------------: | :------------------: | :-----------------------: | :-------------------------: | :---------------------------: |\n",
+ "| KcBERT-Base | 417M | 89.62 | 84.34 | 66.95 | 74.85 | 75.57 | 93.93 | 60.25 / 84.39 |\n",
+ "| KcBERT-Large | 1.2G | **90.68** | 85.53 | 70.15 | 76.99 | 77.49 | 94.06 | 62.16 / 86.64 |\n",
+ "| KoBERT | 351M | 89.63 | 86.11 | 80.65 | 79.00 | 79.64 | 93.93 | 52.81 / 80.27 |\n",
+ "| XLM-Roberta-Base | 1.03G | 89.49 | 86.26 | 82.95 | 79.92 | 79.09 | 93.53 | 64.70 / 88.94 |\n",
+ "| HanBERT | 614M | 90.16 | **87.31** | 82.40 | **80.89** | 83.33 | 94.19 | 78.74 / 92.02 |\n",
+ "| KoELECTRA-Base | 423M | **90.21** | 86.87 | 81.90 | 80.85 | 83.21 | 94.20 | 61.10 / 89.59 |\n",
+ "| KoELECTRA-Base-v2 | 423M | 89.70 | 87.02 | **83.90** | 80.61 | **84.30** | **94.72** | **84.34 / 92.58** |\n",
+ "| DistilKoBERT | 108M | 88.41 | 84.13 | 62.55 | 70.55 | 73.21 | 92.48 | 54.12 / 77.80 |\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "e86103a2",
+ "metadata": {},
+ "source": [
+ "\\*HanBERT의 Size는 Bert Model과 Tokenizer DB를 합친 것입니다.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "1078bc5d",
+ "metadata": {},
+ "source": [
+ "\\***config의 세팅을 그대로 하여 돌린 결과이며, hyperparameter tuning을 추가적으로 할 시 더 좋은 성능이 나올 수 있습니다.**\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "8ac2ee11",
+ "metadata": {},
+ "source": [
+ "## How to use\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "e171068a",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "!pip install --upgrade paddlenlp"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "38c7ad79",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import paddle\n",
+ "from paddlenlp.transformers import AutoModel\n",
+ "\n",
+ "model = AutoModel.from_pretrained(\"beomi/kcbert-base\")\n",
+ "input_ids = paddle.randint(100, 200, shape=[1, 20])\n",
+ "print(model(input_ids))"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "a794d15a",
+ "metadata": {},
+ "source": [
+ "```\n",
+ "@inproceedings{lee2020kcbert,\n",
+ "title={KcBERT: Korean Comments BERT},\n",
+ "author={Lee, Junbum},\n",
+ "booktitle={Proceedings of the 32nd Annual Conference on Human and Cognitive Language Technology},\n",
+ "pages={437--440},\n",
+ "year={2020}\n",
+ "}\n",
+ "```"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "c0183cbe",
+ "metadata": {},
+ "source": [
+ "- 논문집 다운로드 링크: http://hclt.kr/dwn/?v=bG5iOmNvbmZlcmVuY2U7aWR4OjMy (*혹은 http://hclt.kr/symp/?lnb=conference )\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "ba768b26",
+ "metadata": {},
+ "source": [
+ "## Acknowledgement\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "ea148064",
+ "metadata": {},
+ "source": [
+ "KcBERT Model을 학습하는 GCP/TPU 환경은 TFRC 프로그램의 지원을 받았습니다.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "78732669",
+ "metadata": {},
+ "source": [
+ "모델 학습 과정에서 많은 조언을 주신 [Monologg](https://github.com/monologg/) 님 감사합니다 :)\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "5ffa9ed9",
+ "metadata": {},
+ "source": [
+ "## Reference\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "ea69da89",
+ "metadata": {},
+ "source": [
+ "### Github Repos\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "d72d564c",
+ "metadata": {},
+ "source": [
+ "- [BERT by Google](https://github.com/google-research/bert)\n",
+ "- [KoBERT by SKT](https://github.com/SKTBrain/KoBERT)\n",
+ "- [KoELECTRA by Monologg](https://github.com/monologg/KoELECTRA/)\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "38503607",
+ "metadata": {},
+ "source": [
+ "- [Transformers by Huggingface](https://github.com/huggingface/transformers)\n",
+ "- [Tokenizers by Hugginface](https://github.com/huggingface/tokenizers)\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "a71a565f",
+ "metadata": {},
+ "source": [
+ "### Papers\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "9aa4d324",
+ "metadata": {},
+ "source": [
+ "- [BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding](https://arxiv.org/abs/1810.04805)\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "6b1ba932",
+ "metadata": {},
+ "source": [
+ "### Blogs\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "5c9e32e1",
+ "metadata": {},
+ "source": [
+ "- [Monologg님의 KoELECTRA 학습기](https://monologg.kr/categories/NLP/ELECTRA/)\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "0b551dcf",
+ "metadata": {},
+ "source": [
+ "> The model introduction and model weights originate from [https://huggingface.co/beomi/kcbert-base](https://huggingface.co/beomi/kcbert-base) and were converted to PaddlePaddle format for ease of use in PaddleNLP.\n"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3 (ipykernel)",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.7.13"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 5
+}
diff --git a/modelcenter/community/bhadresh-savani/roberta-base-emotion/download_cn.md b/modelcenter/community/bhadresh-savani/roberta-base-emotion/download_cn.md
deleted file mode 100644
index 84defcc07ef87a0d568ed8403f4bc994c9035ad1..0000000000000000000000000000000000000000
--- a/modelcenter/community/bhadresh-savani/roberta-base-emotion/download_cn.md
+++ /dev/null
@@ -1,23 +0,0 @@
-# 模型列表
-
-## bhadresh-savani/roberta-base-emotion
-
-| 模型名称 | 模型介绍 | 模型大小 | 模型下载 |
-| --- | --- | --- | --- |
-|bhadresh-savani/roberta-base-emotion| | 475.53MB | [merges.txt](https://bj.bcebos.com/paddlenlp/models/community/bhadresh-savani/roberta-base-emotion/merges.txt)
[model_config.json](https://bj.bcebos.com/paddlenlp/models/community/bhadresh-savani/roberta-base-emotion/model_config.json)
[model_state.pdparams](https://bj.bcebos.com/paddlenlp/models/community/bhadresh-savani/roberta-base-emotion/model_state.pdparams)
[tokenizer_config.json](https://bj.bcebos.com/paddlenlp/models/community/bhadresh-savani/roberta-base-emotion/tokenizer_config.json)
[vocab.json](https://bj.bcebos.com/paddlenlp/models/community/bhadresh-savani/roberta-base-emotion/vocab.json)
[vocab.txt](https://bj.bcebos.com/paddlenlp/models/community/bhadresh-savani/roberta-base-emotion/vocab.txt) |
-
-也可以通过`paddlenlp` cli 工具来下载对应的模型权重,使用步骤如下所示:
-
-* 安装paddlenlp
-
-```shell
-pip install --upgrade paddlenlp
-```
-
-* 下载命令行
-
-```shell
-paddlenlp download --cache-dir ./pretrained_models bhadresh-savani/roberta-base-emotion
-```
-
-有任何下载的问题都可以到[PaddleNLP](https://github.com/PaddlePaddle/PaddleNLP)中发Issue提问。
\ No newline at end of file
diff --git a/modelcenter/community/bhadresh-savani/roberta-base-emotion/download_en.md b/modelcenter/community/bhadresh-savani/roberta-base-emotion/download_en.md
deleted file mode 100644
index 4e7025b83ca817de0f8d8672c9d02268db31dac6..0000000000000000000000000000000000000000
--- a/modelcenter/community/bhadresh-savani/roberta-base-emotion/download_en.md
+++ /dev/null
@@ -1,23 +0,0 @@
-# model list
-
-##
-
-| model | description | model_size | download |
-| --- | --- | --- | --- |
-|bhadresh-savani/roberta-base-emotion| | 475.53MB | [merges.txt](https://bj.bcebos.com/paddlenlp/models/community/bhadresh-savani/roberta-base-emotion/merges.txt)
[model_config.json](https://bj.bcebos.com/paddlenlp/models/community/bhadresh-savani/roberta-base-emotion/model_config.json)
[model_state.pdparams](https://bj.bcebos.com/paddlenlp/models/community/bhadresh-savani/roberta-base-emotion/model_state.pdparams)
[tokenizer_config.json](https://bj.bcebos.com/paddlenlp/models/community/bhadresh-savani/roberta-base-emotion/tokenizer_config.json)
[vocab.json](https://bj.bcebos.com/paddlenlp/models/community/bhadresh-savani/roberta-base-emotion/vocab.json)
[vocab.txt](https://bj.bcebos.com/paddlenlp/models/community/bhadresh-savani/roberta-base-emotion/vocab.txt) |
-
-or you can download all of model file with the following steps:
-
-* install paddlenlp
-
-```shell
-pip install --upgrade paddlenlp
-```
-
-* download model with cli tool
-
-```shell
-paddlenlp download --cache-dir ./pretrained_models bhadresh-savani/roberta-base-emotion
-```
-
-If you have any problems with it, you can post issue on [PaddleNLP](https://github.com/PaddlePaddle/PaddleNLP) to get support.
diff --git a/modelcenter/community/bhadresh-savani/roberta-base-emotion/info.yaml b/modelcenter/community/bhadresh-savani/roberta-base-emotion/info.yaml
deleted file mode 100644
index 26808fe133a796cb41c329a9f2f9ba11836226dd..0000000000000000000000000000000000000000
--- a/modelcenter/community/bhadresh-savani/roberta-base-emotion/info.yaml
+++ /dev/null
@@ -1,24 +0,0 @@
-Model_Info:
- name: "bhadresh-savani/roberta-base-emotion"
- description: "robert-base-emotion"
- description_en: "robert-base-emotion"
- icon: ""
- from_repo: "https://huggingface.co/bhadresh-savani/roberta-base-emotion"
-
-Task:
-- tag_en: "Natural Language Processing"
- tag: "自然语言处理"
- sub_tag_en: "Text Classification"
- sub_tag: "文本分类"
-
-Example:
-
-Datasets: "emotion,emotion"
-Publisher: "bhadresh-savani"
-License: "apache-2.0"
-Language: "English"
-Paper:
- - title: 'RoBERTa: A Robustly Optimized BERT Pretraining Approach'
- url: 'http://arxiv.org/abs/1907.11692v1'
-IfTraining: 0
-IfOnlineDemo: 0
\ No newline at end of file
diff --git a/modelcenter/community/cahya/bert-base-indonesian-522M/download_cn.md b/modelcenter/community/cahya/bert-base-indonesian-522M/download_cn.md
deleted file mode 100644
index ad0333de1ccd81086766419871c13fe4b60489c9..0000000000000000000000000000000000000000
--- a/modelcenter/community/cahya/bert-base-indonesian-522M/download_cn.md
+++ /dev/null
@@ -1,23 +0,0 @@
-# 模型列表
-
-## cahya/bert-base-indonesian-522M
-
-| 模型名称 | 模型介绍 | 模型大小 | 模型下载 |
-| --- | --- | --- | --- |
-|cahya/bert-base-indonesian-522M| | 518.25MB | [model_config.json](https://bj.bcebos.com/paddlenlp/models/community/cahya/bert-base-indonesian-522M/model_config.json)
[model_state.pdparams](https://bj.bcebos.com/paddlenlp/models/community/cahya/bert-base-indonesian-522M/model_state.pdparams)
[tokenizer_config.json](https://bj.bcebos.com/paddlenlp/models/community/cahya/bert-base-indonesian-522M/tokenizer_config.json)
[vocab.txt](https://bj.bcebos.com/paddlenlp/models/community/cahya/bert-base-indonesian-522M/vocab.txt) |
-
-也可以通过`paddlenlp` cli 工具来下载对应的模型权重,使用步骤如下所示:
-
-* 安装paddlenlp
-
-```shell
-pip install --upgrade paddlenlp
-```
-
-* 下载命令行
-
-```shell
-paddlenlp download --cache-dir ./pretrained_models cahya/bert-base-indonesian-522M
-```
-
-有任何下载的问题都可以到[PaddleNLP](https://github.com/PaddlePaddle/PaddleNLP)中发Issue提问。
\ No newline at end of file
diff --git a/modelcenter/community/cahya/bert-base-indonesian-522M/download_en.md b/modelcenter/community/cahya/bert-base-indonesian-522M/download_en.md
deleted file mode 100644
index 762ba78ecfdbb1c8f91f75be08f39a8fedbe7c61..0000000000000000000000000000000000000000
--- a/modelcenter/community/cahya/bert-base-indonesian-522M/download_en.md
+++ /dev/null
@@ -1,23 +0,0 @@
-# model list
-
-##
-
-| model | description | model_size | download |
-| --- | --- | --- | --- |
-|cahya/bert-base-indonesian-522M| | 518.25MB | [model_config.json](https://bj.bcebos.com/paddlenlp/models/community/cahya/bert-base-indonesian-522M/model_config.json)
[model_state.pdparams](https://bj.bcebos.com/paddlenlp/models/community/cahya/bert-base-indonesian-522M/model_state.pdparams)
[tokenizer_config.json](https://bj.bcebos.com/paddlenlp/models/community/cahya/bert-base-indonesian-522M/tokenizer_config.json)
[vocab.txt](https://bj.bcebos.com/paddlenlp/models/community/cahya/bert-base-indonesian-522M/vocab.txt) |
-
-or you can download all of model file with the following steps:
-
-* install paddlenlp
-
-```shell
-pip install --upgrade paddlenlp
-```
-
-* download model with cli tool
-
-```shell
-paddlenlp download --cache-dir ./pretrained_models cahya/bert-base-indonesian-522M
-```
-
-If you have any problems with it, you can post issue on [PaddleNLP](https://github.com/PaddlePaddle/PaddleNLP) to get support.
diff --git a/modelcenter/community/cahya/bert-base-indonesian-522M/info.yaml b/modelcenter/community/cahya/bert-base-indonesian-522M/info.yaml
deleted file mode 100644
index 4ffbf80edc868d0ce9e0de2445a2a4b8cb82383e..0000000000000000000000000000000000000000
--- a/modelcenter/community/cahya/bert-base-indonesian-522M/info.yaml
+++ /dev/null
@@ -1,23 +0,0 @@
-Model_Info:
- name: "cahya/bert-base-indonesian-522M"
- description: "Indonesian BERT base model (uncased)"
- description_en: "Indonesian BERT base model (uncased)"
- icon: ""
- from_repo: "https://huggingface.co/cahya/bert-base-indonesian-522M"
-
-Task:
-- tag_en: "Natural Language Processing"
- tag: "自然语言处理"
- sub_tag_en: "Fill-Mask"
- sub_tag: "槽位填充"
-
-Example:
-
-Datasets: "wikipedia"
-Publisher: "cahya"
-License: "mit"
-Language: "Indonesian"
-Paper:
-
-IfTraining: 0
-IfOnlineDemo: 0
\ No newline at end of file
diff --git a/modelcenter/community/cahya/gpt2-small-indonesian-522M/download_cn.md b/modelcenter/community/cahya/gpt2-small-indonesian-522M/download_cn.md
deleted file mode 100644
index da188584b3750b26c1be0ba61295eb585f7a8f7a..0000000000000000000000000000000000000000
--- a/modelcenter/community/cahya/gpt2-small-indonesian-522M/download_cn.md
+++ /dev/null
@@ -1,23 +0,0 @@
-# 模型列表
-
-## cahya/gpt2-small-indonesian-522M
-
-| 模型名称 | 模型介绍 | 模型大小 | 模型下载 |
-| --- | --- | --- | --- |
-|cahya/gpt2-small-indonesian-522M| | 621.95MB | [merges.txt](https://bj.bcebos.com/paddlenlp/models/community/cahya/gpt2-small-indonesian-522M/merges.txt)
[model_config.json](https://bj.bcebos.com/paddlenlp/models/community/cahya/gpt2-small-indonesian-522M/model_config.json)
[model_state.pdparams](https://bj.bcebos.com/paddlenlp/models/community/cahya/gpt2-small-indonesian-522M/model_state.pdparams)
[tokenizer_config.json](https://bj.bcebos.com/paddlenlp/models/community/cahya/gpt2-small-indonesian-522M/tokenizer_config.json)
[vocab.json](https://bj.bcebos.com/paddlenlp/models/community/cahya/gpt2-small-indonesian-522M/vocab.json) |
-
-也可以通过`paddlenlp` cli 工具来下载对应的模型权重,使用步骤如下所示:
-
-* 安装paddlenlp
-
-```shell
-pip install --upgrade paddlenlp
-```
-
-* 下载命令行
-
-```shell
-paddlenlp download --cache-dir ./pretrained_models cahya/gpt2-small-indonesian-522M
-```
-
-有任何下载的问题都可以到[PaddleNLP](https://github.com/PaddlePaddle/PaddleNLP)中发Issue提问。
\ No newline at end of file
diff --git a/modelcenter/community/cahya/gpt2-small-indonesian-522M/download_en.md b/modelcenter/community/cahya/gpt2-small-indonesian-522M/download_en.md
deleted file mode 100644
index 8d6207658658bde255fa3d88790c667131c2d30c..0000000000000000000000000000000000000000
--- a/modelcenter/community/cahya/gpt2-small-indonesian-522M/download_en.md
+++ /dev/null
@@ -1,23 +0,0 @@
-# model list
-
-##
-
-| model | description | model_size | download |
-| --- | --- | --- | --- |
-|cahya/gpt2-small-indonesian-522M| | 621.95MB | [merges.txt](https://bj.bcebos.com/paddlenlp/models/community/cahya/gpt2-small-indonesian-522M/merges.txt)
[model_config.json](https://bj.bcebos.com/paddlenlp/models/community/cahya/gpt2-small-indonesian-522M/model_config.json)
[model_state.pdparams](https://bj.bcebos.com/paddlenlp/models/community/cahya/gpt2-small-indonesian-522M/model_state.pdparams)
[tokenizer_config.json](https://bj.bcebos.com/paddlenlp/models/community/cahya/gpt2-small-indonesian-522M/tokenizer_config.json)
[vocab.json](https://bj.bcebos.com/paddlenlp/models/community/cahya/gpt2-small-indonesian-522M/vocab.json) |
-
-or you can download all of model file with the following steps:
-
-* install paddlenlp
-
-```shell
-pip install --upgrade paddlenlp
-```
-
-* download model with cli tool
-
-```shell
-paddlenlp download --cache-dir ./pretrained_models cahya/gpt2-small-indonesian-522M
-```
-
-If you have any problems with it, you can post issue on [PaddleNLP](https://github.com/PaddlePaddle/PaddleNLP) to get support.
diff --git a/modelcenter/community/cahya/gpt2-small-indonesian-522M/info.yaml b/modelcenter/community/cahya/gpt2-small-indonesian-522M/info.yaml
deleted file mode 100644
index c22c8f3542aafd82d07f9acb3778409ae4a165c7..0000000000000000000000000000000000000000
--- a/modelcenter/community/cahya/gpt2-small-indonesian-522M/info.yaml
+++ /dev/null
@@ -1,23 +0,0 @@
-Model_Info:
- name: "cahya/gpt2-small-indonesian-522M"
- description: "Indonesian GPT2 small model"
- description_en: "Indonesian GPT2 small model"
- icon: ""
- from_repo: "https://huggingface.co/cahya/gpt2-small-indonesian-522M"
-
-Task:
-- tag_en: "Natural Language Processing"
- tag: "自然语言处理"
- sub_tag_en: "Text Generation"
- sub_tag: "文本生成"
-
-Example:
-
-Datasets: ""
-Publisher: "cahya"
-License: "mit"
-Language: "Indonesian"
-Paper:
-
-IfTraining: 0
-IfOnlineDemo: 0
\ No newline at end of file
diff --git a/modelcenter/community/ceshine/t5-paraphrase-paws-msrp-opinosis/download_cn.md b/modelcenter/community/ceshine/t5-paraphrase-paws-msrp-opinosis/download_cn.md
deleted file mode 100644
index 4a338586c27d4cfa3426f8c05544f88477f4f72d..0000000000000000000000000000000000000000
--- a/modelcenter/community/ceshine/t5-paraphrase-paws-msrp-opinosis/download_cn.md
+++ /dev/null
@@ -1,23 +0,0 @@
-# 模型列表
-
-## ceshine/t5-paraphrase-paws-msrp-opinosis
-
-| 模型名称 | 模型介绍 | 模型大小 | 模型下载 |
-| --- | --- | --- | --- |
-|ceshine/t5-paraphrase-paws-msrp-opinosis| | 1.11G | [model_config.json](https://bj.bcebos.com/paddlenlp/models/community/ceshine/t5-paraphrase-paws-msrp-opinosis/model_config.json)
[model_state.pdparams](https://bj.bcebos.com/paddlenlp/models/community/ceshine/t5-paraphrase-paws-msrp-opinosis/model_state.pdparams)
[tokenizer_config.json](https://bj.bcebos.com/paddlenlp/models/community/ceshine/t5-paraphrase-paws-msrp-opinosis/tokenizer_config.json) |
-
-也可以通过`paddlenlp` cli 工具来下载对应的模型权重,使用步骤如下所示:
-
-* 安装paddlenlp
-
-```shell
-pip install --upgrade paddlenlp
-```
-
-* 下载命令行
-
-```shell
-paddlenlp download --cache-dir ./pretrained_models ceshine/t5-paraphrase-paws-msrp-opinosis
-```
-
-有任何下载的问题都可以到[PaddleNLP](https://github.com/PaddlePaddle/PaddleNLP)中发Issue提问。
\ No newline at end of file
diff --git a/modelcenter/community/ceshine/t5-paraphrase-paws-msrp-opinosis/download_en.md b/modelcenter/community/ceshine/t5-paraphrase-paws-msrp-opinosis/download_en.md
deleted file mode 100644
index 0a0042908ef99fa559d5f4a1086d2ae6df0d1a03..0000000000000000000000000000000000000000
--- a/modelcenter/community/ceshine/t5-paraphrase-paws-msrp-opinosis/download_en.md
+++ /dev/null
@@ -1,23 +0,0 @@
-# model list
-
-##
-
-| model | description | model_size | download |
-| --- | --- | --- | --- |
-|ceshine/t5-paraphrase-paws-msrp-opinosis| | 1.11G | [model_config.json](https://bj.bcebos.com/paddlenlp/models/community/ceshine/t5-paraphrase-paws-msrp-opinosis/model_config.json)
[model_state.pdparams](https://bj.bcebos.com/paddlenlp/models/community/ceshine/t5-paraphrase-paws-msrp-opinosis/model_state.pdparams)
[tokenizer_config.json](https://bj.bcebos.com/paddlenlp/models/community/ceshine/t5-paraphrase-paws-msrp-opinosis/tokenizer_config.json) |
-
-or you can download all of model file with the following steps:
-
-* install paddlenlp
-
-```shell
-pip install --upgrade paddlenlp
-```
-
-* download model with cli tool
-
-```shell
-paddlenlp download --cache-dir ./pretrained_models ceshine/t5-paraphrase-paws-msrp-opinosis
-```
-
-If you have any problems with it, you can post issue on [PaddleNLP](https://github.com/PaddlePaddle/PaddleNLP) to get support.
diff --git a/modelcenter/community/ceshine/t5-paraphrase-paws-msrp-opinosis/info.yaml b/modelcenter/community/ceshine/t5-paraphrase-paws-msrp-opinosis/info.yaml
deleted file mode 100644
index bbaec20b5d353137b5561cada89da78158cac11a..0000000000000000000000000000000000000000
--- a/modelcenter/community/ceshine/t5-paraphrase-paws-msrp-opinosis/info.yaml
+++ /dev/null
@@ -1,23 +0,0 @@
-Model_Info:
- name: "ceshine/t5-paraphrase-paws-msrp-opinosis"
- description: "T5-base Parapharasing model fine-tuned on PAWS, MSRP, and Opinosis"
- description_en: "T5-base Parapharasing model fine-tuned on PAWS, MSRP, and Opinosis"
- icon: ""
- from_repo: "https://huggingface.co/ceshine/t5-paraphrase-paws-msrp-opinosis"
-
-Task:
-- tag_en: "Natural Language Processing"
- tag: "自然语言处理"
- sub_tag_en: "Text2Text Generation"
- sub_tag: "文本生成"
-
-Example:
-
-Datasets: ""
-Publisher: "ceshine"
-License: "apache-2.0"
-Language: "English"
-Paper:
-
-IfTraining: 0
-IfOnlineDemo: 0
\ No newline at end of file
diff --git a/modelcenter/community/ceshine/t5-paraphrase-quora-paws/download_cn.md b/modelcenter/community/ceshine/t5-paraphrase-quora-paws/download_cn.md
deleted file mode 100644
index 97ddbbe242598e2c96f13587805deff3fc5baa23..0000000000000000000000000000000000000000
--- a/modelcenter/community/ceshine/t5-paraphrase-quora-paws/download_cn.md
+++ /dev/null
@@ -1,23 +0,0 @@
-# 模型列表
-
-## ceshine/t5-paraphrase-quora-paws
-
-| 模型名称 | 模型介绍 | 模型大小 | 模型下载 |
-| --- | --- | --- | --- |
-|ceshine/t5-paraphrase-quora-paws| | 1.11G | [model_config.json](https://bj.bcebos.com/paddlenlp/models/community/ceshine/t5-paraphrase-quora-paws/model_config.json)
[model_state.pdparams](https://bj.bcebos.com/paddlenlp/models/community/ceshine/t5-paraphrase-quora-paws/model_state.pdparams)
[tokenizer_config.json](https://bj.bcebos.com/paddlenlp/models/community/ceshine/t5-paraphrase-quora-paws/tokenizer_config.json) |
-
-也可以通过`paddlenlp` cli 工具来下载对应的模型权重,使用步骤如下所示:
-
-* 安装paddlenlp
-
-```shell
-pip install --upgrade paddlenlp
-```
-
-* 下载命令行
-
-```shell
-paddlenlp download --cache-dir ./pretrained_models ceshine/t5-paraphrase-quora-paws
-```
-
-有任何下载的问题都可以到[PaddleNLP](https://github.com/PaddlePaddle/PaddleNLP)中发Issue提问。
\ No newline at end of file
diff --git a/modelcenter/community/ceshine/t5-paraphrase-quora-paws/download_en.md b/modelcenter/community/ceshine/t5-paraphrase-quora-paws/download_en.md
deleted file mode 100644
index d481b194b19cea40791e57ee183ee16a1a809a72..0000000000000000000000000000000000000000
--- a/modelcenter/community/ceshine/t5-paraphrase-quora-paws/download_en.md
+++ /dev/null
@@ -1,23 +0,0 @@
-# model list
-
-##
-
-| model | description | model_size | download |
-| --- | --- | --- | --- |
-|ceshine/t5-paraphrase-quora-paws| | 1.11G | [model_config.json](https://bj.bcebos.com/paddlenlp/models/community/ceshine/t5-paraphrase-quora-paws/model_config.json)
[model_state.pdparams](https://bj.bcebos.com/paddlenlp/models/community/ceshine/t5-paraphrase-quora-paws/model_state.pdparams)
[tokenizer_config.json](https://bj.bcebos.com/paddlenlp/models/community/ceshine/t5-paraphrase-quora-paws/tokenizer_config.json) |
-
-or you can download all of model file with the following steps:
-
-* install paddlenlp
-
-```shell
-pip install --upgrade paddlenlp
-```
-
-* download model with cli tool
-
-```shell
-paddlenlp download --cache-dir ./pretrained_models ceshine/t5-paraphrase-quora-paws
-```
-
-If you have any problems with it, you can post issue on [PaddleNLP](https://github.com/PaddlePaddle/PaddleNLP) to get support.
diff --git a/modelcenter/community/ceshine/t5-paraphrase-quora-paws/info.yaml b/modelcenter/community/ceshine/t5-paraphrase-quora-paws/info.yaml
deleted file mode 100644
index d055a6cc55838041017bffbf8b9817d92d0dfb61..0000000000000000000000000000000000000000
--- a/modelcenter/community/ceshine/t5-paraphrase-quora-paws/info.yaml
+++ /dev/null
@@ -1,23 +0,0 @@
-Model_Info:
- name: "ceshine/t5-paraphrase-quora-paws"
- description: "T5-base Parapharasing model fine-tuned on PAWS and Quora"
- description_en: "T5-base Parapharasing model fine-tuned on PAWS and Quora"
- icon: ""
- from_repo: "https://huggingface.co/ceshine/t5-paraphrase-quora-paws"
-
-Task:
-- tag_en: "Natural Language Processing"
- tag: "自然语言处理"
- sub_tag_en: "Text2Text Generation"
- sub_tag: "文本生成"
-
-Example:
-
-Datasets: ""
-Publisher: "ceshine"
-License: "apache-2.0"
-Language: "English"
-Paper:
-
-IfTraining: 0
-IfOnlineDemo: 0
\ No newline at end of file
diff --git a/modelcenter/community/cointegrated/rubert-tiny/info.yaml b/modelcenter/community/cointegrated/rubert-tiny/info.yaml
index dee2d03220fe97dfcf251e2c3910684295519d04..494062086bd9cc89976994e25ff2f9f047375150 100644
--- a/modelcenter/community/cointegrated/rubert-tiny/info.yaml
+++ b/modelcenter/community/cointegrated/rubert-tiny/info.yaml
@@ -1,31 +1,27 @@
+Datasets: ''
+Example: null
+IfOnlineDemo: 0
+IfTraining: 0
+Language: Russian,English
+License: mit
Model_Info:
- name: "cointegrated/rubert-tiny"
- description: "pip install transformers sentencepiece"
- description_en: "pip install transformers sentencepiece"
- icon: ""
- from_repo: "https://huggingface.co/cointegrated/rubert-tiny"
-
+ description: pip install transformers sentencepiece
+ description_en: pip install transformers sentencepiece
+ from_repo: https://huggingface.co/cointegrated/rubert-tiny
+ icon: https://paddlenlp.bj.bcebos.com/models/community/transformer-layer.png
+ name: cointegrated/rubert-tiny
+Paper: null
+Publisher: cointegrated
Task:
-- tag_en: "Natural Language Processing"
- tag: "自然语言处理"
- sub_tag_en: "Feature Extraction"
- sub_tag: "特征抽取"
-- tag_en: "Natural Language Processing"
- tag: "自然语言处理"
- sub_tag_en: "Fill-Mask"
- sub_tag: "槽位填充"
-- tag_en: "Natural Language Processing"
- tag: "自然语言处理"
- sub_tag_en: "Sentence Similarity"
- sub_tag: "句子相似度"
-
-Example:
-
-Datasets: ""
-Publisher: "cointegrated"
-License: "mit"
-Language: "Russian,English"
-Paper:
-
-IfTraining: 0
-IfOnlineDemo: 0
\ No newline at end of file
+- sub_tag: 特征抽取
+ sub_tag_en: Feature Extraction
+ tag: 自然语言处理
+ tag_en: Natural Language Processing
+- sub_tag: 槽位填充
+ sub_tag_en: Fill-Mask
+ tag: 自然语言处理
+ tag_en: Natural Language Processing
+- sub_tag: 句子相似度
+ sub_tag_en: Sentence Similarity
+ tag: 自然语言处理
+ tag_en: Natural Language Processing
diff --git a/modelcenter/community/cointegrated/rubert-tiny/introduction_cn.ipynb b/modelcenter/community/cointegrated/rubert-tiny/introduction_cn.ipynb
new file mode 100644
index 0000000000000000000000000000000000000000..9cb218f2fdeaf3b9acd7605a450c59b9ed30fd96
--- /dev/null
+++ b/modelcenter/community/cointegrated/rubert-tiny/introduction_cn.ipynb
@@ -0,0 +1,108 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "id": "83973edc",
+ "metadata": {},
+ "source": [
+ "## Overview\n",
+ "\n",
+ "This is a very small distilled version of the bert-base-multilingual-cased model for Russian and English (45 MB, 12M parameters). There is also an **updated version of this model**, rubert-tiny2, with a larger vocabulary and better quality on practically all Russian NLU tasks.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "59944441",
+ "metadata": {},
+ "source": [
+ "This model is useful if you want to fine-tune it for a relatively simple Russian task (e.g. NER or sentiment classification), and you care more about speed and size than about accuracy. It is approximately x10 smaller and faster than a base-sized BERT. Its `[CLS]` embeddings can be used as a sentence representation aligned between Russian and English.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "c0e2918f",
+ "metadata": {},
+ "source": [
+ "It was trained on the [Yandex Translate corpus](https://translate.yandex.ru/corpus), [OPUS-100](https://huggingface.co/datasets/opus100) and Tatoeba, using MLM loss distilled from bert-base-multilingual-cased, translation ranking loss, and `[CLS]` embeddings distilled from LaBSE, rubert-base-cased-sentence, Laser and USE.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "b0c0158e",
+ "metadata": {},
+ "source": [
+ "There is a more detailed [description in Russian](https://habr.com/ru/post/562064/).\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "28ce4026",
+ "metadata": {},
+ "source": [
+ "Sentence embeddings can be produced as follows:\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "d521437a",
+ "metadata": {},
+ "source": [
+ "## How to use"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "da5acdb0",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "!pip install --upgrade paddlenlp"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "df2d3cc6",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import paddle\n",
+ "from paddlenlp.transformers import AutoModel\n",
+ "\n",
+ "model = AutoModel.from_pretrained(\"cointegrated/rubert-tiny\")\n",
+ "input_ids = paddle.randint(100, 200, shape=[1, 20])\n",
+ "print(model(input_ids))"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "065bda47",
+ "metadata": {},
+ "source": [
+ "> 此模型介绍及权重来源于[https://huggingface.co/cointegrated/rubert-tiny](https://huggingface.co/cointegrated/rubert-tiny),并转换为飞桨模型格式。\n"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3 (ipykernel)",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.7.13"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 5
+}
diff --git a/modelcenter/community/cointegrated/rubert-tiny/introduction_en.ipynb b/modelcenter/community/cointegrated/rubert-tiny/introduction_en.ipynb
new file mode 100644
index 0000000000000000000000000000000000000000..dd435fe0d65bf3b237de944904c1761c2a242061
--- /dev/null
+++ b/modelcenter/community/cointegrated/rubert-tiny/introduction_en.ipynb
@@ -0,0 +1,109 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "id": "b59db37b",
+ "metadata": {},
+ "source": [
+ "## Overview\n",
+ "\n",
+ "This is a very small distilled version of the bert-base-multilingual-cased model for Russian and English (45 MB, 12M parameters). There is also an **updated version of this model**, rubert-tiny2, with a larger vocabulary and better quality on practically all Russian NLU tasks.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "5e7c8c35",
+ "metadata": {},
+ "source": [
+ "This model is useful if you want to fine-tune it for a relatively simple Russian task (e.g. NER or sentiment classification), and you care more about speed and size than about accuracy. It is approximately x10 smaller and faster than a base-sized BERT. Its `[CLS]` embeddings can be used as a sentence representation aligned between Russian and English.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "bc3c5717",
+ "metadata": {},
+ "source": [
+ "It was trained on the [Yandex Translate corpus](https://translate.yandex.ru/corpus), [OPUS-100](https://huggingface.co/datasets/opus100) and Tatoeba, using MLM loss (distilled from bert-base-multilingual-cased\n",
+ "), translation ranking loss, and `[CLS]` embeddings distilled from LaBSE, rubert-base-cased-sentence, Laser and USE.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "2db0a3ee",
+ "metadata": {},
+ "source": [
+ "There is a more detailed [description in Russian](https://habr.com/ru/post/562064/).\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "c3a52477",
+ "metadata": {},
+ "source": [
+ "Sentence embeddings can be produced as follows:\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "add13de4",
+ "metadata": {},
+ "source": [
+ "## How to use"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "c0a8f905",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "!pip install --upgrade paddlenlp"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "481d0ca6",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import paddle\n",
+ "from paddlenlp.transformers import AutoModel\n",
+ "\n",
+ "model = AutoModel.from_pretrained(\"cointegrated/rubert-tiny\")\n",
+ "input_ids = paddle.randint(100, 200, shape=[1, 20])\n",
+ "print(model(input_ids))"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "e6df17e3",
+ "metadata": {},
+ "source": [
+ "> The model introduction and model weights originate from [https://huggingface.co/cointegrated/rubert-tiny](https://huggingface.co/cointegrated/rubert-tiny) and were converted to PaddlePaddle format for ease of use in PaddleNLP.\n"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3 (ipykernel)",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.7.13"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 5
+}
diff --git a/modelcenter/community/cointegrated/rubert-tiny2/info.yaml b/modelcenter/community/cointegrated/rubert-tiny2/info.yaml
index 7c5482eb9c0a8d7b2b0f826c6598c14440d9fd07..e8ca0ad22943f0a71ad3fef31ead56895cb38cc5 100644
--- a/modelcenter/community/cointegrated/rubert-tiny2/info.yaml
+++ b/modelcenter/community/cointegrated/rubert-tiny2/info.yaml
@@ -1,31 +1,27 @@
+Datasets: ''
+Example: null
+IfOnlineDemo: 0
+IfTraining: 0
+Language: Russian
+License: mit
Model_Info:
- name: "cointegrated/rubert-tiny2"
- description: "pip install transformers sentencepiece"
- description_en: "pip install transformers sentencepiece"
- icon: ""
- from_repo: "https://huggingface.co/cointegrated/rubert-tiny2"
-
+ description: pip install transformers sentencepiece
+ description_en: pip install transformers sentencepiece
+ from_repo: https://huggingface.co/cointegrated/rubert-tiny2
+ icon: https://paddlenlp.bj.bcebos.com/models/community/transformer-layer.png
+ name: cointegrated/rubert-tiny2
+Paper: null
+Publisher: cointegrated
Task:
-- tag_en: "Natural Language Processing"
- tag: "自然语言处理"
- sub_tag_en: "Feature Extraction"
- sub_tag: "特征抽取"
-- tag_en: "Natural Language Processing"
- tag: "自然语言处理"
- sub_tag_en: "Fill-Mask"
- sub_tag: "槽位填充"
-- tag_en: "Natural Language Processing"
- tag: "自然语言处理"
- sub_tag_en: "Sentence Similarity"
- sub_tag: "句子相似度"
-
-Example:
-
-Datasets: ""
-Publisher: "cointegrated"
-License: "mit"
-Language: "Russian"
-Paper:
-
-IfTraining: 0
-IfOnlineDemo: 0
\ No newline at end of file
+- sub_tag: 特征抽取
+ sub_tag_en: Feature Extraction
+ tag: 自然语言处理
+ tag_en: Natural Language Processing
+- sub_tag: 槽位填充
+ sub_tag_en: Fill-Mask
+ tag: 自然语言处理
+ tag_en: Natural Language Processing
+- sub_tag: 句子相似度
+ sub_tag_en: Sentence Similarity
+ tag: 自然语言处理
+ tag_en: Natural Language Processing
diff --git a/modelcenter/community/cointegrated/rubert-tiny2/introduction_cn.ipynb b/modelcenter/community/cointegrated/rubert-tiny2/introduction_cn.ipynb
new file mode 100644
index 0000000000000000000000000000000000000000..9aeaaff8027b1a4121394b1a7b49baa9ee35e379
--- /dev/null
+++ b/modelcenter/community/cointegrated/rubert-tiny2/introduction_cn.ipynb
@@ -0,0 +1,105 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "id": "9eef057a",
+ "metadata": {},
+ "source": [
+ "## Overview\n",
+ "\n",
+ "This is an updated version of cointegrated/rubert-tiny: a small Russian BERT-based encoder with high-quality sentence embeddings. This [post in Russian](https://habr.com/ru/post/669674/) gives more details.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "08d9a049",
+ "metadata": {},
+ "source": [
+ "The differences from the previous version include:\n",
+ "- a larger vocabulary: 83828 tokens instead of 29564;\n",
+ "- larger supported sequences: 2048 instead of 512;\n",
+ "- sentence embeddings approximate LaBSE closer than before;\n",
+ "- meaningful segment embeddings (tuned on the NLI task)\n",
+ "- the model is focused only on Russian.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "8a7ba50b",
+ "metadata": {},
+ "source": [
+ "The model should be used as is to produce sentence embeddings (e.g. for KNN classification of short texts) or fine-tuned for a downstream task.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "184e1cc6",
+ "metadata": {},
+ "source": [
+ "Sentence embeddings can be produced as follows:\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "a9613056",
+ "metadata": {},
+ "source": [
+ "## How to use"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "d60b7b64",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "!pip install --upgrade paddlenlp"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "716f2b63",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import paddle\n",
+ "from paddlenlp.transformers import AutoModel\n",
+ "\n",
+ "model = AutoModel.from_pretrained(\"cointegrated/rubert-tiny2\")\n",
+ "input_ids = paddle.randint(100, 200, shape=[1, 20])\n",
+ "print(model(input_ids))"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "0ba8c599",
+ "metadata": {},
+ "source": [
+ "> 此模型介绍及权重来源于[https://huggingface.co/cointegrated/rubert-tiny2](https://huggingface.co/cointegrated/rubert-tiny2),并转换为飞桨模型格式。\n"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3 (ipykernel)",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.7.13"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 5
+}
diff --git a/modelcenter/community/cointegrated/rubert-tiny2/introduction_en.ipynb b/modelcenter/community/cointegrated/rubert-tiny2/introduction_en.ipynb
new file mode 100644
index 0000000000000000000000000000000000000000..08017f1ccaf5a8d51edee721423d169d8a1fc89d
--- /dev/null
+++ b/modelcenter/community/cointegrated/rubert-tiny2/introduction_en.ipynb
@@ -0,0 +1,105 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "id": "db267b71",
+ "metadata": {},
+ "source": [
+ "## Overview\n",
+ "\n",
+ "This is an updated version of cointegrated/rubert-tiny: a small Russian BERT-based encoder with high-quality sentence embeddings. This [post in Russian](https://habr.com/ru/post/669674/) gives more details.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "801acf5c",
+ "metadata": {},
+ "source": [
+ "The differences from the previous version include:\n",
+ "- a larger vocabulary: 83828 tokens instead of 29564;\n",
+ "- larger supported sequences: 2048 instead of 512;\n",
+ "- sentence embeddings approximate LaBSE closer than before;\n",
+ "- meaningful segment embeddings (tuned on the NLI task)\n",
+ "- the model is focused only on Russian.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "f2c7dbc1",
+ "metadata": {},
+ "source": [
+ "The model should be used as is to produce sentence embeddings (e.g. for KNN classification of short texts) or fine-tuned for a downstream task.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "9ff63df2",
+ "metadata": {},
+ "source": [
+ "Sentence embeddings can be produced as follows:\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "2b073558",
+ "metadata": {},
+ "source": [
+ "## how to use"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "c98c0cce",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "!pip install --upgrade paddlenlp"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "81978806",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import paddle\n",
+ "from paddlenlp.transformers import AutoModel\n",
+ "\n",
+ "model = AutoModel.from_pretrained(\"cointegrated/rubert-tiny2\")\n",
+ "input_ids = paddle.randint(100, 200, shape=[1, 20])\n",
+ "print(model(input_ids))"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "33dbe378",
+ "metadata": {},
+ "source": [
+ "> The model introduction and model weights originate from [https://huggingface.co/cointegrated/rubert-tiny2](https://huggingface.co/cointegrated/rubert-tiny2) and were converted to PaddlePaddle format for ease of use in PaddleNLP.\n"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3 (ipykernel)",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.7.13"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 5
+}
diff --git a/modelcenter/community/cross-encoder/ms-marco-MiniLM-L-12-v2/info.yaml b/modelcenter/community/cross-encoder/ms-marco-MiniLM-L-12-v2/info.yaml
index 26a553065fbc6bbdd74ae499391fefa2558665c6..368d3fec4af1da70e30627d7b6ee9b0c1407dc3e 100644
--- a/modelcenter/community/cross-encoder/ms-marco-MiniLM-L-12-v2/info.yaml
+++ b/modelcenter/community/cross-encoder/ms-marco-MiniLM-L-12-v2/info.yaml
@@ -1,23 +1,19 @@
+Datasets: ''
+Example: null
+IfOnlineDemo: 0
+IfTraining: 0
+Language: ''
+License: apache-2.0
Model_Info:
- name: "cross-encoder/ms-marco-MiniLM-L-12-v2"
- description: "Cross-Encoder for MS Marco"
- description_en: "Cross-Encoder for MS Marco"
- icon: ""
- from_repo: "https://huggingface.co/cross-encoder/ms-marco-MiniLM-L-12-v2"
-
+ description: Cross-Encoder for MS Marco
+ description_en: Cross-Encoder for MS Marco
+ from_repo: https://huggingface.co/cross-encoder/ms-marco-MiniLM-L-12-v2
+ icon: https://paddlenlp.bj.bcebos.com/models/community/transformer-layer.png
+ name: cross-encoder/ms-marco-MiniLM-L-12-v2
+Paper: null
+Publisher: cross-encoder
Task:
-- tag_en: "Natural Language Processing"
- tag: "自然语言处理"
- sub_tag_en: "Text Classification"
- sub_tag: "文本分类"
-
-Example:
-
-Datasets: ""
-Publisher: "cross-encoder"
-License: "apache-2.0"
-Language: ""
-Paper:
-
-IfTraining: 0
-IfOnlineDemo: 0
\ No newline at end of file
+- sub_tag: 文本分类
+ sub_tag_en: Text Classification
+ tag: 自然语言处理
+ tag_en: Natural Language Processing
diff --git a/modelcenter/community/cross-encoder/ms-marco-MiniLM-L-12-v2/introduction_cn.ipynb b/modelcenter/community/cross-encoder/ms-marco-MiniLM-L-12-v2/introduction_cn.ipynb
new file mode 100644
index 0000000000000000000000000000000000000000..1f1adfe080b64a0f419ef6b2be1bd3a3b82b936e
--- /dev/null
+++ b/modelcenter/community/cross-encoder/ms-marco-MiniLM-L-12-v2/introduction_cn.ipynb
@@ -0,0 +1,127 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "id": "b14e9fee",
+ "metadata": {},
+ "source": [
+ "# Cross-Encoder for MS Marco\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "770d5215",
+ "metadata": {},
+ "source": [
+ "This model was trained on the [MS Marco Passage Ranking](https://github.com/microsoft/MSMARCO-Passage-Ranking) task.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "0e8686b5",
+ "metadata": {},
+ "source": [
+ "The model can be used for Information Retrieval: Given a query, encode the query will all possible passages (e.g. retrieved with ElasticSearch). Then sort the passages in a decreasing order. See [SBERT.net Retrieve & Re-rank](https://www.sbert.net/examples/applications/retrieve_rerank/README.html) for more details. The training code is available here: [SBERT.net Training MS Marco](https://github.com/UKPLab/sentence-transformers/tree/master/examples/training/ms_marco)\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "c437c78a",
+ "metadata": {},
+ "source": [
+ "## How to use\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "1f4581da",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "!pip install --upgrade paddlenlp"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "295c7df7",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import paddle\n",
+ "from paddlenlp.transformers import AutoModel\n",
+ "\n",
+ "model = AutoModel.from_pretrained(\"cross-encoder/ms-marco-MiniLM-L-12-v2\")\n",
+ "input_ids = paddle.randint(100, 200, shape=[1, 20])\n",
+ "print(model(input_ids))"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "706017d9",
+ "metadata": {},
+ "source": [
+ "## Performance\n",
+ "In the following table, we provide various pre-trained Cross-Encoders together with their performance on the [TREC Deep Learning 2019](https://microsoft.github.io/TREC-2019-Deep-Learning/) and the [MS Marco Passage Reranking](https://github.com/microsoft/MSMARCO-Passage-Ranking/) dataset.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "2aa6bf22",
+ "metadata": {},
+ "source": [
+ "| Model-Name | NDCG@10 (TREC DL 19) | MRR@10 (MS Marco Dev) | Docs / Sec |\n",
+ "| ------------- |:-------------| -----| --- |\n",
+ "| **Version 2 models** | | |\n",
+ "| cross-encoder/ms-marco-TinyBERT-L-2-v2 | 69.84 | 32.56 | 9000\n",
+ "| cross-encoder/ms-marco-MiniLM-L-2-v2 | 71.01 | 34.85 | 4100\n",
+ "| cross-encoder/ms-marco-MiniLM-L-4-v2 | 73.04 | 37.70 | 2500\n",
+ "| cross-encoder/ms-marco-MiniLM-L-6-v2 | 74.30 | 39.01 | 1800\n",
+ "| cross-encoder/ms-marco-MiniLM-L-12-v2 | 74.31 | 39.02 | 960\n",
+ "| **Version 1 models** | | |\n",
+ "| cross-encoder/ms-marco-TinyBERT-L-2 | 67.43 | 30.15 | 9000\n",
+ "| cross-encoder/ms-marco-TinyBERT-L-4 | 68.09 | 34.50 | 2900\n",
+ "| cross-encoder/ms-marco-TinyBERT-L-6 | 69.57 | 36.13 | 680\n",
+ "| cross-encoder/ms-marco-electra-base | 71.99 | 36.41 | 340\n",
+ "| **Other models** | | |\n",
+ "| nboost/pt-tinybert-msmarco | 63.63 | 28.80 | 2900\n",
+ "| nboost/pt-bert-base-uncased-msmarco | 70.94 | 34.75 | 340\n",
+ "| nboost/pt-bert-large-msmarco | 73.36 | 36.48 | 100\n",
+ "| Capreolus/electra-base-msmarco | 71.23 | 36.89 | 340\n",
+ "| amberoad/bert-multilingual-passage-reranking-msmarco | 68.40 | 35.54 | 330\n",
+ "| sebastian-hofstaetter/distilbert-cat-margin_mse-T2-msmarco | 72.82 | 37.88 | 720\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "65eda465",
+ "metadata": {},
+ "source": [
+ "Note: Runtime was computed on a V100 GPU.\n",
+ "> 此模型介绍及权重来源于[https://huggingface.co/cross-encoder/ms-marco-MiniLM-L-12-v2](https://huggingface.co/cross-encoder/ms-marco-MiniLM-L-12-v2),并转换为飞桨模型格式。\n"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3 (ipykernel)",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.7.13"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 5
+}
diff --git a/modelcenter/community/cross-encoder/ms-marco-MiniLM-L-12-v2/introduction_en.ipynb b/modelcenter/community/cross-encoder/ms-marco-MiniLM-L-12-v2/introduction_en.ipynb
new file mode 100644
index 0000000000000000000000000000000000000000..0389e1e264635fd2f3fd865742e8f52dde21ff36
--- /dev/null
+++ b/modelcenter/community/cross-encoder/ms-marco-MiniLM-L-12-v2/introduction_en.ipynb
@@ -0,0 +1,127 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "id": "366980e6",
+ "metadata": {},
+ "source": [
+ "# Cross-Encoder for MS Marco\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "4c7d726e",
+ "metadata": {},
+ "source": [
+ "This model was trained on the [MS Marco Passage Ranking](https://github.com/microsoft/MSMARCO-Passage-Ranking) task.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "1535e90f",
+ "metadata": {},
+ "source": [
+ "The model can be used for Information Retrieval: Given a query, encode the query will all possible passages (e.g. retrieved with ElasticSearch). Then sort the passages in a decreasing order. See [SBERT.net Retrieve & Re-rank](https://www.sbert.net/examples/applications/retrieve_rerank/README.html) for more details. The training code is available here: [SBERT.net Training MS Marco](https://github.com/UKPLab/sentence-transformers/tree/master/examples/training/ms_marco)\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "3eda3140",
+ "metadata": {},
+ "source": [
+ "## How to use\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "74d5bcd7",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "!pip install --upgrade paddlenlp"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "59553cde",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import paddle\n",
+ "from paddlenlp.transformers import AutoModel\n",
+ "\n",
+ "model = AutoModel.from_pretrained(\"cross-encoder/ms-marco-MiniLM-L-12-v2\")\n",
+ "input_ids = paddle.randint(100, 200, shape=[1, 20])\n",
+ "print(model(input_ids))"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "0b6883fa",
+ "metadata": {},
+ "source": [
+ "## Performance\n",
+ "In the following table, we provide various pre-trained Cross-Encoders together with their performance on the [TREC Deep Learning 2019](https://microsoft.github.io/TREC-2019-Deep-Learning/) and the [MS Marco Passage Reranking](https://github.com/microsoft/MSMARCO-Passage-Ranking/) dataset.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "e04ad9db",
+ "metadata": {},
+ "source": [
+ "| Model-Name | NDCG@10 (TREC DL 19) | MRR@10 (MS Marco Dev) | Docs / Sec |\n",
+ "| ------------- |:-------------| -----| --- |\n",
+ "| **Version 2 models** | | |\n",
+ "| cross-encoder/ms-marco-TinyBERT-L-2-v2 | 69.84 | 32.56 | 9000\n",
+ "| cross-encoder/ms-marco-MiniLM-L-2-v2 | 71.01 | 34.85 | 4100\n",
+ "| cross-encoder/ms-marco-MiniLM-L-4-v2 | 73.04 | 37.70 | 2500\n",
+ "| cross-encoder/ms-marco-MiniLM-L-6-v2 | 74.30 | 39.01 | 1800\n",
+ "| cross-encoder/ms-marco-MiniLM-L-12-v2 | 74.31 | 39.02 | 960\n",
+ "| **Version 1 models** | | |\n",
+ "| cross-encoder/ms-marco-TinyBERT-L-2 | 67.43 | 30.15 | 9000\n",
+ "| cross-encoder/ms-marco-TinyBERT-L-4 | 68.09 | 34.50 | 2900\n",
+ "| cross-encoder/ms-marco-TinyBERT-L-6 | 69.57 | 36.13 | 680\n",
+ "| cross-encoder/ms-marco-electra-base | 71.99 | 36.41 | 340\n",
+ "| **Other models** | | |\n",
+ "| nboost/pt-tinybert-msmarco | 63.63 | 28.80 | 2900\n",
+ "| nboost/pt-bert-base-uncased-msmarco | 70.94 | 34.75 | 340\n",
+ "| nboost/pt-bert-large-msmarco | 73.36 | 36.48 | 100\n",
+ "| Capreolus/electra-base-msmarco | 71.23 | 36.89 | 340\n",
+ "| amberoad/bert-multilingual-passage-reranking-msmarco | 68.40 | 35.54 | 330\n",
+ "| sebastian-hofstaetter/distilbert-cat-margin_mse-T2-msmarco | 72.82 | 37.88 | 720\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "18e7124d",
+ "metadata": {},
+ "source": [
+ "Note: Runtime was computed on a V100 GPU.\n",
+ "> The model introduction and model weights originate from [https://huggingface.co/cross-encoder/ms-marco-MiniLM-L-12-v2](https://huggingface.co/cross-encoder/ms-marco-MiniLM-L-12-v2) and were converted to PaddlePaddle format for ease of use in PaddleNLP.\n"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3 (ipykernel)",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.8.13"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 5
+}
diff --git a/modelcenter/community/cross-encoder/ms-marco-TinyBERT-L-2/info.yaml b/modelcenter/community/cross-encoder/ms-marco-TinyBERT-L-2/info.yaml
index b76e7a2b428159a227cada06ab8a1eff08a9f41f..33927567e2ff20757c79c5a5c8ddf878066c85f7 100644
--- a/modelcenter/community/cross-encoder/ms-marco-TinyBERT-L-2/info.yaml
+++ b/modelcenter/community/cross-encoder/ms-marco-TinyBERT-L-2/info.yaml
@@ -1,23 +1,19 @@
+Datasets: ''
+Example: null
+IfOnlineDemo: 0
+IfTraining: 0
+Language: ''
+License: apache-2.0
Model_Info:
- name: "cross-encoder/ms-marco-TinyBERT-L-2"
- description: "Cross-Encoder for MS Marco"
- description_en: "Cross-Encoder for MS Marco"
- icon: ""
- from_repo: "https://huggingface.co/cross-encoder/ms-marco-TinyBERT-L-2"
-
+ description: Cross-Encoder for MS Marco
+ description_en: Cross-Encoder for MS Marco
+ from_repo: https://huggingface.co/cross-encoder/ms-marco-TinyBERT-L-2
+ icon: https://paddlenlp.bj.bcebos.com/models/community/transformer-layer.png
+ name: cross-encoder/ms-marco-TinyBERT-L-2
+Paper: null
+Publisher: cross-encoder
Task:
-- tag_en: "Natural Language Processing"
- tag: "自然语言处理"
- sub_tag_en: "Text Classification"
- sub_tag: "文本分类"
-
-Example:
-
-Datasets: ""
-Publisher: "cross-encoder"
-License: "apache-2.0"
-Language: ""
-Paper:
-
-IfTraining: 0
-IfOnlineDemo: 0
\ No newline at end of file
+- sub_tag: 文本分类
+ sub_tag_en: Text Classification
+ tag: 自然语言处理
+ tag_en: Natural Language Processing
diff --git a/modelcenter/community/cross-encoder/ms-marco-TinyBERT-L-2/introduction_cn.ipynb b/modelcenter/community/cross-encoder/ms-marco-TinyBERT-L-2/introduction_cn.ipynb
new file mode 100644
index 0000000000000000000000000000000000000000..84472703becaacc5af9714e66d2f46b94a530acd
--- /dev/null
+++ b/modelcenter/community/cross-encoder/ms-marco-TinyBERT-L-2/introduction_cn.ipynb
@@ -0,0 +1,109 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "id": "32947f83",
+ "metadata": {},
+ "source": [
+ "# Cross-Encoder for MS Marco\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "d34eaa08",
+ "metadata": {},
+ "source": [
+ "This model was trained on the [MS Marco Passage Ranking](https://github.com/microsoft/MSMARCO-Passage-Ranking) task.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "dcf2e434",
+ "metadata": {},
+ "source": [
+ "The model can be used for Information Retrieval: Given a query, encode the query will all possible passages (e.g. retrieved with ElasticSearch). Then sort the passages in a decreasing order. See [SBERT.net Retrieve & Re-rank](https://www.sbert.net/examples/applications/retrieve_rerank/README.html) for more details. The training code is available here: [SBERT.net Training MS Marco](https://github.com/UKPLab/sentence-transformers/tree/master/examples/training/ms_marco)\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "bb938635",
+ "metadata": {},
+ "source": [
+ "## How to use\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "463fcbb2",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "!pip install --upgrade paddlenlp"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "e3ac7704",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import paddle\n",
+ "from paddlenlp.transformers import AutoModel\n",
+ "\n",
+ "model = AutoModel.from_pretrained(\"cross-encoder/ms-marco-TinyBERT-L-2\")\n",
+ "input_ids = paddle.randint(100, 200, shape=[1, 20])\n",
+ "print(model(input_ids))"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "e185e8d7",
+ "metadata": {},
+ "source": [
+ "## Performance\n",
+ "In the following table, we provide various pre-trained Cross-Encoders together with their performance on the [TREC Deep Learning 2019](https://microsoft.github.io/TREC-2019-Deep-Learning/) and the [MS Marco Passage Reranking](https://github.com/microsoft/MSMARCO-Passage-Ranking/) dataset.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "1b6ce4a0",
+ "metadata": {},
+ "source": [
+ "| Model-Name | NDCG@10 (TREC DL 19) | MRR@10 (MS Marco Dev) | Docs / Sec |\n",
+ "| ------------- |:-------------| -----| --- |\n",
+ "| **Version 2 models** | | |\n",
+ "| cross-encoder/ms-marco-TinyBERT-L-2-v2 | 69.84 | 32.56 | 9000\n",
+ "| cross-encoder/ms-marco-MiniLM-L-2-v2 | 71.01 | 34.85 | 4100\n",
+ "| cross-encoder/ms-marco-MiniLM-L-4-v2 | 73.04 | 37.70 | 2500\n",
+ "| cross-encoder/ms-marco-MiniLM-L-6-v2 | 74.30 | 39.01 | 1800\n",
+ "| cross-encoder/ms-marco-MiniLM-L-12-v2 | 74.31 | 39.02 | 960\n",
+ "| **Version 1 models** | | |\n",
+ "| cross-encoder/ms-marco-TinyBERT-L-2 | 67.43 | 30.15 | 9000\n",
+ "| cross-encoder/ms-marco-TinyBERT-L-4 | 68.09 | 34.50 | 2900\n",
+ "| cross-encoder/ms-marco-TinyBERT-L-6 | 69.57 | 36.13 | 680\n",
+ "| cross-encoder/ms-marco-electra-base | 71.99 | 36.41 | 340\n",
+ "| **Other models** | | |\n",
+ "| nboost/pt-tinybert-msmarco | 63.63 | 28.80 | 2900\n",
+ "| nboost/pt-bert-base-uncased-msmarco | 70.94 | 34.75 | 340\n",
+ "| nboost/pt-bert-large-msmarco | 73.36 | 36.48 | 100\n",
+ "| Capreolus/electra-base-msmarco | 71.23 | 36.89 | 340\n",
+ "| amberoad/bert-multilingual-passage-reranking-msmarco | 68.40 | 35.54 | 330\n",
+ "| sebastian-hofstaetter/distilbert-cat-margin_mse-T2-msmarco | 72.82 | 37.88 | 720\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "478f9bd9",
+ "metadata": {},
+ "source": [
+ "Note: Runtime was computed on a V100 GPU.\n",
+ "> 此模型介绍及权重来源于[https://huggingface.co/cross-encoder/ms-marco-TinyBERT-L-2](https://huggingface.co/cross-encoder/ms-marco-TinyBERT-L-2),并转换为飞桨模型格式。\n"
+ ]
+ }
+ ],
+ "metadata": {},
+ "nbformat": 4,
+ "nbformat_minor": 5
+}
diff --git a/modelcenter/community/cross-encoder/ms-marco-TinyBERT-L-2/introduction_en.ipynb b/modelcenter/community/cross-encoder/ms-marco-TinyBERT-L-2/introduction_en.ipynb
new file mode 100644
index 0000000000000000000000000000000000000000..b3862b25839c0e2e0824103032b27d887d769b13
--- /dev/null
+++ b/modelcenter/community/cross-encoder/ms-marco-TinyBERT-L-2/introduction_en.ipynb
@@ -0,0 +1,109 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "id": "545c6ec0",
+ "metadata": {},
+ "source": [
+ "# Cross-Encoder for MS Marco\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "cbd27361",
+ "metadata": {},
+ "source": [
+ "This model was trained on the [MS Marco Passage Ranking](https://github.com/microsoft/MSMARCO-Passage-Ranking) task.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "185acb77",
+ "metadata": {},
+ "source": [
+ "The model can be used for Information Retrieval: Given a query, encode the query will all possible passages (e.g. retrieved with ElasticSearch). Then sort the passages in a decreasing order. See [SBERT.net Retrieve & Re-rank](https://www.sbert.net/examples/applications/retrieve_rerank/README.html) for more details. The training code is available here: [SBERT.net Training MS Marco](https://github.com/UKPLab/sentence-transformers/tree/master/examples/training/ms_marco)\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "1fb83fc3",
+ "metadata": {},
+ "source": [
+ "## How to use\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "2cf01d71",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "!pip install --upgrade paddlenlp"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "d24e4eb7",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import paddle\n",
+ "from paddlenlp.transformers import AutoModel\n",
+ "\n",
+ "model = AutoModel.from_pretrained(\"cross-encoder/ms-marco-TinyBERT-L-2\")\n",
+ "input_ids = paddle.randint(100, 200, shape=[1, 20])\n",
+ "print(model(input_ids))"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "7eb19416",
+ "metadata": {},
+ "source": [
+ "## Performance\n",
+ "In the following table, we provide various pre-trained Cross-Encoders together with their performance on the [TREC Deep Learning 2019](https://microsoft.github.io/TREC-2019-Deep-Learning/) and the [MS Marco Passage Reranking](https://github.com/microsoft/MSMARCO-Passage-Ranking/) dataset.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "e51901bb",
+ "metadata": {},
+ "source": [
+ "| Model-Name | NDCG@10 (TREC DL 19) | MRR@10 (MS Marco Dev) | Docs / Sec |\n",
+ "| ------------- |:-------------| -----| --- |\n",
+ "| **Version 2 models** | | |\n",
+ "| cross-encoder/ms-marco-TinyBERT-L-2-v2 | 69.84 | 32.56 | 9000\n",
+ "| cross-encoder/ms-marco-MiniLM-L-2-v2 | 71.01 | 34.85 | 4100\n",
+ "| cross-encoder/ms-marco-MiniLM-L-4-v2 | 73.04 | 37.70 | 2500\n",
+ "| cross-encoder/ms-marco-MiniLM-L-6-v2 | 74.30 | 39.01 | 1800\n",
+ "| cross-encoder/ms-marco-MiniLM-L-12-v2 | 74.31 | 39.02 | 960\n",
+ "| **Version 1 models** | | |\n",
+ "| cross-encoder/ms-marco-TinyBERT-L-2 | 67.43 | 30.15 | 9000\n",
+ "| cross-encoder/ms-marco-TinyBERT-L-4 | 68.09 | 34.50 | 2900\n",
+ "| cross-encoder/ms-marco-TinyBERT-L-6 | 69.57 | 36.13 | 680\n",
+ "| cross-encoder/ms-marco-electra-base | 71.99 | 36.41 | 340\n",
+ "| **Other models** | | |\n",
+ "| nboost/pt-tinybert-msmarco | 63.63 | 28.80 | 2900\n",
+ "| nboost/pt-bert-base-uncased-msmarco | 70.94 | 34.75 | 340\n",
+ "| nboost/pt-bert-large-msmarco | 73.36 | 36.48 | 100\n",
+ "| Capreolus/electra-base-msmarco | 71.23 | 36.89 | 340\n",
+ "| amberoad/bert-multilingual-passage-reranking-msmarco | 68.40 | 35.54 | 330\n",
+ "| sebastian-hofstaetter/distilbert-cat-margin_mse-T2-msmarco | 72.82 | 37.88 | 720\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "f2318843",
+ "metadata": {},
+ "source": [
+ "Note: Runtime was computed on a V100 GPU.\n",
+ "> The model introduction and model weights originate from [https://huggingface.co/cross-encoder/ms-marco-TinyBERT-L-2](https://huggingface.co/cross-encoder/ms-marco-TinyBERT-L-2) and were converted to PaddlePaddle format for ease of use in PaddleNLP.\n"
+ ]
+ }
+ ],
+ "metadata": {},
+ "nbformat": 4,
+ "nbformat_minor": 5
+}
diff --git a/modelcenter/community/cross-encoder/nli-MiniLM2-L6-H768/info.yaml b/modelcenter/community/cross-encoder/nli-MiniLM2-L6-H768/info.yaml
index 5ecfdc06ae12b1e86f0ff8d2ca9a1283e64b4a21..e9a692d9694e751383274ef8b36eb48b9cc975f8 100644
--- a/modelcenter/community/cross-encoder/nli-MiniLM2-L6-H768/info.yaml
+++ b/modelcenter/community/cross-encoder/nli-MiniLM2-L6-H768/info.yaml
@@ -1,27 +1,23 @@
+Datasets: multi_nli,snli
+Example: null
+IfOnlineDemo: 0
+IfTraining: 0
+Language: English
+License: apache-2.0
Model_Info:
- name: "cross-encoder/nli-MiniLM2-L6-H768"
- description: "Cross-Encoder for Natural Language Inference"
- description_en: "Cross-Encoder for Natural Language Inference"
- icon: ""
- from_repo: "https://huggingface.co/cross-encoder/nli-MiniLM2-L6-H768"
-
+ description: Cross-Encoder for Natural Language Inference
+ description_en: Cross-Encoder for Natural Language Inference
+ from_repo: https://huggingface.co/cross-encoder/nli-MiniLM2-L6-H768
+ icon: https://paddlenlp.bj.bcebos.com/models/community/transformer-layer.png
+ name: cross-encoder/nli-MiniLM2-L6-H768
+Paper: null
+Publisher: cross-encoder
Task:
-- tag_en: "Natural Language Processing"
- tag: "自然语言处理"
- sub_tag_en: "Zero-Shot Classification"
- sub_tag: "零样本分类"
-- tag_en: "Natural Language Processing"
- tag: "自然语言处理"
- sub_tag_en: "Text Classification"
- sub_tag: "文本分类"
-
-Example:
-
-Datasets: "multi_nli,snli"
-Publisher: "cross-encoder"
-License: "apache-2.0"
-Language: "English"
-Paper:
-
-IfTraining: 0
-IfOnlineDemo: 0
\ No newline at end of file
+- sub_tag: 零样本分类
+ sub_tag_en: Zero-Shot Classification
+ tag: 自然语言处理
+ tag_en: Natural Language Processing
+- sub_tag: 文本分类
+ sub_tag_en: Text Classification
+ tag: 自然语言处理
+ tag_en: Natural Language Processing
diff --git a/modelcenter/community/cross-encoder/nli-MiniLM2-L6-H768/introduction_cn.ipynb b/modelcenter/community/cross-encoder/nli-MiniLM2-L6-H768/introduction_cn.ipynb
new file mode 100644
index 0000000000000000000000000000000000000000..b7393f4f2f689100921d70305aa82b9e87b1fb1d
--- /dev/null
+++ b/modelcenter/community/cross-encoder/nli-MiniLM2-L6-H768/introduction_cn.ipynb
@@ -0,0 +1,101 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "id": "f11c50a6",
+ "metadata": {},
+ "source": [
+ "# Cross-Encoder for Natural Language Inference\n",
+ "This model was trained using [SentenceTransformers](https://sbert.net) [Cross-Encoder](https://www.sbert.net/examples/applications/cross-encoder/README.html) class.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "e01fe90a",
+ "metadata": {},
+ "source": [
+ "## Training Data\n",
+ "The model was trained on the [SNLI](https://nlp.stanford.edu/projects/snli/) and [MultiNLI](https://cims.nyu.edu/~sbowman/multinli/) datasets. For a given sentence pair, it will output three scores corresponding to the labels: contradiction, entailment, neutral.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "ff850419",
+ "metadata": {},
+ "source": [
+ "## Performance\n",
+ "For evaluation results, see [SBERT.net - Pretrained Cross-Encoder](https://www.sbert.net/docs/pretrained_cross-encoders.html#nli).\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "a0b92b0d",
+ "metadata": {},
+ "source": [
+ "## Usage\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "d3857388",
+ "metadata": {},
+ "source": [
+ "Pre-trained models can be used like this:\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "d2c99a51",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "!pip install --upgrade paddlenlp"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "aeda53c1",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import paddle\n",
+ "from paddlenlp.transformers import AutoModel\n",
+ "\n",
+ "model = AutoModel.from_pretrained(\"cross-encoder/nli-MiniLM2-L6-H768\")\n",
+ "input_ids = paddle.randint(100, 200, shape=[1, 20])\n",
+ "print(model(input_ids))"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "760a7b59",
+ "metadata": {},
+ "source": [
+ "> 此模型介绍及权重来源于[https://huggingface.co/cross-encoder/nli-MiniLM2-L6-H768](https://huggingface.co/cross-encoder/nli-MiniLM2-L6-H768),并转换为飞桨模型格式。\n"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3 (ipykernel)",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.8.13"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 5
+}
diff --git a/modelcenter/community/cross-encoder/nli-MiniLM2-L6-H768/introduction_en.ipynb b/modelcenter/community/cross-encoder/nli-MiniLM2-L6-H768/introduction_en.ipynb
new file mode 100644
index 0000000000000000000000000000000000000000..c62c2aff004312798f3301c3b6e50b48564731f1
--- /dev/null
+++ b/modelcenter/community/cross-encoder/nli-MiniLM2-L6-H768/introduction_en.ipynb
@@ -0,0 +1,101 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "id": "7d3f71fa",
+ "metadata": {},
+ "source": [
+ "# Cross-Encoder for Natural Language Inference\n",
+ "This model was trained using [SentenceTransformers](https://sbert.net) [Cross-Encoder](https://www.sbert.net/examples/applications/cross-encoder/README.html) class.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "daf01f92",
+ "metadata": {},
+ "source": [
+ "## Training Data\n",
+ "The model was trained on the [SNLI](https://nlp.stanford.edu/projects/snli/) and [MultiNLI](https://cims.nyu.edu/~sbowman/multinli/) datasets. For a given sentence pair, it will output three scores corresponding to the labels: contradiction, entailment, neutral.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "805a7294",
+ "metadata": {},
+ "source": [
+ "## Performance\n",
+ "For evaluation results, see [SBERT.net - Pretrained Cross-Encoder](https://www.sbert.net/docs/pretrained_cross-encoders.html#nli).\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "46a403e0",
+ "metadata": {},
+ "source": [
+ "## Usage\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "abbbbd38",
+ "metadata": {},
+ "source": [
+ "Pre-trained models can be used like this:\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "a2522fb4",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "!pip install --upgrade paddlenlp"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "1557ae2a",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import paddle\n",
+ "from paddlenlp.transformers import AutoModel\n",
+ "\n",
+ "model = AutoModel.from_pretrained(\"cross-encoder/nli-MiniLM2-L6-H768\")\n",
+ "input_ids = paddle.randint(100, 200, shape=[1, 20])\n",
+ "print(model(input_ids))"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "4259d72d",
+ "metadata": {},
+ "source": [
+ "> The model introduction and model weights originate from [https://huggingface.co/cross-encoder/nli-MiniLM2-L6-H768](https://huggingface.co/cross-encoder/nli-MiniLM2-L6-H768) and were converted to PaddlePaddle format for ease of use in PaddleNLP.\n"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3 (ipykernel)",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.8.13"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 5
+}
diff --git a/modelcenter/community/cross-encoder/nli-distilroberta-base/info.yaml b/modelcenter/community/cross-encoder/nli-distilroberta-base/info.yaml
index 4cb632cc31daf5ad770c0195de30f5d6e13dac6b..e58a4fb06877995d2c7e6003e778885c014b89cd 100644
--- a/modelcenter/community/cross-encoder/nli-distilroberta-base/info.yaml
+++ b/modelcenter/community/cross-encoder/nli-distilroberta-base/info.yaml
@@ -1,27 +1,23 @@
+Datasets: multi_nli,snli
+Example: null
+IfOnlineDemo: 0
+IfTraining: 0
+Language: English
+License: apache-2.0
Model_Info:
- name: "cross-encoder/nli-distilroberta-base"
- description: "Cross-Encoder for Natural Language Inference"
- description_en: "Cross-Encoder for Natural Language Inference"
- icon: ""
- from_repo: "https://huggingface.co/cross-encoder/nli-distilroberta-base"
-
+ description: Cross-Encoder for Natural Language Inference
+ description_en: Cross-Encoder for Natural Language Inference
+ from_repo: https://huggingface.co/cross-encoder/nli-distilroberta-base
+ icon: https://paddlenlp.bj.bcebos.com/models/community/transformer-layer.png
+ name: cross-encoder/nli-distilroberta-base
+Paper: null
+Publisher: cross-encoder
Task:
-- tag_en: "Natural Language Processing"
- tag: "自然语言处理"
- sub_tag_en: "Zero-Shot Classification"
- sub_tag: "零样本分类"
-- tag_en: "Natural Language Processing"
- tag: "自然语言处理"
- sub_tag_en: "Text Classification"
- sub_tag: "文本分类"
-
-Example:
-
-Datasets: "multi_nli,snli"
-Publisher: "cross-encoder"
-License: "apache-2.0"
-Language: "English"
-Paper:
-
-IfTraining: 0
-IfOnlineDemo: 0
\ No newline at end of file
+- sub_tag: 零样本分类
+ sub_tag_en: Zero-Shot Classification
+ tag: 自然语言处理
+ tag_en: Natural Language Processing
+- sub_tag: 文本分类
+ sub_tag_en: Text Classification
+ tag: 自然语言处理
+ tag_en: Natural Language Processing
diff --git a/modelcenter/community/cross-encoder/nli-distilroberta-base/introduction_cn.ipynb b/modelcenter/community/cross-encoder/nli-distilroberta-base/introduction_cn.ipynb
new file mode 100644
index 0000000000000000000000000000000000000000..97c4049644ca09128a9ec3560bf634ff899e695e
--- /dev/null
+++ b/modelcenter/community/cross-encoder/nli-distilroberta-base/introduction_cn.ipynb
@@ -0,0 +1,101 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "id": "dfce17cd",
+ "metadata": {},
+ "source": [
+ "# Cross-Encoder for Natural Language Inference\n",
+ "This model was trained using [SentenceTransformers](https://sbert.net) [Cross-Encoder](https://www.sbert.net/examples/applications/cross-encoder/README.html) class.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "ec682169",
+ "metadata": {},
+ "source": [
+ "## Training Data\n",
+ "The model was trained on the [SNLI](https://nlp.stanford.edu/projects/snli/) and [MultiNLI](https://cims.nyu.edu/~sbowman/multinli/) datasets. For a given sentence pair, it will output three scores corresponding to the labels: contradiction, entailment, neutral.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "ba993930",
+ "metadata": {},
+ "source": [
+ "## Performance\n",
+ "For evaluation results, see [SBERT.net - Pretrained Cross-Encoder](https://www.sbert.net/docs/pretrained_cross-encoders.html#nli).\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "15de6eec",
+ "metadata": {},
+ "source": [
+ "## Usage\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "6ab89b97",
+ "metadata": {},
+ "source": [
+ "Pre-trained models can be used like this:\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "f53af30f",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "!pip install --upgrade paddlenlp"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "f31b1839",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import paddle\n",
+ "from paddlenlp.transformers import AutoModel\n",
+ "\n",
+ "model = AutoModel.from_pretrained(\"cross-encoder/nli-distilroberta-base\")\n",
+ "input_ids = paddle.randint(100, 200, shape=[1, 20])\n",
+ "print(model(input_ids))"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "4254d407",
+ "metadata": {},
+ "source": [
+ "> 此模型介绍及权重来源于[https://huggingface.co/cross-encoder/nli-distilroberta-base](https://huggingface.co/cross-encoder/nli-distilroberta-base),并转换为飞桨模型格式。\n"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3 (ipykernel)",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.8.13"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 5
+}
diff --git a/modelcenter/community/cross-encoder/nli-distilroberta-base/introduction_en.ipynb b/modelcenter/community/cross-encoder/nli-distilroberta-base/introduction_en.ipynb
new file mode 100644
index 0000000000000000000000000000000000000000..ed86eb3029bfaf7d5fabd0f9080d1e5dd67dd436
--- /dev/null
+++ b/modelcenter/community/cross-encoder/nli-distilroberta-base/introduction_en.ipynb
@@ -0,0 +1,101 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "id": "a4ae7e65",
+ "metadata": {},
+ "source": [
+ "# Cross-Encoder for Natural Language Inference\n",
+ "This model was trained using [SentenceTransformers](https://sbert.net) [Cross-Encoder](https://www.sbert.net/examples/applications/cross-encoder/README.html) class.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "f2d88a35",
+ "metadata": {},
+ "source": [
+ "## Training Data\n",
+ "The model was trained on the [SNLI](https://nlp.stanford.edu/projects/snli/) and [MultiNLI](https://cims.nyu.edu/~sbowman/multinli/) datasets. For a given sentence pair, it will output three scores corresponding to the labels: contradiction, entailment, neutral.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "d982bc91",
+ "metadata": {},
+ "source": [
+ "## Performance\n",
+ "For evaluation results, see [SBERT.net - Pretrained Cross-Encoder](https://www.sbert.net/docs/pretrained_cross-encoders.html#nli).\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "1f3796c9",
+ "metadata": {},
+ "source": [
+ "## Usage\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "14206f74",
+ "metadata": {},
+ "source": [
+ "Pre-trained models can be used like this:\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "7e5f7a2f",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "!pip install --upgrade paddlenlp"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "05497be6",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import paddle\n",
+ "from paddlenlp.transformers import AutoModel\n",
+ "\n",
+ "model = AutoModel.from_pretrained(\"cross-encoder/nli-distilroberta-base\")\n",
+ "input_ids = paddle.randint(100, 200, shape=[1, 20])\n",
+ "print(model(input_ids))"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "ea7e434c",
+ "metadata": {},
+ "source": [
+ "> The model introduction and model weights originate from [https://huggingface.co/cross-encoder/nli-distilroberta-base](https://huggingface.co/cross-encoder/nli-distilroberta-base) and were converted to PaddlePaddle format for ease of use in PaddleNLP.\n"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3 (ipykernel)",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.8.13"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 5
+}
diff --git a/modelcenter/community/cross-encoder/nli-roberta-base/info.yaml b/modelcenter/community/cross-encoder/nli-roberta-base/info.yaml
index b5b44e711ee739b3ef120bf47f6cb3065d5a5fc4..b249ec623a37d1275c0face62380259f865d0805 100644
--- a/modelcenter/community/cross-encoder/nli-roberta-base/info.yaml
+++ b/modelcenter/community/cross-encoder/nli-roberta-base/info.yaml
@@ -1,27 +1,23 @@
+Datasets: multi_nli,snli
+Example: null
+IfOnlineDemo: 0
+IfTraining: 0
+Language: English
+License: apache-2.0
Model_Info:
- name: "cross-encoder/nli-roberta-base"
- description: "Cross-Encoder for Natural Language Inference"
- description_en: "Cross-Encoder for Natural Language Inference"
- icon: ""
- from_repo: "https://huggingface.co/cross-encoder/nli-roberta-base"
-
+ description: Cross-Encoder for Natural Language Inference
+ description_en: Cross-Encoder for Natural Language Inference
+ from_repo: https://huggingface.co/cross-encoder/nli-roberta-base
+ icon: https://paddlenlp.bj.bcebos.com/models/community/transformer-layer.png
+ name: cross-encoder/nli-roberta-base
+Paper: null
+Publisher: cross-encoder
Task:
-- tag_en: "Natural Language Processing"
- tag: "自然语言处理"
- sub_tag_en: "Zero-Shot Classification"
- sub_tag: "零样本分类"
-- tag_en: "Natural Language Processing"
- tag: "自然语言处理"
- sub_tag_en: "Text Classification"
- sub_tag: "文本分类"
-
-Example:
-
-Datasets: "multi_nli,snli"
-Publisher: "cross-encoder"
-License: "apache-2.0"
-Language: "English"
-Paper:
-
-IfTraining: 0
-IfOnlineDemo: 0
\ No newline at end of file
+- sub_tag: 零样本分类
+ sub_tag_en: Zero-Shot Classification
+ tag: 自然语言处理
+ tag_en: Natural Language Processing
+- sub_tag: 文本分类
+ sub_tag_en: Text Classification
+ tag: 自然语言处理
+ tag_en: Natural Language Processing
diff --git a/modelcenter/community/cross-encoder/nli-roberta-base/introduction_cn.ipynb b/modelcenter/community/cross-encoder/nli-roberta-base/introduction_cn.ipynb
new file mode 100644
index 0000000000000000000000000000000000000000..cae52536bbf3d74eb5b75fdd200603d4daf29861
--- /dev/null
+++ b/modelcenter/community/cross-encoder/nli-roberta-base/introduction_cn.ipynb
@@ -0,0 +1,101 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "id": "4fd29af9",
+ "metadata": {},
+ "source": [
+ "# Cross-Encoder for Natural Language Inference\n",
+ "This model was trained using [SentenceTransformers](https://sbert.net) [Cross-Encoder](https://www.sbert.net/examples/applications/cross-encoder/README.html) class.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "26cf9863",
+ "metadata": {},
+ "source": [
+ "## Training Data\n",
+ "The model was trained on the [SNLI](https://nlp.stanford.edu/projects/snli/) and [MultiNLI](https://cims.nyu.edu/~sbowman/multinli/) datasets. For a given sentence pair, it will output three scores corresponding to the labels: contradiction, entailment, neutral.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "913c77b3",
+ "metadata": {},
+ "source": [
+ "## Performance\n",
+ "For evaluation results, see [SBERT.net - Pretrained Cross-Encoder](https://www.sbert.net/docs/pretrained_cross-encoders.html#nli).\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "1edcf5c1",
+ "metadata": {},
+ "source": [
+ "## Usage\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "a3d044ef",
+ "metadata": {},
+ "source": [
+ "Pre-trained models can be used like this:\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "549f470f",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "!pip install --upgrade paddlenlp"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "358989b6",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import paddle\n",
+ "from paddlenlp.transformers import AutoModel\n",
+ "\n",
+ "model = AutoModel.from_pretrained(\"cross-encoder/nli-roberta-base\")\n",
+ "input_ids = paddle.randint(100, 200, shape=[1, 20])\n",
+ "print(model(input_ids))"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "453c5b27",
+ "metadata": {},
+ "source": [
+ "此模型介绍及权重来源于[https://huggingface.co/cross-encoder/nli-roberta-base](https://huggingface.co/cross-encoder/nli-roberta-base),并转换为飞桨模型格式。\n"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3 (ipykernel)",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.8.13"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 5
+}
diff --git a/modelcenter/community/cross-encoder/nli-roberta-base/introduction_en.ipynb b/modelcenter/community/cross-encoder/nli-roberta-base/introduction_en.ipynb
new file mode 100644
index 0000000000000000000000000000000000000000..ca8539a78dbffbd893f86740c998e09247558094
--- /dev/null
+++ b/modelcenter/community/cross-encoder/nli-roberta-base/introduction_en.ipynb
@@ -0,0 +1,101 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "id": "d174d9c5",
+ "metadata": {},
+ "source": [
+ "# Cross-Encoder for Natural Language Inference\n",
+ "This model was trained using [SentenceTransformers](https://sbert.net) [Cross-Encoder](https://www.sbert.net/examples/applications/cross-encoder/README.html) class.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "6b47f4c6",
+ "metadata": {},
+ "source": [
+ "## Training Data\n",
+ "The model was trained on the [SNLI](https://nlp.stanford.edu/projects/snli/) and [MultiNLI](https://cims.nyu.edu/~sbowman/multinli/) datasets. For a given sentence pair, it will output three scores corresponding to the labels: contradiction, entailment, neutral.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "39bc9190",
+ "metadata": {},
+ "source": [
+ "## Performance\n",
+ "For evaluation results, see [SBERT.net - Pretrained Cross-Encoder](https://www.sbert.net/docs/pretrained_cross-encoders.html#nli).\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "0d84928d",
+ "metadata": {},
+ "source": [
+ "## Usage\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "3b2a033c",
+ "metadata": {},
+ "source": [
+ "Pre-trained models can be used like this:\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "4d9e33fd",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "!pip install --upgrade paddlenlp"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "f84786a3",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import paddle\n",
+ "from paddlenlp.transformers import AutoModel\n",
+ "\n",
+ "model = AutoModel.from_pretrained(\"cross-encoder/nli-roberta-base\")\n",
+ "input_ids = paddle.randint(100, 200, shape=[1, 20])\n",
+ "print(model(input_ids))"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "dac6563c",
+ "metadata": {},
+ "source": [
+ "The model introduction and model weights originate from [https://huggingface.co/cross-encoder/nli-roberta-base](https://huggingface.co/cross-encoder/nli-roberta-base) and were converted to PaddlePaddle format for ease of use in PaddleNLP.\n"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3 (ipykernel)",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.8.13"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 5
+}
diff --git a/modelcenter/community/cross-encoder/qnli-distilroberta-base/download_cn.md b/modelcenter/community/cross-encoder/qnli-distilroberta-base/download_cn.md
deleted file mode 100644
index 28d383d810a80bebc2d19cd7bbb989570bb48408..0000000000000000000000000000000000000000
--- a/modelcenter/community/cross-encoder/qnli-distilroberta-base/download_cn.md
+++ /dev/null
@@ -1,23 +0,0 @@
-# 模型列表
-
-## cross-encoder/qnli-distilroberta-base
-
-| 模型名称 | 模型介绍 | 模型大小 | 模型下载 |
-| --- | --- | --- | --- |
-|cross-encoder/qnli-distilroberta-base| | 313.28MB | [merges.txt](https://bj.bcebos.com/paddlenlp/models/community/cross-encoder/qnli-distilroberta-base/merges.txt)
[model_config.json](https://bj.bcebos.com/paddlenlp/models/community/cross-encoder/qnli-distilroberta-base/model_config.json)
[model_state.pdparams](https://bj.bcebos.com/paddlenlp/models/community/cross-encoder/qnli-distilroberta-base/model_state.pdparams)
[tokenizer_config.json](https://bj.bcebos.com/paddlenlp/models/community/cross-encoder/qnli-distilroberta-base/tokenizer_config.json)
[vocab.json](https://bj.bcebos.com/paddlenlp/models/community/cross-encoder/qnli-distilroberta-base/vocab.json)
[vocab.txt](https://bj.bcebos.com/paddlenlp/models/community/cross-encoder/qnli-distilroberta-base/vocab.txt) |
-
-也可以通过`paddlenlp` cli 工具来下载对应的模型权重,使用步骤如下所示:
-
-* 安装paddlenlp
-
-```shell
-pip install --upgrade paddlenlp
-```
-
-* 下载命令行
-
-```shell
-paddlenlp download --cache-dir ./pretrained_models cross-encoder/qnli-distilroberta-base
-```
-
-有任何下载的问题都可以到[PaddleNLP](https://github.com/PaddlePaddle/PaddleNLP)中发Issue提问。
\ No newline at end of file
diff --git a/modelcenter/community/cross-encoder/qnli-distilroberta-base/download_en.md b/modelcenter/community/cross-encoder/qnli-distilroberta-base/download_en.md
deleted file mode 100644
index af6cf7e099eddc626b55eceaefde57d7cebd37fa..0000000000000000000000000000000000000000
--- a/modelcenter/community/cross-encoder/qnli-distilroberta-base/download_en.md
+++ /dev/null
@@ -1,23 +0,0 @@
-# model list
-
-##
-
-| model | description | model_size | download |
-| --- | --- | --- | --- |
-|cross-encoder/qnli-distilroberta-base| | 313.28MB | [merges.txt](https://bj.bcebos.com/paddlenlp/models/community/cross-encoder/qnli-distilroberta-base/merges.txt)
[model_config.json](https://bj.bcebos.com/paddlenlp/models/community/cross-encoder/qnli-distilroberta-base/model_config.json)
[model_state.pdparams](https://bj.bcebos.com/paddlenlp/models/community/cross-encoder/qnli-distilroberta-base/model_state.pdparams)
[tokenizer_config.json](https://bj.bcebos.com/paddlenlp/models/community/cross-encoder/qnli-distilroberta-base/tokenizer_config.json)
[vocab.json](https://bj.bcebos.com/paddlenlp/models/community/cross-encoder/qnli-distilroberta-base/vocab.json)
[vocab.txt](https://bj.bcebos.com/paddlenlp/models/community/cross-encoder/qnli-distilroberta-base/vocab.txt) |
-
-or you can download all of model file with the following steps:
-
-* install paddlenlp
-
-```shell
-pip install --upgrade paddlenlp
-```
-
-* download model with cli tool
-
-```shell
-paddlenlp download --cache-dir ./pretrained_models cross-encoder/qnli-distilroberta-base
-```
-
-If you have any problems with it, you can post issue on [PaddleNLP](https://github.com/PaddlePaddle/PaddleNLP) to get support.
diff --git a/modelcenter/community/cross-encoder/qnli-distilroberta-base/info.yaml b/modelcenter/community/cross-encoder/qnli-distilroberta-base/info.yaml
deleted file mode 100644
index 3db73d3512bcd0f12e13cac511bb24d7f5f9c90e..0000000000000000000000000000000000000000
--- a/modelcenter/community/cross-encoder/qnli-distilroberta-base/info.yaml
+++ /dev/null
@@ -1,24 +0,0 @@
-Model_Info:
- name: "cross-encoder/qnli-distilroberta-base"
- description: "Cross-Encoder for Quora Duplicate Questions Detection"
- description_en: "Cross-Encoder for Quora Duplicate Questions Detection"
- icon: ""
- from_repo: "https://huggingface.co/cross-encoder/qnli-distilroberta-base"
-
-Task:
-- tag_en: "Natural Language Processing"
- tag: "自然语言处理"
- sub_tag_en: "Text Classification"
- sub_tag: "文本分类"
-
-Example:
-
-Datasets: ""
-Publisher: "cross-encoder"
-License: "apache-2.0"
-Language: ""
-Paper:
- - title: 'GLUE: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding'
- url: 'http://arxiv.org/abs/1804.07461v3'
-IfTraining: 0
-IfOnlineDemo: 0
\ No newline at end of file
diff --git a/modelcenter/community/cross-encoder/quora-distilroberta-base/info.yaml b/modelcenter/community/cross-encoder/quora-distilroberta-base/info.yaml
index d43beab086c628ebcda0f66d57a0da28d5ec78f9..862ffb6fa213c5370381d483e75685e4b71b18bb 100644
--- a/modelcenter/community/cross-encoder/quora-distilroberta-base/info.yaml
+++ b/modelcenter/community/cross-encoder/quora-distilroberta-base/info.yaml
@@ -1,23 +1,19 @@
+Datasets: ''
+Example: null
+IfOnlineDemo: 0
+IfTraining: 0
+Language: ''
+License: apache-2.0
Model_Info:
- name: "cross-encoder/quora-distilroberta-base"
- description: "Cross-Encoder for Quora Duplicate Questions Detection"
- description_en: "Cross-Encoder for Quora Duplicate Questions Detection"
- icon: ""
- from_repo: "https://huggingface.co/cross-encoder/quora-distilroberta-base"
-
+ description: Cross-Encoder for Quora Duplicate Questions Detection
+ description_en: Cross-Encoder for Quora Duplicate Questions Detection
+ from_repo: https://huggingface.co/cross-encoder/quora-distilroberta-base
+ icon: https://paddlenlp.bj.bcebos.com/models/community/transformer-layer.png
+ name: cross-encoder/quora-distilroberta-base
+Paper: null
+Publisher: cross-encoder
Task:
-- tag_en: "Natural Language Processing"
- tag: "自然语言处理"
- sub_tag_en: "Text Classification"
- sub_tag: "文本分类"
-
-Example:
-
-Datasets: ""
-Publisher: "cross-encoder"
-License: "apache-2.0"
-Language: ""
-Paper:
-
-IfTraining: 0
-IfOnlineDemo: 0
\ No newline at end of file
+- sub_tag: 文本分类
+ sub_tag_en: Text Classification
+ tag: 自然语言处理
+ tag_en: Natural Language Processing
diff --git a/modelcenter/community/cross-encoder/quora-distilroberta-base/introduction_cn.ipynb b/modelcenter/community/cross-encoder/quora-distilroberta-base/introduction_cn.ipynb
new file mode 100644
index 0000000000000000000000000000000000000000..754028bd2190c3735fcf8e5ca06895735bd86dff
--- /dev/null
+++ b/modelcenter/community/cross-encoder/quora-distilroberta-base/introduction_cn.ipynb
@@ -0,0 +1,100 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "id": "9108ec88",
+ "metadata": {},
+ "source": [
+ "# Cross-Encoder for Quora Duplicate Questions Detection\n",
+ "This model was trained using [SentenceTransformers](https://sbert.net) [Cross-Encoder](https://www.sbert.net/examples/applications/cross-encoder/README.html) class.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "dcc58a5d",
+ "metadata": {},
+ "source": [
+ "## Training Data\n",
+ "This model was trained on the [Quora Duplicate Questions](https://www.quora.com/q/quoradata/First-Quora-Dataset-Release-Question-Pairs) dataset. The model will predict a score between 0 and 1 how likely the two given questions are duplicates.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "4f967914",
+ "metadata": {},
+ "source": [
+ "Note: The model is not suitable to estimate the similarity of questions, e.g. the two questions \"How to learn Java\" and \"How to learn Python\" will result in a rahter low score, as these are not duplicates.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "fe95bb7e",
+ "metadata": {},
+ "source": [
+ "## Usage and Performance\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "8efd69d2",
+ "metadata": {},
+ "source": [
+ "Pre-trained models can be used like this:\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "92142a26",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "!pip install --upgrade paddlenlp"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "436ba799",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import paddle\n",
+ "from paddlenlp.transformers import AutoModel\n",
+ "\n",
+ "model = AutoModel.from_pretrained(\"cross-encoder/quora-distilroberta-base\")\n",
+ "input_ids = paddle.randint(100, 200, shape=[1, 20])\n",
+ "print(model(input_ids))"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "a5a90cce",
+ "metadata": {},
+ "source": [
+ "> 此模型介绍及权重来源于[https://huggingface.co/cross-encoder/quora-distilroberta-base](https://huggingface.co/cross-encoder/quora-distilroberta-base),并转换为飞桨模型格式。\n"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3 (ipykernel)",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.7.13"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 5
+}
diff --git a/modelcenter/community/cross-encoder/quora-distilroberta-base/introduction_en.ipynb b/modelcenter/community/cross-encoder/quora-distilroberta-base/introduction_en.ipynb
new file mode 100644
index 0000000000000000000000000000000000000000..d7454d9d3da87f9fdde768f801188cefafc1d6ec
--- /dev/null
+++ b/modelcenter/community/cross-encoder/quora-distilroberta-base/introduction_en.ipynb
@@ -0,0 +1,100 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "id": "104bbe82",
+ "metadata": {},
+ "source": [
+ "# Cross-Encoder for Quora Duplicate Questions Detection\n",
+ "This model was trained using [SentenceTransformers](https://sbert.net) [Cross-Encoder](https://www.sbert.net/examples/applications/cross-encoder/README.html) class.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "71def254",
+ "metadata": {},
+ "source": [
+ "## Training Data\n",
+ "This model was trained on the [Quora Duplicate Questions](https://www.quora.com/q/quoradata/First-Quora-Dataset-Release-Question-Pairs) dataset. The model will predict a score between 0 and 1 how likely the two given questions are duplicates.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "10f2b17c",
+ "metadata": {},
+ "source": [
+ "Note: The model is not suitable to estimate the similarity of questions, e.g. the two questions \"How to learn Java\" and \"How to learn Python\" will result in a rahter low score, as these are not duplicates.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "9e28c83a",
+ "metadata": {},
+ "source": [
+ "## Usage and Performance\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "bc8ce622",
+ "metadata": {},
+ "source": [
+ "Pre-trained models can be used like this:\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "3f66406a",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "!pip install --upgrade paddlenlp"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "7ba92b4f",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import paddle\n",
+ "from paddlenlp.transformers import AutoModel\n",
+ "\n",
+ "model = AutoModel.from_pretrained(\"cross-encoder/quora-distilroberta-base\")\n",
+ "input_ids = paddle.randint(100, 200, shape=[1, 20])\n",
+ "print(model(input_ids))"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "93656328",
+ "metadata": {},
+ "source": [
+ "> The model introduction and model weights originate from [https://huggingface.co/cross-encoder/quora-distilroberta-base](https://huggingface.co/cross-encoder/quora-distilroberta-base) and were converted to PaddlePaddle format for ease of use in PaddleNLP.\n"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3 (ipykernel)",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.7.13"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 5
+}
diff --git a/modelcenter/community/cross-encoder/quora-roberta-base/info.yaml b/modelcenter/community/cross-encoder/quora-roberta-base/info.yaml
index c73a4ecdfb0c3f24d33f0a8f55d1eb83e42e09e5..77f19ca943d9b989990775410290a15b8a7a4c35 100644
--- a/modelcenter/community/cross-encoder/quora-roberta-base/info.yaml
+++ b/modelcenter/community/cross-encoder/quora-roberta-base/info.yaml
@@ -1,23 +1,19 @@
+Datasets: ''
+Example: null
+IfOnlineDemo: 0
+IfTraining: 0
+Language: ''
+License: apache-2.0
Model_Info:
- name: "cross-encoder/quora-roberta-base"
- description: "Cross-Encoder for Quora Duplicate Questions Detection"
- description_en: "Cross-Encoder for Quora Duplicate Questions Detection"
- icon: ""
- from_repo: "https://huggingface.co/cross-encoder/quora-roberta-base"
-
+ description: Cross-Encoder for Quora Duplicate Questions Detection
+ description_en: Cross-Encoder for Quora Duplicate Questions Detection
+ from_repo: https://huggingface.co/cross-encoder/quora-roberta-base
+ icon: https://paddlenlp.bj.bcebos.com/models/community/transformer-layer.png
+ name: cross-encoder/quora-roberta-base
+Paper: null
+Publisher: cross-encoder
Task:
-- tag_en: "Natural Language Processing"
- tag: "自然语言处理"
- sub_tag_en: "Text Classification"
- sub_tag: "文本分类"
-
-Example:
-
-Datasets: ""
-Publisher: "cross-encoder"
-License: "apache-2.0"
-Language: ""
-Paper:
-
-IfTraining: 0
-IfOnlineDemo: 0
\ No newline at end of file
+- sub_tag: 文本分类
+ sub_tag_en: Text Classification
+ tag: 自然语言处理
+ tag_en: Natural Language Processing
diff --git a/modelcenter/community/cross-encoder/quora-roberta-base/introduction_cn.ipynb b/modelcenter/community/cross-encoder/quora-roberta-base/introduction_cn.ipynb
new file mode 100644
index 0000000000000000000000000000000000000000..34f8bcafa1f792ade65b248a7eb48a60bb397693
--- /dev/null
+++ b/modelcenter/community/cross-encoder/quora-roberta-base/introduction_cn.ipynb
@@ -0,0 +1,100 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "id": "87e3266c",
+ "metadata": {},
+ "source": [
+ "# Cross-Encoder for Quora Duplicate Questions Detection\n",
+ "This model was trained using [SentenceTransformers](https://sbert.net) [Cross-Encoder](https://www.sbert.net/examples/applications/cross-encoder/README.html) class.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "e743234a",
+ "metadata": {},
+ "source": [
+ "## Training Data\n",
+ "This model was trained on the [Quora Duplicate Questions](https://www.quora.com/q/quoradata/First-Quora-Dataset-Release-Question-Pairs) dataset. The model will predict a score between 0 and 1 how likely the two given questions are duplicates.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "f755b608",
+ "metadata": {},
+ "source": [
+ "Note: The model is not suitable to estimate the similarity of questions, e.g. the two questions \"How to learn Java\" and \"How to learn Python\" will result in a rahter low score, as these are not duplicates.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "5a08f2c7",
+ "metadata": {},
+ "source": [
+ "## Usage and Performance\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "c4021393",
+ "metadata": {},
+ "source": [
+ "Pre-trained models can be used like this:\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "5f704b5f",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "!pip install --upgrade paddlenlp"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "161c640b",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import paddle\n",
+ "from paddlenlp.transformers import AutoModel\n",
+ "\n",
+ "model = AutoModel.from_pretrained(\"cross-encoder/quora-roberta-base\")\n",
+ "input_ids = paddle.randint(100, 200, shape=[1, 20])\n",
+ "print(model(input_ids))"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "93a5e3b7",
+ "metadata": {},
+ "source": [
+ "> 此模型介绍及权重来源于[https://huggingface.co/cross-encoder/quora-roberta-base](https://huggingface.co/cross-encoder/quora-roberta-base),并转换为飞桨模型格式。\n"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3 (ipykernel)",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.7.13"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 5
+}
diff --git a/modelcenter/community/cross-encoder/quora-roberta-base/introduction_en.ipynb b/modelcenter/community/cross-encoder/quora-roberta-base/introduction_en.ipynb
new file mode 100644
index 0000000000000000000000000000000000000000..0d5d6b195762e9b9fb646ddb2faaae515c4b724f
--- /dev/null
+++ b/modelcenter/community/cross-encoder/quora-roberta-base/introduction_en.ipynb
@@ -0,0 +1,100 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "id": "74b2ba5f",
+ "metadata": {},
+ "source": [
+ "# Cross-Encoder for Quora Duplicate Questions Detection\n",
+ "This model was trained using [SentenceTransformers](https://sbert.net) [Cross-Encoder](https://www.sbert.net/examples/applications/cross-encoder/README.html) class.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "36bf7390",
+ "metadata": {},
+ "source": [
+ "## Training Data\n",
+ "This model was trained on the [Quora Duplicate Questions](https://www.quora.com/q/quoradata/First-Quora-Dataset-Release-Question-Pairs) dataset. The model will predict a score between 0 and 1 how likely the two given questions are duplicates.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "5aa29571",
+ "metadata": {},
+ "source": [
+ "Note: The model is not suitable to estimate the similarity of questions, e.g. the two questions \"How to learn Java\" and \"How to learn Python\" will result in a rahter low score, as these are not duplicates.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "1fe76310",
+ "metadata": {},
+ "source": [
+ "## Usage and Performance\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "e7067bef",
+ "metadata": {},
+ "source": [
+ "Pre-trained models can be used like this:\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "a9ea7b3d",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "!pip install --upgrade paddlenlp"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "b30bfcd4",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import paddle\n",
+ "from paddlenlp.transformers import AutoModel\n",
+ "\n",
+ "model = AutoModel.from_pretrained(\"cross-encoder/quora-roberta-base\")\n",
+ "input_ids = paddle.randint(100, 200, shape=[1, 20])\n",
+ "print(model(input_ids))"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "ecb795de",
+ "metadata": {},
+ "source": [
+ "> The model introduction and model weights originate from [https://huggingface.co/cross-encoder/quora-roberta-base](https://huggingface.co/cross-encoder/quora-roberta-base) and were converted to PaddlePaddle format for ease of use in PaddleNLP.\n"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3 (ipykernel)",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.7.13"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 5
+}
diff --git a/modelcenter/community/cross-encoder/stsb-TinyBERT-L-4/info.yaml b/modelcenter/community/cross-encoder/stsb-TinyBERT-L-4/info.yaml
index b226f5172ab7e273c663cbed38683d919b5d7bcf..b149dade3f4984e77eb7a66b56621ec48556763c 100644
--- a/modelcenter/community/cross-encoder/stsb-TinyBERT-L-4/info.yaml
+++ b/modelcenter/community/cross-encoder/stsb-TinyBERT-L-4/info.yaml
@@ -1,23 +1,19 @@
+Datasets: ''
+Example: null
+IfOnlineDemo: 0
+IfTraining: 0
+Language: ''
+License: apache-2.0
Model_Info:
- name: "cross-encoder/stsb-TinyBERT-L-4"
- description: "Cross-Encoder for Quora Duplicate Questions Detection"
- description_en: "Cross-Encoder for Quora Duplicate Questions Detection"
- icon: ""
- from_repo: "https://huggingface.co/cross-encoder/stsb-TinyBERT-L-4"
-
+ description: Cross-Encoder for Quora Duplicate Questions Detection
+ description_en: Cross-Encoder for Quora Duplicate Questions Detection
+ from_repo: https://huggingface.co/cross-encoder/stsb-TinyBERT-L-4
+ icon: https://paddlenlp.bj.bcebos.com/models/community/transformer-layer.png
+ name: cross-encoder/stsb-TinyBERT-L-4
+Paper: null
+Publisher: cross-encoder
Task:
-- tag_en: "Natural Language Processing"
- tag: "自然语言处理"
- sub_tag_en: "Text Classification"
- sub_tag: "文本分类"
-
-Example:
-
-Datasets: ""
-Publisher: "cross-encoder"
-License: "apache-2.0"
-Language: ""
-Paper:
-
-IfTraining: 0
-IfOnlineDemo: 0
\ No newline at end of file
+- sub_tag: 文本分类
+ sub_tag_en: Text Classification
+ tag: 自然语言处理
+ tag_en: Natural Language Processing
diff --git a/modelcenter/community/cross-encoder/stsb-TinyBERT-L-4/introduction_cn.ipynb b/modelcenter/community/cross-encoder/stsb-TinyBERT-L-4/introduction_cn.ipynb
new file mode 100644
index 0000000000000000000000000000000000000000..53b39a12b9d6688a13bee885f22dc558f9b83a8b
--- /dev/null
+++ b/modelcenter/community/cross-encoder/stsb-TinyBERT-L-4/introduction_cn.ipynb
@@ -0,0 +1,196 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "id": "a3deebdc",
+ "metadata": {},
+ "source": [
+ "# Cross-Encoder for Quora Duplicate Questions Detection\n",
+ "This model was trained using [SentenceTransformers](https://sbert.net) [Cross-Encoder](https://www.sbert.net/examples/applications/cross-encoder/README.html) class.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "4fc17643",
+ "metadata": {},
+ "source": [
+ "## Training Data\n",
+ "This model was trained on the [STS benchmark dataset](http://ixa2.si.ehu.eus/stswiki/index.php/STSbenchmark). The model will predict a score between 0 and 1 how for the semantic similarity of two sentences.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "f66fb11e",
+ "metadata": {},
+ "source": [
+ "## Usage and Performance\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "fd12128b",
+ "metadata": {},
+ "source": [
+ "Pre-trained models can be used like this:\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "d0d04e39",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "!pip install --upgrade paddlenlp"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": 1,
+ "id": "d07e31aa",
+ "metadata": {
+ "collapsed": true
+ },
+ "outputs": [
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "/root/miniconda3/envs/paddle/lib/python3.7/site-packages/tqdm/auto.py:22: TqdmWarning: IProgress not found. Please update jupyter and ipywidgets. See https://ipywidgets.readthedocs.io/en/stable/user_install.html\n",
+ " from .autonotebook import tqdm as notebook_tqdm\n",
+ "\u001b[32m[2022-11-21 02:38:07,127] [ INFO]\u001b[0m - Downloading model_config.json from https://bj.bcebos.com/paddlenlp/models/community/cross-encoder/stsb-TinyBERT-L-4/model_config.json\u001b[0m\n",
+ "100%|███████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 432/432 [00:00<00:00, 425kB/s]\n",
+ "\u001b[32m[2022-11-21 02:38:07,197] [ INFO]\u001b[0m - We are using to load 'cross-encoder/stsb-TinyBERT-L-4'.\u001b[0m\n",
+ "\u001b[32m[2022-11-21 02:38:07,198] [ INFO]\u001b[0m - Downloading https://bj.bcebos.com/paddlenlp/models/community/cross-encoder/stsb-TinyBERT-L-4/model_state.pdparams and saved to /root/.paddlenlp/models/cross-encoder/stsb-TinyBERT-L-4\u001b[0m\n",
+ "\u001b[32m[2022-11-21 02:38:07,198] [ INFO]\u001b[0m - Downloading model_state.pdparams from https://bj.bcebos.com/paddlenlp/models/community/cross-encoder/stsb-TinyBERT-L-4/model_state.pdparams\u001b[0m\n",
+ "100%|██████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 54.8M/54.8M [00:00<00:00, 64.7MB/s]\n",
+ "\u001b[32m[2022-11-21 02:38:08,199] [ INFO]\u001b[0m - Already cached /root/.paddlenlp/models/cross-encoder/stsb-TinyBERT-L-4/model_config.json\u001b[0m\n",
+ "W1121 02:38:08.202270 64563 gpu_resources.cc:61] Please NOTE: device: 0, GPU Compute Capability: 7.0, Driver API Version: 10.2, Runtime API Version: 10.2\n",
+ "W1121 02:38:08.207437 64563 gpu_resources.cc:91] device: 0, cuDNN Version: 7.6.\n",
+ "\u001b[32m[2022-11-21 02:38:09,661] [ INFO]\u001b[0m - Weights from pretrained model not used in BertModel: ['classifier.weight', 'classifier.bias']\u001b[0m\n"
+ ]
+ },
+ {
+ "name": "stdout",
+ "output_type": "stream",
+ "text": [
+ "(Tensor(shape=[1, 20, 312], dtype=float32, place=Place(gpu:0), stop_gradient=False,\n",
+ " [[[-0.73827386, -0.57349819, 0.47456041, ..., -0.07317579,\n",
+ " 0.23808761, -0.43587247],\n",
+ " [-0.71079123, -0.37019217, 0.44499084, ..., -0.07541266,\n",
+ " 0.22209664, -0.48883811],\n",
+ " [-0.61283624, 0.01138088, 0.46346331, ..., -0.15316986,\n",
+ " 0.38455290, -0.23527470],\n",
+ " ...,\n",
+ " [-0.19267607, -0.42171016, 0.40080610, ..., -0.04322027,\n",
+ " 0.16102640, -0.43728969],\n",
+ " [-0.76348048, 0.00028179, 0.50795513, ..., 0.02495949,\n",
+ " 0.32419923, -0.44668996],\n",
+ " [-0.72070849, -0.48510927, 0.47747549, ..., -0.01621611,\n",
+ " 0.31407145, -0.38287419]]]), Tensor(shape=[1, 312], dtype=float32, place=Place(gpu:0), stop_gradient=False,\n",
+ " [[ 0.38359359, 0.16227540, -0.58949089, -0.67293817, 0.70552814,\n",
+ " 0.74028063, -0.60770833, 0.50480992, 0.71489060, -0.73976040,\n",
+ " -0.11784898, 0.73014355, -0.65726435, 0.17490843, -0.44103470,\n",
+ " 0.62014306, 0.35533482, -0.44271812, -0.61711168, -0.70586687,\n",
+ " 0.69903672, 0.00862758, 0.69424403, 0.31887573, 0.38736165,\n",
+ " 0.02848060, -0.69896543, 0.69952166, 0.56477094, 0.68585342,\n",
+ " 0.66026199, 0.67826200, 0.67839348, 0.74852920, -0.04272985,\n",
+ " 0.76357287, 0.38685408, -0.69717598, 0.69945419, 0.44048944,\n",
+ " -0.66915488, 0.11735962, 0.37215349, 0.73054057, 0.71345085,\n",
+ " 0.66489315, 0.19956835, 0.71552449, 0.64762783, -0.46583632,\n",
+ " -0.09976894, -0.45265704, 0.54242563, 0.42835563, -0.60076892,\n",
+ " 0.69768012, -0.72207040, -0.52898210, 0.34657273, 0.05400079,\n",
+ " 0.57360554, -0.72731823, -0.71799070, -0.37212241, -0.70602018,\n",
+ " -0.71248102, 0.02778789, -0.73165607, 0.46581894, -0.72120243,\n",
+ " 0.60769719, -0.63354278, 0.75307459, 0.00700274, -0.00984141,\n",
+ " -0.58984685, 0.36321065, 0.60098255, -0.72467339, 0.18362086,\n",
+ " 0.10687865, -0.63730168, -0.62655306, -0.00187578, -0.51795095,\n",
+ " -0.64884937, 0.69950461, 0.72286713, 0.72522557, -0.45434299,\n",
+ " -0.43063730, -0.10669708, -0.51012146, 0.66286671, 0.69542134,\n",
+ " 0.21393165, -0.02928682, 0.67238331, 0.20404275, -0.63556075,\n",
+ " 0.55774790, 0.26141557, 0.70166790, -0.03091500, 0.65226245,\n",
+ " -0.69878876, 0.32701582, -0.68492270, 0.67152256, 0.66395414,\n",
+ " -0.68914133, -0.63889050, 0.71558940, 0.50034380, -0.12911484,\n",
+ " 0.70831281, 0.68631476, -0.41206849, 0.23268108, 0.67747647,\n",
+ " -0.29744238, 0.65135175, -0.70074749, 0.56074560, -0.63501489,\n",
+ " 0.74985635, -0.60603380, 0.66920304, -0.72418481, -0.59756589,\n",
+ " -0.70151484, -0.38735744, -0.66458094, -0.71190053, -0.69316322,\n",
+ " 0.43108079, -0.21692288, 0.70705998, -0.14984211, 0.75786442,\n",
+ " 0.69729054, -0.68925959, -0.46773866, 0.66707891, -0.07957093,\n",
+ " 0.73757517, 0.10062494, -0.73353016, 0.10992812, -0.48824292,\n",
+ " 0.62493157, 0.43311006, -0.15723324, -0.48392498, -0.65230477,\n",
+ " -0.41098344, -0.65238249, -0.41507134, -0.55544889, -0.32195652,\n",
+ " -0.74827588, -0.64071310, -0.49207535, -0.69750905, -0.57037342,\n",
+ " 0.35724813, 0.74778593, 0.49369636, -0.69870174, 0.24547403,\n",
+ " 0.73229605, 0.15653144, 0.41334581, 0.64413625, 0.53084993,\n",
+ " -0.64746642, -0.58720803, 0.63381183, 0.76515305, -0.68342912,\n",
+ " 0.65923864, -0.74662960, -0.72339952, 0.32203752, -0.63402468,\n",
+ " -0.71399093, -0.50430977, 0.26967043, -0.21176267, 0.65678287,\n",
+ " 0.09193933, 0.23962519, 0.59481263, -0.61463839, -0.28634411,\n",
+ " 0.69451737, 0.47513142, 0.30889973, -0.18030594, -0.50777411,\n",
+ " 0.71548641, -0.34869543, -0.01252351, 0.12018032, 0.69536412,\n",
+ " 0.53745425, 0.54889160, -0.10619923, 0.68386155, -0.68498713,\n",
+ " 0.23352134, 0.67296249, -0.12094481, -0.69636226, -0.06552890,\n",
+ " 0.00965041, -0.52394331, 0.72305930, -0.17239039, -0.73262835,\n",
+ " 0.50841606, 0.39529455, -0.70830429, 0.51234418, 0.68391299,\n",
+ " -0.72483873, -0.51841038, -0.58264560, -0.74197364, 0.46386808,\n",
+ " -0.23263671, 0.21232133, -0.69674802, 0.33948907, 0.75922930,\n",
+ " -0.43505231, -0.53149903, -0.65927148, 0.09607304, -0.68945718,\n",
+ " 0.66966355, 0.68096715, 0.66396469, 0.13001618, -0.68894261,\n",
+ " -0.66597682, 0.61407733, 0.69670630, 0.63995171, 0.33257753,\n",
+ " 0.66776848, 0.57427299, 0.32768273, 0.69438887, 0.41346189,\n",
+ " -0.71529591, -0.09860074, -0.72291893, 0.16860481, -0.67641008,\n",
+ " 0.70644248, -0.24303547, 0.28892463, 0.56054235, 0.55539572,\n",
+ " 0.70762485, -0.50166684, -0.70544142, -0.74241722, -0.74010289,\n",
+ " 0.70217764, -0.09219251, 0.47989756, -0.17431454, 0.76019192,\n",
+ " -0.09623899, -0.64994997, -0.03216666, 0.70323825, -0.66661566,\n",
+ " 0.71163839, -0.08982500, -0.35390857, 0.61377501, -0.49430367,\n",
+ " 0.49526611, 0.75078416, -0.05324765, -0.75398672, 0.70934319,\n",
+ " 0.21146417, -0.59094489, 0.39163795, -0.67382598, -0.63484156,\n",
+ " -0.27295890, 0.75101918, 0.70603085, 0.71781063, -0.57344818,\n",
+ " -0.22560060, -0.62196493, 0.68178481, 0.61596531, -0.12730023,\n",
+ " -0.69500911, 0.73689735, 0.12627751, -0.26101601, -0.24929181,\n",
+ " 0.68093145, 0.05896470]]))\n"
+ ]
+ }
+ ],
+ "source": [
+ "import paddle\n",
+ "from paddlenlp.transformers import AutoModel\n",
+ "\n",
+ "model = AutoModel.from_pretrained(\"cross-encoder/stsb-TinyBERT-L-4\")\n",
+ "input_ids = paddle.randint(100, 200, shape=[1, 20])\n",
+ "print(model(input_ids))"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "aeccdfe1",
+ "metadata": {},
+ "source": [
+ "> 此模型介绍及权重来源于[https://huggingface.co/cross-encoder/stsb-TinyBERT-L-4](https://huggingface.co/cross-encoder/stsb-TinyBERT-L-4),并转换为飞桨模型格式。"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3 (ipykernel)",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.7.13"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 5
+}
diff --git a/modelcenter/community/cross-encoder/stsb-TinyBERT-L-4/introduction_en.ipynb b/modelcenter/community/cross-encoder/stsb-TinyBERT-L-4/introduction_en.ipynb
new file mode 100644
index 0000000000000000000000000000000000000000..0183f00b99bcf4f57e2b7e641928103ba9628d10
--- /dev/null
+++ b/modelcenter/community/cross-encoder/stsb-TinyBERT-L-4/introduction_en.ipynb
@@ -0,0 +1,93 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "id": "6e8592db",
+ "metadata": {},
+ "source": [
+ "# Cross-Encoder for Quora Duplicate Questions Detection\n",
+ "This model was trained using [SentenceTransformers](https://sbert.net) [Cross-Encoder](https://www.sbert.net/examples/applications/cross-encoder/README.html) class.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "c3be9ab9",
+ "metadata": {},
+ "source": [
+ "## Training Data\n",
+ "This model was trained on the [STS benchmark dataset](http://ixa2.si.ehu.eus/stswiki/index.php/STSbenchmark). The model will predict a score between 0 and 1 how for the semantic similarity of two sentences.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "3f2d2712",
+ "metadata": {},
+ "source": [
+ "## Usage and Performance\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "0127bf3d",
+ "metadata": {},
+ "source": [
+ "Pre-trained models can be used like this:\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "e6968e7e",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "!pip install --upgrade paddlenlp"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "39e99053",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import paddle\n",
+ "from paddlenlp.transformers import AutoModel\n",
+ "\n",
+ "model = AutoModel.from_pretrained(\"cross-encoder/stsb-TinyBERT-L-4\")\n",
+ "input_ids = paddle.randint(100, 200, shape=[1, 20])\n",
+ "print(model(input_ids))"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "35446f31",
+ "metadata": {},
+ "source": [
+ "You can use this model also without sentence_transformers and by just using ``AutoModel`` class\n",
+ "> The model introduction and model weights originate from [https://huggingface.co/cross-encoder/stsb-TinyBERT-L-4](https://huggingface.co/cross-encoder/stsb-TinyBERT-L-4) and were converted to PaddlePaddle format for ease of use in PaddleNLP.\n"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3 (ipykernel)",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.7.13"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 5
+}
diff --git a/modelcenter/community/cross-encoder/stsb-distilroberta-base/info.yaml b/modelcenter/community/cross-encoder/stsb-distilroberta-base/info.yaml
index 5e94cb5e3a5e699e3364a988ba4b54f3c4891768..c0a0cbebdaf94962ffdcdb80ff76f6f11c213cd3 100644
--- a/modelcenter/community/cross-encoder/stsb-distilroberta-base/info.yaml
+++ b/modelcenter/community/cross-encoder/stsb-distilroberta-base/info.yaml
@@ -1,23 +1,19 @@
+Datasets: ''
+Example: null
+IfOnlineDemo: 0
+IfTraining: 0
+Language: ''
+License: apache-2.0
Model_Info:
- name: "cross-encoder/stsb-distilroberta-base"
- description: "Cross-Encoder for Quora Duplicate Questions Detection"
- description_en: "Cross-Encoder for Quora Duplicate Questions Detection"
- icon: ""
- from_repo: "https://huggingface.co/cross-encoder/stsb-distilroberta-base"
-
+ description: Cross-Encoder for Quora Duplicate Questions Detection
+ description_en: Cross-Encoder for Quora Duplicate Questions Detection
+ from_repo: https://huggingface.co/cross-encoder/stsb-distilroberta-base
+ icon: https://paddlenlp.bj.bcebos.com/models/community/transformer-layer.png
+ name: cross-encoder/stsb-distilroberta-base
+Paper: null
+Publisher: cross-encoder
Task:
-- tag_en: "Natural Language Processing"
- tag: "自然语言处理"
- sub_tag_en: "Text Classification"
- sub_tag: "文本分类"
-
-Example:
-
-Datasets: ""
-Publisher: "cross-encoder"
-License: "apache-2.0"
-Language: ""
-Paper:
-
-IfTraining: 0
-IfOnlineDemo: 0
\ No newline at end of file
+- sub_tag: 文本分类
+ sub_tag_en: Text Classification
+ tag: 自然语言处理
+ tag_en: Natural Language Processing
diff --git a/modelcenter/community/cross-encoder/stsb-distilroberta-base/introduction_cn.ipynb b/modelcenter/community/cross-encoder/stsb-distilroberta-base/introduction_cn.ipynb
new file mode 100644
index 0000000000000000000000000000000000000000..53d447ed13df55cf135af819731fd1e540363700
--- /dev/null
+++ b/modelcenter/community/cross-encoder/stsb-distilroberta-base/introduction_cn.ipynb
@@ -0,0 +1,92 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "id": "7c9e1c38",
+ "metadata": {},
+ "source": [
+ "# Cross-Encoder for Quora Duplicate Questions Detection\n",
+ "This model was trained using [SentenceTransformers](https://sbert.net) [Cross-Encoder](https://www.sbert.net/examples/applications/cross-encoder/README.html) class.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "c62db00c",
+ "metadata": {},
+ "source": [
+ "## Training Data\n",
+ "This model was trained on the [STS benchmark dataset](http://ixa2.si.ehu.eus/stswiki/index.php/STSbenchmark). The model will predict a score between 0 and 1 how for the semantic similarity of two sentences.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "03f81dda",
+ "metadata": {},
+ "source": [
+ "## Usage and Performance\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "ac99e012",
+ "metadata": {},
+ "source": [
+ "Pre-trained models can be used like this:\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "37931dd1",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "!pip install --upgrade paddlenlp"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "ff0714d5",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import paddle\n",
+ "from paddlenlp.transformers import AutoModel\n",
+ "\n",
+ "model = AutoModel.from_pretrained(\"cross-encoder/stsb-distilroberta-base\")\n",
+ "input_ids = paddle.randint(100, 200, shape=[1, 20])\n",
+ "print(model(input_ids))"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "e783f36c",
+ "metadata": {},
+ "source": [
+ "> 此模型介绍及权重来源于[https://huggingface.co/cross-encoder/stsb-distilroberta-base](https://huggingface.co/cross-encoder/stsb-distilroberta-base),并转换为飞桨模型格式。\n"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3 (ipykernel)",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.7.13"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 5
+}
diff --git a/modelcenter/community/cross-encoder/stsb-distilroberta-base/introduction_en.ipynb b/modelcenter/community/cross-encoder/stsb-distilroberta-base/introduction_en.ipynb
new file mode 100644
index 0000000000000000000000000000000000000000..718b79c8308d654fc03b73a528174304d89e327e
--- /dev/null
+++ b/modelcenter/community/cross-encoder/stsb-distilroberta-base/introduction_en.ipynb
@@ -0,0 +1,92 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "id": "cc55c2df",
+ "metadata": {},
+ "source": [
+ "# Cross-Encoder for Quora Duplicate Questions Detection\n",
+ "This model was trained using [SentenceTransformers](https://sbert.net) [Cross-Encoder](https://www.sbert.net/examples/applications/cross-encoder/README.html) class.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "6e6d61e4",
+ "metadata": {},
+ "source": [
+ "## Training Data\n",
+ "This model was trained on the [STS benchmark dataset](http://ixa2.si.ehu.eus/stswiki/index.php/STSbenchmark). The model will predict a score between 0 and 1 how for the semantic similarity of two sentences.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "73fa7630",
+ "metadata": {},
+ "source": [
+ "## Usage and Performance\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "33248e47",
+ "metadata": {},
+ "source": [
+ "Pre-trained models can be used like this:\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "48f2d520",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "!pip install --upgrade paddlenlp"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "f16202eb",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import paddle\n",
+ "from paddlenlp.transformers import AutoModel\n",
+ "\n",
+ "model = AutoModel.from_pretrained(\"cross-encoder/stsb-distilroberta-base\")\n",
+ "input_ids = paddle.randint(100, 200, shape=[1, 20])\n",
+ "print(model(input_ids))"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "8586b106",
+ "metadata": {},
+ "source": [
+ "> The model introduction and model weights originate from [https://huggingface.co/cross-encoder/stsb-distilroberta-base](https://huggingface.co/cross-encoder/stsb-distilroberta-base) and were converted to PaddlePaddle format for ease of use in PaddleNLP.\n"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3 (ipykernel)",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.7.13"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 5
+}
diff --git a/modelcenter/community/cross-encoder/stsb-roberta-base/info.yaml b/modelcenter/community/cross-encoder/stsb-roberta-base/info.yaml
index 9583913528c04248e7dab3b1f5ff3bc6a18b9192..d00de891417d276d59449719776e4ed292eab155 100644
--- a/modelcenter/community/cross-encoder/stsb-roberta-base/info.yaml
+++ b/modelcenter/community/cross-encoder/stsb-roberta-base/info.yaml
@@ -1,23 +1,19 @@
+Datasets: ''
+Example: null
+IfOnlineDemo: 0
+IfTraining: 0
+Language: ''
+License: apache-2.0
Model_Info:
- name: "cross-encoder/stsb-roberta-base"
- description: "Cross-Encoder for Quora Duplicate Questions Detection"
- description_en: "Cross-Encoder for Quora Duplicate Questions Detection"
- icon: ""
- from_repo: "https://huggingface.co/cross-encoder/stsb-roberta-base"
-
+ description: Cross-Encoder for Quora Duplicate Questions Detection
+ description_en: Cross-Encoder for Quora Duplicate Questions Detection
+ from_repo: https://huggingface.co/cross-encoder/stsb-roberta-base
+ icon: https://paddlenlp.bj.bcebos.com/models/community/transformer-layer.png
+ name: cross-encoder/stsb-roberta-base
+Paper: null
+Publisher: cross-encoder
Task:
-- tag_en: "Natural Language Processing"
- tag: "自然语言处理"
- sub_tag_en: "Text Classification"
- sub_tag: "文本分类"
-
-Example:
-
-Datasets: ""
-Publisher: "cross-encoder"
-License: "apache-2.0"
-Language: ""
-Paper:
-
-IfTraining: 0
-IfOnlineDemo: 0
\ No newline at end of file
+- sub_tag: 文本分类
+ sub_tag_en: Text Classification
+ tag: 自然语言处理
+ tag_en: Natural Language Processing
diff --git a/modelcenter/community/cross-encoder/stsb-roberta-base/introduction_cn.ipynb b/modelcenter/community/cross-encoder/stsb-roberta-base/introduction_cn.ipynb
new file mode 100644
index 0000000000000000000000000000000000000000..d5508f6f289f8281f15e3772f426eba019ca8a4e
--- /dev/null
+++ b/modelcenter/community/cross-encoder/stsb-roberta-base/introduction_cn.ipynb
@@ -0,0 +1,93 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "id": "0ce6be0e",
+ "metadata": {},
+ "source": [
+ "# Cross-Encoder for Quora Duplicate Questions Detection\n",
+ "This model was trained using [SentenceTransformers](https://sbert.net) [Cross-Encoder](https://www.sbert.net/examples/applications/cross-encoder/README.html) class.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "6e5557d3",
+ "metadata": {},
+ "source": [
+ "## Training Data\n",
+ "This model was trained on the [STS benchmark dataset](http://ixa2.si.ehu.eus/stswiki/index.php/STSbenchmark). The model will predict a score between 0 and 1 how for the semantic similarity of two sentences.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "dac1f27b",
+ "metadata": {},
+ "source": [
+ "## Usage and Performance\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "c279cc30",
+ "metadata": {},
+ "source": [
+ "Pre-trained models can be used like this:\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "64e1d35f",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "!pip install --upgrade paddlenlp"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "3c22da03",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import paddle\n",
+ "from paddlenlp.transformers import AutoModel\n",
+ "\n",
+ "model = AutoModel.from_pretrained(\"cross-encoder/stsb-roberta-base\")\n",
+ "input_ids = paddle.randint(100, 200, shape=[1, 20])\n",
+ "print(model(input_ids))"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "49af1fc0",
+ "metadata": {},
+ "source": [
+ "You can use this model also without sentence_transformers and by just using ``AutoModel`` class\n",
+ "> 此模型介绍及权重来源于[https://huggingface.co/cross-encoder/stsb-roberta-base](https://huggingface.co/cross-encoder/stsb-roberta-base),并转换为飞桨模型格式。\n"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3 (ipykernel)",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.8.13"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 5
+}
diff --git a/modelcenter/community/cross-encoder/stsb-roberta-base/introduction_en.ipynb b/modelcenter/community/cross-encoder/stsb-roberta-base/introduction_en.ipynb
new file mode 100644
index 0000000000000000000000000000000000000000..0ae4d26b27fd4f2c63e983441671683835c7d193
--- /dev/null
+++ b/modelcenter/community/cross-encoder/stsb-roberta-base/introduction_en.ipynb
@@ -0,0 +1,92 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "id": "c3137a69",
+ "metadata": {},
+ "source": [
+ "# Cross-Encoder for Quora Duplicate Questions Detection\n",
+ "This model was trained using [SentenceTransformers](https://sbert.net) [Cross-Encoder](https://www.sbert.net/examples/applications/cross-encoder/README.html) class.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "5406455e",
+ "metadata": {},
+ "source": [
+ "## Training Data\n",
+ "This model was trained on the [STS benchmark dataset](http://ixa2.si.ehu.eus/stswiki/index.php/STSbenchmark). The model will predict a score between 0 and 1 how for the semantic similarity of two sentences.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "565af020",
+ "metadata": {},
+ "source": [
+ "## Usage and Performance\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "bd866838",
+ "metadata": {},
+ "source": [
+ "Pre-trained models can be used like this:\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "07301a77",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "!pip install --upgrade paddlenlp"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "0b756d3a",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import paddle\n",
+ "from paddlenlp.transformers import AutoModel\n",
+ "\n",
+ "model = AutoModel.from_pretrained(\"cross-encoder/stsb-roberta-base\")\n",
+ "input_ids = paddle.randint(100, 200, shape=[1, 20])\n",
+ "print(model(input_ids))"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "6ba822d5",
+ "metadata": {},
+ "source": [
+ "> The model introduction and model weights originate from [https://huggingface.co/cross-encoder/stsb-roberta-base](https://huggingface.co/cross-encoder/stsb-roberta-base) and were converted to PaddlePaddle format for ease of use in PaddleNLP.\n"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3 (ipykernel)",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.7.13"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 5
+}
diff --git a/modelcenter/community/cross-encoder/stsb-roberta-large/info.yaml b/modelcenter/community/cross-encoder/stsb-roberta-large/info.yaml
index 2f2bf47b06a774684b96929c2cbb568cadf52194..fbafd33835104910aa8b790700689af6fbd416c1 100644
--- a/modelcenter/community/cross-encoder/stsb-roberta-large/info.yaml
+++ b/modelcenter/community/cross-encoder/stsb-roberta-large/info.yaml
@@ -1,23 +1,19 @@
+Datasets: ''
+Example: null
+IfOnlineDemo: 0
+IfTraining: 0
+Language: ''
+License: apache-2.0
Model_Info:
- name: "cross-encoder/stsb-roberta-large"
- description: "Cross-Encoder for Quora Duplicate Questions Detection"
- description_en: "Cross-Encoder for Quora Duplicate Questions Detection"
- icon: ""
- from_repo: "https://huggingface.co/cross-encoder/stsb-roberta-large"
-
+ description: Cross-Encoder for Quora Duplicate Questions Detection
+ description_en: Cross-Encoder for Quora Duplicate Questions Detection
+ from_repo: https://huggingface.co/cross-encoder/stsb-roberta-large
+ icon: https://paddlenlp.bj.bcebos.com/models/community/transformer-layer.png
+ name: cross-encoder/stsb-roberta-large
+Paper: null
+Publisher: cross-encoder
Task:
-- tag_en: "Natural Language Processing"
- tag: "自然语言处理"
- sub_tag_en: "Text Classification"
- sub_tag: "文本分类"
-
-Example:
-
-Datasets: ""
-Publisher: "cross-encoder"
-License: "apache-2.0"
-Language: ""
-Paper:
-
-IfTraining: 0
-IfOnlineDemo: 0
\ No newline at end of file
+- sub_tag: 文本分类
+ sub_tag_en: Text Classification
+ tag: 自然语言处理
+ tag_en: Natural Language Processing
diff --git a/modelcenter/community/cross-encoder/stsb-roberta-large/introduction_cn.ipynb b/modelcenter/community/cross-encoder/stsb-roberta-large/introduction_cn.ipynb
new file mode 100644
index 0000000000000000000000000000000000000000..b8a84e462675cbffe7335e6a81c1c27a00e3fbca
--- /dev/null
+++ b/modelcenter/community/cross-encoder/stsb-roberta-large/introduction_cn.ipynb
@@ -0,0 +1,92 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "id": "a8a5f540",
+ "metadata": {},
+ "source": [
+ "# Cross-Encoder for Quora Duplicate Questions Detection\n",
+ "This model was trained using [SentenceTransformers](https://sbert.net) [Cross-Encoder](https://www.sbert.net/examples/applications/cross-encoder/README.html) class.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "e4d8f5f6",
+ "metadata": {},
+ "source": [
+ "## Training Data\n",
+ "This model was trained on the [STS benchmark dataset](http://ixa2.si.ehu.eus/stswiki/index.php/STSbenchmark). The model will predict a score between 0 and 1 how for the semantic similarity of two sentences.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "182943f7",
+ "metadata": {},
+ "source": [
+ "## Usage and Performance\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "764e0664",
+ "metadata": {},
+ "source": [
+ "Pre-trained models can be used like this:\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "61787745",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "!pip install --upgrade paddlenlp"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "f4671372",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import paddle\n",
+ "from paddlenlp.transformers import AutoModel\n",
+ "\n",
+ "model = AutoModel.from_pretrained(\"cross-encoder/stsb-roberta-large\")\n",
+ "input_ids = paddle.randint(100, 200, shape=[1, 20])\n",
+ "print(model(input_ids))"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "9e8e26d0",
+ "metadata": {},
+ "source": [
+ "> 此模型介绍及权重来源于[https://huggingface.co/cross-encoder/stsb-roberta-large](https://huggingface.co/cross-encoder/stsb-roberta-large),并转换为飞桨模型格式。\n"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3 (ipykernel)",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.7.13"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 5
+}
diff --git a/modelcenter/community/cross-encoder/stsb-roberta-large/introduction_en.ipynb b/modelcenter/community/cross-encoder/stsb-roberta-large/introduction_en.ipynb
new file mode 100644
index 0000000000000000000000000000000000000000..cf1e65b0e6fd044b707a05e0d24b19a06be180f7
--- /dev/null
+++ b/modelcenter/community/cross-encoder/stsb-roberta-large/introduction_en.ipynb
@@ -0,0 +1,92 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "id": "291a48fa",
+ "metadata": {},
+ "source": [
+ "# Cross-Encoder for Quora Duplicate Questions Detection\n",
+ "This model was trained using [SentenceTransformers](https://sbert.net) [Cross-Encoder](https://www.sbert.net/examples/applications/cross-encoder/README.html) class.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "92f483ed",
+ "metadata": {},
+ "source": [
+ "## Training Data\n",
+ "This model was trained on the [STS benchmark dataset](http://ixa2.si.ehu.eus/stswiki/index.php/STSbenchmark). The model will predict a score between 0 and 1 how for the semantic similarity of two sentences.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "5dbde912",
+ "metadata": {},
+ "source": [
+ "## Usage and Performance\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "3e04e94a",
+ "metadata": {},
+ "source": [
+ "Pre-trained models can be used like this:\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "4209e47d",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "!pip install --upgrade paddlenlp"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "e2649c47",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import paddle\n",
+ "from paddlenlp.transformers import AutoModel\n",
+ "\n",
+ "model = AutoModel.from_pretrained(\"cross-encoder/stsb-roberta-large\")\n",
+ "input_ids = paddle.randint(100, 200, shape=[1, 20])\n",
+ "print(model(input_ids))"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "678e37ab",
+ "metadata": {},
+ "source": [
+ "> The model introduction and model weights originate from [https://huggingface.co/cross-encoder/stsb-roberta-large](https://huggingface.co/cross-encoder/stsb-roberta-large) and were converted to PaddlePaddle format for ease of use in PaddleNLP.\n"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3 (ipykernel)",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.7.13"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 5
+}
diff --git a/modelcenter/community/csarron/roberta-base-squad-v1/download_cn.md b/modelcenter/community/csarron/roberta-base-squad-v1/download_cn.md
deleted file mode 100644
index 5d3eb430c39963a372e0d6f5f91990cc17bc48d1..0000000000000000000000000000000000000000
--- a/modelcenter/community/csarron/roberta-base-squad-v1/download_cn.md
+++ /dev/null
@@ -1,23 +0,0 @@
-# 模型列表
-
-## csarron/roberta-base-squad-v1
-
-| 模型名称 | 模型介绍 | 模型大小 | 模型下载 |
-| --- | --- | --- | --- |
-|csarron/roberta-base-squad-v1| | 475.51MB | [merges.txt](https://bj.bcebos.com/paddlenlp/models/community/csarron/roberta-base-squad-v1/merges.txt)
[model_config.json](https://bj.bcebos.com/paddlenlp/models/community/csarron/roberta-base-squad-v1/model_config.json)
[model_state.pdparams](https://bj.bcebos.com/paddlenlp/models/community/csarron/roberta-base-squad-v1/model_state.pdparams)
[tokenizer_config.json](https://bj.bcebos.com/paddlenlp/models/community/csarron/roberta-base-squad-v1/tokenizer_config.json)
[vocab.json](https://bj.bcebos.com/paddlenlp/models/community/csarron/roberta-base-squad-v1/vocab.json)
[vocab.txt](https://bj.bcebos.com/paddlenlp/models/community/csarron/roberta-base-squad-v1/vocab.txt) |
-
-也可以通过`paddlenlp` cli 工具来下载对应的模型权重,使用步骤如下所示:
-
-* 安装paddlenlp
-
-```shell
-pip install --upgrade paddlenlp
-```
-
-* 下载命令行
-
-```shell
-paddlenlp download --cache-dir ./pretrained_models csarron/roberta-base-squad-v1
-```
-
-有任何下载的问题都可以到[PaddleNLP](https://github.com/PaddlePaddle/PaddleNLP)中发Issue提问。
\ No newline at end of file
diff --git a/modelcenter/community/csarron/roberta-base-squad-v1/download_en.md b/modelcenter/community/csarron/roberta-base-squad-v1/download_en.md
deleted file mode 100644
index bbdc2aebe7f11f9802a0f37ea5fb64cd57a2b5d9..0000000000000000000000000000000000000000
--- a/modelcenter/community/csarron/roberta-base-squad-v1/download_en.md
+++ /dev/null
@@ -1,23 +0,0 @@
-# model list
-
-##
-
-| model | description | model_size | download |
-| --- | --- | --- | --- |
-|csarron/roberta-base-squad-v1| | 475.51MB | [merges.txt](https://bj.bcebos.com/paddlenlp/models/community/csarron/roberta-base-squad-v1/merges.txt)
[model_config.json](https://bj.bcebos.com/paddlenlp/models/community/csarron/roberta-base-squad-v1/model_config.json)
[model_state.pdparams](https://bj.bcebos.com/paddlenlp/models/community/csarron/roberta-base-squad-v1/model_state.pdparams)
[tokenizer_config.json](https://bj.bcebos.com/paddlenlp/models/community/csarron/roberta-base-squad-v1/tokenizer_config.json)
[vocab.json](https://bj.bcebos.com/paddlenlp/models/community/csarron/roberta-base-squad-v1/vocab.json)
[vocab.txt](https://bj.bcebos.com/paddlenlp/models/community/csarron/roberta-base-squad-v1/vocab.txt) |
-
-or you can download all of model file with the following steps:
-
-* install paddlenlp
-
-```shell
-pip install --upgrade paddlenlp
-```
-
-* download model with cli tool
-
-```shell
-paddlenlp download --cache-dir ./pretrained_models csarron/roberta-base-squad-v1
-```
-
-If you have any problems with it, you can post issue on [PaddleNLP](https://github.com/PaddlePaddle/PaddleNLP) to get support.
diff --git a/modelcenter/community/csarron/roberta-base-squad-v1/info.yaml b/modelcenter/community/csarron/roberta-base-squad-v1/info.yaml
deleted file mode 100644
index 1095b2a22715b39a60d723b4e76648f4c9eab5f9..0000000000000000000000000000000000000000
--- a/modelcenter/community/csarron/roberta-base-squad-v1/info.yaml
+++ /dev/null
@@ -1,24 +0,0 @@
-Model_Info:
- name: "csarron/roberta-base-squad-v1"
- description: "RoBERTa-base fine-tuned on SQuAD v1"
- description_en: "RoBERTa-base fine-tuned on SQuAD v1"
- icon: ""
- from_repo: "https://huggingface.co/csarron/roberta-base-squad-v1"
-
-Task:
-- tag_en: "Natural Language Processing"
- tag: "自然语言处理"
- sub_tag_en: "Question Answering"
- sub_tag: "回答问题"
-
-Example:
-
-Datasets: "squad"
-Publisher: "csarron"
-License: "mit"
-Language: "English"
-Paper:
- - title: 'RoBERTa: A Robustly Optimized BERT Pretraining Approach'
- url: 'http://arxiv.org/abs/1907.11692v1'
-IfTraining: 0
-IfOnlineDemo: 0
\ No newline at end of file
diff --git a/modelcenter/community/dbmdz/bert-base-german-cased/info.yaml b/modelcenter/community/dbmdz/bert-base-german-cased/info.yaml
index 2eb9d8d9aa7eb32c7371b54ddf8217903f47450c..ba61f65725d34d0729497a8fabaffeeb71d86cd8 100644
--- a/modelcenter/community/dbmdz/bert-base-german-cased/info.yaml
+++ b/modelcenter/community/dbmdz/bert-base-german-cased/info.yaml
@@ -1,23 +1,19 @@
+Datasets: ''
+Example: null
+IfOnlineDemo: 0
+IfTraining: 0
+Language: German
+License: mit
Model_Info:
- name: "dbmdz/bert-base-german-cased"
- description: "🤗 + 📚 dbmdz German BERT models"
- description_en: "🤗 + 📚 dbmdz German BERT models"
- icon: ""
- from_repo: "https://huggingface.co/dbmdz/bert-base-german-cased"
-
+ description: 🤗 + 📚 dbmdz German BERT models
+ description_en: 🤗 + 📚 dbmdz German BERT models
+ from_repo: https://huggingface.co/dbmdz/bert-base-german-cased
+ icon: https://paddlenlp.bj.bcebos.com/models/community/transformer-layer.png
+ name: dbmdz/bert-base-german-cased
+Paper: null
+Publisher: dbmdz
Task:
-- tag_en: "Natural Language Processing"
- tag: "自然语言处理"
- sub_tag_en: "Fill-Mask"
- sub_tag: "槽位填充"
-
-Example:
-
-Datasets: ""
-Publisher: "dbmdz"
-License: "mit"
-Language: "German"
-Paper:
-
-IfTraining: 0
-IfOnlineDemo: 0
\ No newline at end of file
+- sub_tag: 槽位填充
+ sub_tag_en: Fill-Mask
+ tag: 自然语言处理
+ tag_en: Natural Language Processing
diff --git a/modelcenter/community/dbmdz/bert-base-german-cased/introduction_cn.ipynb b/modelcenter/community/dbmdz/bert-base-german-cased/introduction_cn.ipynb
new file mode 100644
index 0000000000000000000000000000000000000000..2a4843b0a54da647797ee926991813ff5a29c371
--- /dev/null
+++ b/modelcenter/community/dbmdz/bert-base-german-cased/introduction_cn.ipynb
@@ -0,0 +1,95 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "id": "9fb28341",
+ "metadata": {},
+ "source": [
+ "# 🤗 + 📚 dbmdz German BERT models\n",
+ "\n",
+ "In this repository the MDZ Digital Library team (dbmdz) at the Bavarian State\n",
+ "Library open sources another German BERT models 🎉\n",
+ "\n",
+ "# German BERT\n",
+ "\n",
+ "## Stats\n",
+ "\n",
+ "In addition to the recently released [German BERT](https://deepset.ai/german-bert)\n",
+ "model by [deepset](https://deepset.ai/) we provide another German-language model.\n",
+ "\n",
+ "The source data for the model consists of a recent Wikipedia dump, EU Bookshop corpus,\n",
+ "Open Subtitles, CommonCrawl, ParaCrawl and News Crawl. This results in a dataset with\n",
+ "a size of 16GB and 2,350,234,427 tokens.\n",
+ "\n",
+ "For sentence splitting, we use [spacy](https://spacy.io/). Our preprocessing steps\n",
+ "(sentence piece model for vocab generation) follow those used for training\n",
+ "[SciBERT](https://github.com/allenai/scibert). The model is trained with an initial\n",
+ "sequence length of 512 subwords and was performed for 1.5M steps."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "589fadf4",
+ "metadata": {},
+ "source": [
+ "## How to use"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "646e12d4",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "!pip install --upgrade paddlenlp"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "5935d3e0",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import paddle\n",
+ "from paddlenlp.transformers import AutoModel\n",
+ "\n",
+ "model = AutoModel.from_pretrained(\"dbmdz/bert-base-german-cased\")\n",
+ "input_ids = paddle.randint(100, 200, shape=[1, 20])\n",
+ "print(model(input_ids))"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "b05add24",
+ "metadata": {},
+ "source": [
+ "# Reference\n",
+ "\n",
+ "> 此模型介绍及权重来源于[https://huggingface.co/dbmdz/bert-base-german-cased](https://huggingface.co/dbmdz/bert-base-german-cased),并转换为飞桨模型格式。\n"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3 (ipykernel)",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.7.13"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 5
+}
diff --git a/modelcenter/community/dbmdz/bert-base-german-cased/introduction_en.ipynb b/modelcenter/community/dbmdz/bert-base-german-cased/introduction_en.ipynb
new file mode 100644
index 0000000000000000000000000000000000000000..8f9e678c5c0373c788f456ae1d513755c55f370f
--- /dev/null
+++ b/modelcenter/community/dbmdz/bert-base-german-cased/introduction_en.ipynb
@@ -0,0 +1,93 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "id": "e875e0cc",
+ "metadata": {},
+ "source": [
+ "# 🤗 + 📚 dbmdz German BERT models\n",
+ "\n",
+ "In this repository the MDZ Digital Library team (dbmdz) at the Bavarian State\n",
+ "Library open sources another German BERT models 🎉\n",
+ "\n",
+ "# German BERT\n",
+ "\n",
+ "## Stats\n",
+ "\n",
+ "In addition to the recently released [German BERT](https://deepset.ai/german-bert)\n",
+ "model by [deepset](https://deepset.ai/) we provide another German-language model.\n",
+ "\n",
+ "The source data for the model consists of a recent Wikipedia dump, EU Bookshop corpus,\n",
+ "Open Subtitles, CommonCrawl, ParaCrawl and News Crawl. This results in a dataset with\n",
+ "a size of 16GB and 2,350,234,427 tokens.\n",
+ "\n",
+ "For sentence splitting, we use [spacy](https://spacy.io/). Our preprocessing steps\n",
+ "(sentence piece model for vocab generation) follow those used for training\n",
+ "[SciBERT](https://github.com/allenai/scibert). The model is trained with an initial\n",
+ "sequence length of 512 subwords and was performed for 1.5M steps."
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "8dcad967",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "!pip install --upgrade paddlenlp"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "c7c65281",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import paddle\n",
+ "from paddlenlp.transformers import AutoModel\n",
+ "\n",
+ "model = AutoModel.from_pretrained(\"dbmdz/bert-base-german-cased\")\n",
+ "input_ids = paddle.randint(100, 200, shape=[1, 20])\n",
+ "print(model(input_ids))"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "1b52feb8",
+ "metadata": {},
+ "source": [
+ "# Reference"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "bc00304a",
+ "metadata": {},
+ "source": [
+ "> The model introduction and model weights originate from [https://huggingface.co/dbmdz/bert-base-german-cased](https://huggingface.co/dbmdz/bert-base-german-cased) and were converted to PaddlePaddle format for ease of use in PaddleNLP.\n"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3 (ipykernel)",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.7.13"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 5
+}
diff --git a/modelcenter/community/dbmdz/bert-base-german-uncased/info.yaml b/modelcenter/community/dbmdz/bert-base-german-uncased/info.yaml
index 519dcaa077a88073ab53bb7be0d58f478bfc296f..da3e16292df4d852acf399a6641c0e76ded1e1bc 100644
--- a/modelcenter/community/dbmdz/bert-base-german-uncased/info.yaml
+++ b/modelcenter/community/dbmdz/bert-base-german-uncased/info.yaml
@@ -1,23 +1,19 @@
+Datasets: ''
+Example: null
+IfOnlineDemo: 0
+IfTraining: 0
+Language: German
+License: mit
Model_Info:
- name: "dbmdz/bert-base-german-uncased"
- description: "🤗 + 📚 dbmdz German BERT models"
- description_en: "🤗 + 📚 dbmdz German BERT models"
- icon: ""
- from_repo: "https://huggingface.co/dbmdz/bert-base-german-uncased"
-
+ description: 🤗 + 📚 dbmdz German BERT models
+ description_en: 🤗 + 📚 dbmdz German BERT models
+ from_repo: https://huggingface.co/dbmdz/bert-base-german-uncased
+ icon: https://paddlenlp.bj.bcebos.com/models/community/transformer-layer.png
+ name: dbmdz/bert-base-german-uncased
+Paper: null
+Publisher: dbmdz
Task:
-- tag_en: "Natural Language Processing"
- tag: "自然语言处理"
- sub_tag_en: "Fill-Mask"
- sub_tag: "槽位填充"
-
-Example:
-
-Datasets: ""
-Publisher: "dbmdz"
-License: "mit"
-Language: "German"
-Paper:
-
-IfTraining: 0
-IfOnlineDemo: 0
\ No newline at end of file
+- sub_tag: 槽位填充
+ sub_tag_en: Fill-Mask
+ tag: 自然语言处理
+ tag_en: Natural Language Processing
diff --git a/modelcenter/community/dbmdz/bert-base-german-uncased/introduction_cn.ipynb b/modelcenter/community/dbmdz/bert-base-german-uncased/introduction_cn.ipynb
new file mode 100644
index 0000000000000000000000000000000000000000..9490ad2084d98551dced766897ad028f18959032
--- /dev/null
+++ b/modelcenter/community/dbmdz/bert-base-german-uncased/introduction_cn.ipynb
@@ -0,0 +1,102 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "id": "46b7bbb6",
+ "metadata": {},
+ "source": [
+ "# 🤗 + 📚 dbmdz German BERT models\n",
+ "\n",
+ "In this repository the MDZ Digital Library team (dbmdz) at the Bavarian State\n",
+ "Library open sources another German BERT models 🎉\n",
+ "\n",
+ "# German BERT\n",
+ "\n",
+ "## Stats\n",
+ "\n",
+ "In addition to the recently released [German BERT](https://deepset.ai/german-bert)\n",
+ "model by [deepset](https://deepset.ai/) we provide another German-language model.\n",
+ "\n",
+ "The source data for the model consists of a recent Wikipedia dump, EU Bookshop corpus,\n",
+ "Open Subtitles, CommonCrawl, ParaCrawl and News Crawl. This results in a dataset with\n",
+ "a size of 16GB and 2,350,234,427 tokens.\n",
+ "\n",
+ "For sentence splitting, we use [spacy](https://spacy.io/). Our preprocessing steps\n",
+ "(sentence piece model for vocab generation) follow those used for training\n",
+ "[SciBERT](https://github.com/allenai/scibert). The model is trained with an initial\n",
+ "sequence length of 512 subwords and was performed for 1.5M steps."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "bc37d3e3",
+ "metadata": {},
+ "source": [
+ "## How to use"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "2afff18c",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "!pip install --upgrade paddlenlp"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "967f058e",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import paddle\n",
+ "from paddlenlp.transformers import AutoModel\n",
+ "\n",
+ "model = AutoModel.from_pretrained(\"dbmdz/bert-base-german-uncased\")\n",
+ "input_ids = paddle.randint(100, 200, shape=[1, 20])\n",
+ "print(model(input_ids))"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "483dbced",
+ "metadata": {},
+ "source": [
+ "# Reference"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "04e50d8c",
+ "metadata": {},
+ "source": [
+ "\n",
+ "> 此模型介绍及权重来源于[https://huggingface.co/dbmdz/bert-base-german-uncased](https://huggingface.co/dbmdz/bert-base-german-uncased),并转换为飞桨模型格式。\n"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3 (ipykernel)",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.7.13"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 5
+}
diff --git a/modelcenter/community/dbmdz/bert-base-german-uncased/introduction_en.ipynb b/modelcenter/community/dbmdz/bert-base-german-uncased/introduction_en.ipynb
new file mode 100644
index 0000000000000000000000000000000000000000..3c19f2ff3c29a2f5d5206047d08c0f5151ed781f
--- /dev/null
+++ b/modelcenter/community/dbmdz/bert-base-german-uncased/introduction_en.ipynb
@@ -0,0 +1,101 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "id": "5e0d446c",
+ "metadata": {},
+ "source": [
+ "# 🤗 + 📚 dbmdz German BERT models\n",
+ "\n",
+ "In this repository the MDZ Digital Library team (dbmdz) at the Bavarian State\n",
+ "Library open sources another German BERT models 🎉\n",
+ "\n",
+ "# German BERT\n",
+ "\n",
+ "## Stats\n",
+ "\n",
+ "In addition to the recently released [German BERT](https://deepset.ai/german-bert)\n",
+ "model by [deepset](https://deepset.ai/) we provide another German-language model.\n",
+ "\n",
+ "The source data for the model consists of a recent Wikipedia dump, EU Bookshop corpus,\n",
+ "Open Subtitles, CommonCrawl, ParaCrawl and News Crawl. This results in a dataset with\n",
+ "a size of 16GB and 2,350,234,427 tokens.\n",
+ "\n",
+ "For sentence splitting, we use [spacy](https://spacy.io/). Our preprocessing steps\n",
+ "(sentence piece model for vocab generation) follow those used for training\n",
+ "[SciBERT](https://github.com/allenai/scibert). The model is trained with an initial\n",
+ "sequence length of 512 subwords and was performed for 1.5M steps."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "524680d5",
+ "metadata": {},
+ "source": [
+ "## How to use"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "39332440",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "!pip install --upgrade paddlenlp"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "19cf118e",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import paddle\n",
+ "from paddlenlp.transformers import AutoModel\n",
+ "\n",
+ "model = AutoModel.from_pretrained(\"dbmdz/bert-base-german-uncased\")\n",
+ "input_ids = paddle.randint(100, 200, shape=[1, 20])\n",
+ "print(model(input_ids))"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "fb81d709",
+ "metadata": {},
+ "source": [
+ "# Reference"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "747fd5d3",
+ "metadata": {},
+ "source": [
+ "> The model introduction and model weights originate from [https://huggingface.co/dbmdz/bert-base-german-uncased](https://huggingface.co/dbmdz/bert-base-german-uncased) and were converted to PaddlePaddle format for ease of use in PaddleNLP.\n"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3 (ipykernel)",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.7.13"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 5
+}
diff --git a/modelcenter/community/dbmdz/bert-base-italian-uncased/info.yaml b/modelcenter/community/dbmdz/bert-base-italian-uncased/info.yaml
index 9aea3699b760462595d111702ff925806d94ac1e..1072ac17af37b9cdc0075d8f48e7be6d5b388d1d 100644
--- a/modelcenter/community/dbmdz/bert-base-italian-uncased/info.yaml
+++ b/modelcenter/community/dbmdz/bert-base-italian-uncased/info.yaml
@@ -1,23 +1,19 @@
+Datasets: wikipedia
+Example: null
+IfOnlineDemo: 0
+IfTraining: 0
+Language: Italian
+License: mit
Model_Info:
- name: "dbmdz/bert-base-italian-uncased"
- description: "🤗 + 📚 dbmdz BERT and ELECTRA models"
- description_en: "🤗 + 📚 dbmdz BERT and ELECTRA models"
- icon: ""
- from_repo: "https://huggingface.co/dbmdz/bert-base-italian-uncased"
-
+ description: 🤗 + 📚 dbmdz BERT and ELECTRA models
+ description_en: 🤗 + 📚 dbmdz BERT and ELECTRA models
+ from_repo: https://huggingface.co/dbmdz/bert-base-italian-uncased
+ icon: https://paddlenlp.bj.bcebos.com/models/community/transformer-layer.png
+ name: dbmdz/bert-base-italian-uncased
+Paper: null
+Publisher: dbmdz
Task:
-- tag_en: "Natural Language Processing"
- tag: "自然语言处理"
- sub_tag_en: "Fill-Mask"
- sub_tag: "槽位填充"
-
-Example:
-
-Datasets: "wikipedia"
-Publisher: "dbmdz"
-License: "mit"
-Language: "Italian"
-Paper:
-
-IfTraining: 0
-IfOnlineDemo: 0
\ No newline at end of file
+- sub_tag: 槽位填充
+ sub_tag_en: Fill-Mask
+ tag: 自然语言处理
+ tag_en: Natural Language Processing
diff --git a/modelcenter/community/dbmdz/bert-base-italian-uncased/introduction_cn.ipynb b/modelcenter/community/dbmdz/bert-base-italian-uncased/introduction_cn.ipynb
new file mode 100644
index 0000000000000000000000000000000000000000..eebce5803b87659cf344be6c5cd12c6630b10a92
--- /dev/null
+++ b/modelcenter/community/dbmdz/bert-base-italian-uncased/introduction_cn.ipynb
@@ -0,0 +1,152 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "id": "dea2fc9e",
+ "metadata": {},
+ "source": [
+ "# 🤗 + 📚 dbmdz BERT and ELECTRA models\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "00744cbd",
+ "metadata": {},
+ "source": [
+ "In this repository the MDZ Digital Library team (dbmdz) at the Bavarian State\n",
+ "Library open sources Italian BERT and ELECTRA models 🎉\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "d7106b74",
+ "metadata": {},
+ "source": [
+ "# Italian BERT\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "7ee0fd67",
+ "metadata": {},
+ "source": [
+ "The source data for the Italian BERT model consists of a recent Wikipedia dump and\n",
+ "various texts from the [OPUS corpora](http://opus.nlpl.eu/) collection. The final\n",
+ "training corpus has a size of 13GB and 2,050,057,573 tokens.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "a3961910",
+ "metadata": {},
+ "source": [
+ "For sentence splitting, we use NLTK (faster compared to spacy).\n",
+ "Our cased and uncased models are training with an initial sequence length of 512\n",
+ "subwords for ~2-3M steps.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "480e4fea",
+ "metadata": {},
+ "source": [
+ "For the XXL Italian models, we use the same training data from OPUS and extend\n",
+ "it with data from the Italian part of the [OSCAR corpus](https://traces1.inria.fr/oscar/).\n",
+ "Thus, the final training corpus has a size of 81GB and 13,138,379,147 tokens.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "d710804e",
+ "metadata": {},
+ "source": [
+ "Note: Unfortunately, a wrong vocab size was used when training the XXL models.\n",
+ "This explains the mismatch of the \"real\" vocab size of 31102, compared to the\n",
+ "vocab size specified in `config.json`. However, the model is working and all\n",
+ "evaluations were done under those circumstances.\n",
+ "See [this issue](https://github.com/dbmdz/berts/issues/7) for more information.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "2d9c79e5",
+ "metadata": {},
+ "source": [
+ "The Italian ELECTRA model was trained on the \"XXL\" corpus for 1M steps in total using a batch\n",
+ "size of 128. We pretty much following the ELECTRA training procedure as used for\n",
+ "[BERTurk](https://github.com/stefan-it/turkish-bert/tree/master/electra).\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "3ee71cee",
+ "metadata": {},
+ "source": [
+ "## Usage\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "9ffe9a93",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "!pip install --upgrade paddlenlp"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "82d327d4",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import paddle\n",
+ "from paddlenlp.transformers import AutoModel\n",
+ "\n",
+ "model = AutoModel.from_pretrained(\"dbmdz/bert-base-italian-uncased\")\n",
+ "input_ids = paddle.randint(100, 200, shape=[1, 20])\n",
+ "print(model(input_ids))"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "56d92161",
+ "metadata": {},
+ "source": [
+ "# Reference"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "ad146f63",
+ "metadata": {},
+ "source": [
+ "\n",
+ "> 此模型介绍及权重来源于[https://huggingface.co/dbmdz/bert-base-italian-uncased](https://huggingface.co/dbmdz/bert-base-italian-uncased),并转换为飞桨模型格式。\n"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3 (ipykernel)",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.7.13"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 5
+}
diff --git a/modelcenter/community/dbmdz/bert-base-italian-uncased/introduction_en.ipynb b/modelcenter/community/dbmdz/bert-base-italian-uncased/introduction_en.ipynb
new file mode 100644
index 0000000000000000000000000000000000000000..843ea2d291150fb6ef774f5acc299623bd782d7b
--- /dev/null
+++ b/modelcenter/community/dbmdz/bert-base-italian-uncased/introduction_en.ipynb
@@ -0,0 +1,151 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "id": "8601b7e0",
+ "metadata": {},
+ "source": [
+ "# 🤗 + 📚 dbmdz BERT and ELECTRA models\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "2e2ee06f",
+ "metadata": {},
+ "source": [
+ "In this repository the MDZ Digital Library team (dbmdz) at the Bavarian State\n",
+ "Library open sources Italian BERT and ELECTRA models 🎉\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "a7b6e470",
+ "metadata": {},
+ "source": [
+ "# Italian BERT\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "d1afb03c",
+ "metadata": {},
+ "source": [
+ "The source data for the Italian BERT model consists of a recent Wikipedia dump and\n",
+ "various texts from the [OPUS corpora](http://opus.nlpl.eu/) collection. The final\n",
+ "training corpus has a size of 13GB and 2,050,057,573 tokens.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "a900d41a",
+ "metadata": {},
+ "source": [
+ "For sentence splitting, we use NLTK (faster compared to spacy).\n",
+ "Our cased and uncased models are training with an initial sequence length of 512\n",
+ "subwords for ~2-3M steps.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "d4ea3425",
+ "metadata": {},
+ "source": [
+ "For the XXL Italian models, we use the same training data from OPUS and extend\n",
+ "it with data from the Italian part of the [OSCAR corpus](https://traces1.inria.fr/oscar/).\n",
+ "Thus, the final training corpus has a size of 81GB and 13,138,379,147 tokens.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "f1d5804d",
+ "metadata": {},
+ "source": [
+ "Note: Unfortunately, a wrong vocab size was used when training the XXL models.\n",
+ "This explains the mismatch of the \"real\" vocab size of 31102, compared to the\n",
+ "vocab size specified in `config.json`. However, the model is working and all\n",
+ "evaluations were done under those circumstances.\n",
+ "See [this issue](https://github.com/dbmdz/berts/issues/7) for more information.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "cc4f3d3d",
+ "metadata": {},
+ "source": [
+ "The Italian ELECTRA model was trained on the \"XXL\" corpus for 1M steps in total using a batch\n",
+ "size of 128. We pretty much following the ELECTRA training procedure as used for\n",
+ "[BERTurk](https://github.com/stefan-it/turkish-bert/tree/master/electra).\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "76e431e8",
+ "metadata": {},
+ "source": [
+ "## Usage\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "1b014af1",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "!pip install --upgrade paddlenlp"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "ca7904c6",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import paddle\n",
+ "from paddlenlp.transformers import AutoModel\n",
+ "\n",
+ "model = AutoModel.from_pretrained(\"dbmdz/bert-base-italian-uncased\")\n",
+ "input_ids = paddle.randint(100, 200, shape=[1, 20])\n",
+ "print(model(input_ids))"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "261390e6",
+ "metadata": {},
+ "source": [
+ "# Reference"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "f5c0c815",
+ "metadata": {},
+ "source": [
+ "> The model introduction and model weights originate from [https://huggingface.co/dbmdz/bert-base-italian-uncased](https://huggingface.co/dbmdz/bert-base-italian-uncased) and were converted to PaddlePaddle format for ease of use in PaddleNLP.\n"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3 (ipykernel)",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.7.13"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 5
+}
diff --git a/modelcenter/community/dbmdz/bert-base-italian-xxl-cased/info.yaml b/modelcenter/community/dbmdz/bert-base-italian-xxl-cased/info.yaml
index 5a0420fcd805c01627cd1729ec6cd342bd0902b6..4ed571e88339e30d592945336c032ebcffa79f36 100644
--- a/modelcenter/community/dbmdz/bert-base-italian-xxl-cased/info.yaml
+++ b/modelcenter/community/dbmdz/bert-base-italian-xxl-cased/info.yaml
@@ -1,23 +1,19 @@
+Datasets: wikipedia
+Example: null
+IfOnlineDemo: 0
+IfTraining: 0
+Language: Italian
+License: mit
Model_Info:
- name: "dbmdz/bert-base-italian-xxl-cased"
- description: "🤗 + 📚 dbmdz BERT and ELECTRA models"
- description_en: "🤗 + 📚 dbmdz BERT and ELECTRA models"
- icon: ""
- from_repo: "https://huggingface.co/dbmdz/bert-base-italian-xxl-cased"
-
+ description: 🤗 + 📚 dbmdz BERT and ELECTRA models
+ description_en: 🤗 + 📚 dbmdz BERT and ELECTRA models
+ from_repo: https://huggingface.co/dbmdz/bert-base-italian-xxl-cased
+ icon: https://paddlenlp.bj.bcebos.com/models/community/transformer-layer.png
+ name: dbmdz/bert-base-italian-xxl-cased
+Paper: null
+Publisher: dbmdz
Task:
-- tag_en: "Natural Language Processing"
- tag: "自然语言处理"
- sub_tag_en: "Fill-Mask"
- sub_tag: "槽位填充"
-
-Example:
-
-Datasets: "wikipedia"
-Publisher: "dbmdz"
-License: "mit"
-Language: "Italian"
-Paper:
-
-IfTraining: 0
-IfOnlineDemo: 0
\ No newline at end of file
+- sub_tag: 槽位填充
+ sub_tag_en: Fill-Mask
+ tag: 自然语言处理
+ tag_en: Natural Language Processing
diff --git a/modelcenter/community/dbmdz/bert-base-italian-xxl-cased/introduction_cn.ipynb b/modelcenter/community/dbmdz/bert-base-italian-xxl-cased/introduction_cn.ipynb
new file mode 100644
index 0000000000000000000000000000000000000000..f96fe1ecf6b1cff8a991dfdeef567c250a4f9b4f
--- /dev/null
+++ b/modelcenter/community/dbmdz/bert-base-italian-xxl-cased/introduction_cn.ipynb
@@ -0,0 +1,151 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "id": "4e448d86",
+ "metadata": {},
+ "source": [
+ "# 🤗 + 📚 dbmdz BERT and ELECTRA models\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "9bcf089b",
+ "metadata": {},
+ "source": [
+ "In this repository the MDZ Digital Library team (dbmdz) at the Bavarian State\n",
+ "Library open sources Italian BERT and ELECTRA models 🎉\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "fb9adbdd",
+ "metadata": {},
+ "source": [
+ "# Italian BERT\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "e5a80c49",
+ "metadata": {},
+ "source": [
+ "The source data for the Italian BERT model consists of a recent Wikipedia dump and\n",
+ "various texts from the [OPUS corpora](http://opus.nlpl.eu/) collection. The final\n",
+ "training corpus has a size of 13GB and 2,050,057,573 tokens.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "3513aa96",
+ "metadata": {},
+ "source": [
+ "For sentence splitting, we use NLTK (faster compared to spacy).\n",
+ "Our cased and uncased models are training with an initial sequence length of 512\n",
+ "subwords for ~2-3M steps.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "ca0e58ee",
+ "metadata": {},
+ "source": [
+ "For the XXL Italian models, we use the same training data from OPUS and extend\n",
+ "it with data from the Italian part of the [OSCAR corpus](https://traces1.inria.fr/oscar/).\n",
+ "Thus, the final training corpus has a size of 81GB and 13,138,379,147 tokens.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "744e0851",
+ "metadata": {},
+ "source": [
+ "Note: Unfortunately, a wrong vocab size was used when training the XXL models.\n",
+ "This explains the mismatch of the \"real\" vocab size of 31102, compared to the\n",
+ "vocab size specified in `config.json`. However, the model is working and all\n",
+ "evaluations were done under those circumstances.\n",
+ "See [this issue](https://github.com/dbmdz/berts/issues/7) for more information.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "3bb28396",
+ "metadata": {},
+ "source": [
+ "The Italian ELECTRA model was trained on the \"XXL\" corpus for 1M steps in total using a batch\n",
+ "size of 128. We pretty much following the ELECTRA training procedure as used for\n",
+ "[BERTurk](https://github.com/stefan-it/turkish-bert/tree/master/electra).\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "4c0c2ecb",
+ "metadata": {},
+ "source": [
+ "## Usage\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "e059cf91",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "!pip install --upgrade paddlenlp"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "95a883f8",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import paddle\n",
+ "from paddlenlp.transformers import AutoModel\n",
+ "\n",
+ "model = AutoModel.from_pretrained(\"dbmdz/bert-base-italian-xxl-cased\")\n",
+ "input_ids = paddle.randint(100, 200, shape=[1, 20])\n",
+ "print(model(input_ids))"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "6b2c856e",
+ "metadata": {},
+ "source": [
+ "# Reference"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "ffdf7223",
+ "metadata": {},
+ "source": [
+ "> 此模型介绍及权重来源于[https://huggingface.co/dbmdz/bert-base-italian-xxl-cased](https://huggingface.co/dbmdz/bert-base-italian-xxl-cased),并转换为飞桨模型格式。\n"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3 (ipykernel)",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.7.13"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 5
+}
diff --git a/modelcenter/community/dbmdz/bert-base-italian-xxl-cased/introduction_en.ipynb b/modelcenter/community/dbmdz/bert-base-italian-xxl-cased/introduction_en.ipynb
new file mode 100644
index 0000000000000000000000000000000000000000..cdd5de4e81c6931a8b415e35299b5dd3e863be12
--- /dev/null
+++ b/modelcenter/community/dbmdz/bert-base-italian-xxl-cased/introduction_en.ipynb
@@ -0,0 +1,151 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "id": "41ca2df0",
+ "metadata": {},
+ "source": [
+ "# 🤗 + 📚 dbmdz BERT and ELECTRA models\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "58e60a32",
+ "metadata": {},
+ "source": [
+ "In this repository the MDZ Digital Library team (dbmdz) at the Bavarian State\n",
+ "Library open sources Italian BERT and ELECTRA models 🎉\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "c7b5f379",
+ "metadata": {},
+ "source": [
+ "# Italian BERT\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "5bf65013",
+ "metadata": {},
+ "source": [
+ "The source data for the Italian BERT model consists of a recent Wikipedia dump and\n",
+ "various texts from the [OPUS corpora](http://opus.nlpl.eu/) collection. The final\n",
+ "training corpus has a size of 13GB and 2,050,057,573 tokens.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "a3aadc8d",
+ "metadata": {},
+ "source": [
+ "For sentence splitting, we use NLTK (faster compared to spacy).\n",
+ "Our cased and uncased models are training with an initial sequence length of 512\n",
+ "subwords for ~2-3M steps.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "4d670485",
+ "metadata": {},
+ "source": [
+ "For the XXL Italian models, we use the same training data from OPUS and extend\n",
+ "it with data from the Italian part of the [OSCAR corpus](https://traces1.inria.fr/oscar/).\n",
+ "Thus, the final training corpus has a size of 81GB and 13,138,379,147 tokens.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "a366dc7d",
+ "metadata": {},
+ "source": [
+ "Note: Unfortunately, a wrong vocab size was used when training the XXL models.\n",
+ "This explains the mismatch of the \"real\" vocab size of 31102, compared to the\n",
+ "vocab size specified in `config.json`. However, the model is working and all\n",
+ "evaluations were done under those circumstances.\n",
+ "See [this issue](https://github.com/dbmdz/berts/issues/7) for more information.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "eaee3adf",
+ "metadata": {},
+ "source": [
+ "The Italian ELECTRA model was trained on the \"XXL\" corpus for 1M steps in total using a batch\n",
+ "size of 128. We pretty much following the ELECTRA training procedure as used for\n",
+ "[BERTurk](https://github.com/stefan-it/turkish-bert/tree/master/electra).\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "c5151f8a",
+ "metadata": {},
+ "source": [
+ "## Usage\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "f9e48e19",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "!pip install --upgrade paddlenlp"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "c02e6f47",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import paddle\n",
+ "from paddlenlp.transformers import AutoModel\n",
+ "\n",
+ "model = AutoModel.from_pretrained(\"dbmdz/bert-base-italian-xxl-cased\")\n",
+ "input_ids = paddle.randint(100, 200, shape=[1, 20])\n",
+ "print(model(input_ids))"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "13e03e4b",
+ "metadata": {},
+ "source": [
+ "# Reference"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "66705724",
+ "metadata": {},
+ "source": [
+ "> The model introduction and model weights originate from [https://huggingface.co/dbmdz/bert-base-italian-xxl-cased](https://huggingface.co/dbmdz/bert-base-italian-xxl-cased) and were converted to PaddlePaddle format for ease of use in PaddleNLP.\n"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3 (ipykernel)",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.7.13"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 5
+}
diff --git a/modelcenter/community/dbmdz/bert-base-turkish-128k-cased/info.yaml b/modelcenter/community/dbmdz/bert-base-turkish-128k-cased/info.yaml
index 3b0c895b02120abb1c31203e8c88e40ba1357ab4..2715cc513f4d1bed057c97947f3fd08da13c7240 100644
--- a/modelcenter/community/dbmdz/bert-base-turkish-128k-cased/info.yaml
+++ b/modelcenter/community/dbmdz/bert-base-turkish-128k-cased/info.yaml
@@ -1,19 +1,15 @@
-Model_Info:
- name: "dbmdz/bert-base-turkish-128k-cased"
- description: "🤗 + 📚 dbmdz Turkish BERT model"
- description_en: "🤗 + 📚 dbmdz Turkish BERT model"
- icon: ""
- from_repo: "https://huggingface.co/dbmdz/bert-base-turkish-128k-cased"
-
-Task:
-
-Example:
-
-Datasets: ""
-Publisher: "dbmdz"
-License: "mit"
-Language: "Turkish"
-Paper:
-
+Datasets: ''
+Example: null
+IfOnlineDemo: 0
IfTraining: 0
-IfOnlineDemo: 0
\ No newline at end of file
+Language: Turkish
+License: mit
+Model_Info:
+ description: 🤗 + 📚 dbmdz Turkish BERT model
+ description_en: 🤗 + 📚 dbmdz Turkish BERT model
+ from_repo: https://huggingface.co/dbmdz/bert-base-turkish-128k-cased
+ icon: https://paddlenlp.bj.bcebos.com/models/community/transformer-layer.png
+ name: dbmdz/bert-base-turkish-128k-cased
+Paper: null
+Publisher: dbmdz
+Task: null
diff --git a/modelcenter/community/dbmdz/bert-base-turkish-128k-cased/introduction_cn.ipynb b/modelcenter/community/dbmdz/bert-base-turkish-128k-cased/introduction_cn.ipynb
new file mode 100644
index 0000000000000000000000000000000000000000..a5568c662a25bcfee3015f33a87a832561904440
--- /dev/null
+++ b/modelcenter/community/dbmdz/bert-base-turkish-128k-cased/introduction_cn.ipynb
@@ -0,0 +1,151 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "id": "bda1db47",
+ "metadata": {},
+ "source": [
+ "# 🤗 + 📚 dbmdz Turkish BERT model\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "ba254a15",
+ "metadata": {},
+ "source": [
+ "In this repository the MDZ Digital Library team (dbmdz) at the Bavarian State\n",
+ "Library open sources a cased model for Turkish 🎉\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "bf2818ba",
+ "metadata": {},
+ "source": [
+ "# 🇹🇷 BERTurk\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "788f7baa",
+ "metadata": {},
+ "source": [
+ "BERTurk is a community-driven cased BERT model for Turkish.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "5e051a7d",
+ "metadata": {},
+ "source": [
+ "Some datasets used for pretraining and evaluation are contributed from the\n",
+ "awesome Turkish NLP community, as well as the decision for the model name: BERTurk.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "1edbcf52",
+ "metadata": {},
+ "source": [
+ "## Stats\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "5b7c3ff4",
+ "metadata": {},
+ "source": [
+ "The current version of the model is trained on a filtered and sentence\n",
+ "segmented version of the Turkish [OSCAR corpus](https://traces1.inria.fr/oscar/),\n",
+ "a recent Wikipedia dump, various [OPUS corpora](http://opus.nlpl.eu/) and a\n",
+ "special corpus provided by [Kemal Oflazer](http://www.andrew.cmu.edu/user/ko/).\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "9413f21a",
+ "metadata": {},
+ "source": [
+ "The final training corpus has a size of 35GB and 44,04,976,662 tokens.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "25593952",
+ "metadata": {},
+ "source": [
+ "For this model we use a vocab size of 128k.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "962cf00d",
+ "metadata": {},
+ "source": [
+ "## Usage\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "d4a4e8e3",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "!pip install --upgrade paddlenlp"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "7157d7da",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import paddle\n",
+ "from paddlenlp.transformers import AutoModel\n",
+ "\n",
+ "model = AutoModel.from_pretrained(\"dbmdz/bert-base-turkish-128k-cased\")\n",
+ "input_ids = paddle.randint(100, 200, shape=[1, 20])\n",
+ "print(model(input_ids))"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "e47155ee",
+ "metadata": {},
+ "source": [
+ "# Reference"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "081638b2",
+ "metadata": {},
+ "source": [
+ "> 此模型介绍及权重来源于[https://huggingface.co/dbmdz/bert-base-turkish-128k-cased](https://huggingface.co/dbmdz/bert-base-turkish-128k-cased),并转换为飞桨模型格式。\n"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3 (ipykernel)",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.7.13"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 5
+}
diff --git a/modelcenter/community/dbmdz/bert-base-turkish-128k-cased/introduction_en.ipynb b/modelcenter/community/dbmdz/bert-base-turkish-128k-cased/introduction_en.ipynb
new file mode 100644
index 0000000000000000000000000000000000000000..4979c965075ba1d231cbf1a0f651efe3b991e63e
--- /dev/null
+++ b/modelcenter/community/dbmdz/bert-base-turkish-128k-cased/introduction_en.ipynb
@@ -0,0 +1,151 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "id": "911a1be9",
+ "metadata": {},
+ "source": [
+ "# 🤗 + 📚 dbmdz Turkish BERT model\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "4f09b0f1",
+ "metadata": {},
+ "source": [
+ "In this repository the MDZ Digital Library team (dbmdz) at the Bavarian State\n",
+ "Library open sources a cased model for Turkish 🎉\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "fa2a78a0",
+ "metadata": {},
+ "source": [
+ "# 🇹🇷 BERTurk\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "8b2f8c68",
+ "metadata": {},
+ "source": [
+ "BERTurk is a community-driven cased BERT model for Turkish.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "fe23e365",
+ "metadata": {},
+ "source": [
+ "Some datasets used for pretraining and evaluation are contributed from the\n",
+ "awesome Turkish NLP community, as well as the decision for the model name: BERTurk.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "2da0ce24",
+ "metadata": {},
+ "source": [
+ "## Stats\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "d3f6af43",
+ "metadata": {},
+ "source": [
+ "The current version of the model is trained on a filtered and sentence\n",
+ "segmented version of the Turkish [OSCAR corpus](https://traces1.inria.fr/oscar/),\n",
+ "a recent Wikipedia dump, various [OPUS corpora](http://opus.nlpl.eu/) and a\n",
+ "special corpus provided by [Kemal Oflazer](http://www.andrew.cmu.edu/user/ko/).\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "0d8d60c1",
+ "metadata": {},
+ "source": [
+ "The final training corpus has a size of 35GB and 44,04,976,662 tokens.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "ce42504f",
+ "metadata": {},
+ "source": [
+ "For this model we use a vocab size of 128k.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "4815bfdb",
+ "metadata": {},
+ "source": [
+ "## Usage\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "7a084604",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "!pip install --upgrade paddlenlp"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "8d041c78",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import paddle\n",
+ "from paddlenlp.transformers import AutoModel\n",
+ "\n",
+ "model = AutoModel.from_pretrained(\"dbmdz/bert-base-turkish-128k-cased\")\n",
+ "input_ids = paddle.randint(100, 200, shape=[1, 20])\n",
+ "print(model(input_ids))"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "da82079c",
+ "metadata": {},
+ "source": [
+ "# Reference"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "b6632d46",
+ "metadata": {},
+ "source": [
+ "> The model introduction and model weights originate from [https://huggingface.co/dbmdz/bert-base-turkish-128k-cased](https://huggingface.co/dbmdz/bert-base-turkish-128k-cased) and were converted to PaddlePaddle format for ease of use in PaddleNLP.\n"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3 (ipykernel)",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.7.13"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 5
+}
diff --git a/modelcenter/community/dbmdz/bert-base-turkish-cased/info.yaml b/modelcenter/community/dbmdz/bert-base-turkish-cased/info.yaml
index 394d341ab1796ec9906a455109641d4a24735a36..619970861ef2728dbe52cbacc1c15475b703ac21 100644
--- a/modelcenter/community/dbmdz/bert-base-turkish-cased/info.yaml
+++ b/modelcenter/community/dbmdz/bert-base-turkish-cased/info.yaml
@@ -1,19 +1,15 @@
-Model_Info:
- name: "dbmdz/bert-base-turkish-cased"
- description: "🤗 + 📚 dbmdz Turkish BERT model"
- description_en: "🤗 + 📚 dbmdz Turkish BERT model"
- icon: ""
- from_repo: "https://huggingface.co/dbmdz/bert-base-turkish-cased"
-
-Task:
-
-Example:
-
-Datasets: ""
-Publisher: "dbmdz"
-License: "mit"
-Language: "Turkish"
-Paper:
-
+Datasets: ''
+Example: null
+IfOnlineDemo: 0
IfTraining: 0
-IfOnlineDemo: 0
\ No newline at end of file
+Language: Turkish
+License: mit
+Model_Info:
+ description: 🤗 + 📚 dbmdz Turkish BERT model
+ description_en: 🤗 + 📚 dbmdz Turkish BERT model
+ from_repo: https://huggingface.co/dbmdz/bert-base-turkish-cased
+ icon: https://paddlenlp.bj.bcebos.com/models/community/transformer-layer.png
+ name: dbmdz/bert-base-turkish-cased
+Paper: null
+Publisher: dbmdz
+Task: null
diff --git a/modelcenter/community/dbmdz/bert-base-turkish-cased/introduction_cn.ipynb b/modelcenter/community/dbmdz/bert-base-turkish-cased/introduction_cn.ipynb
new file mode 100644
index 0000000000000000000000000000000000000000..0e32f0526269707052bb3011e33756cef9d0ebb6
--- /dev/null
+++ b/modelcenter/community/dbmdz/bert-base-turkish-cased/introduction_cn.ipynb
@@ -0,0 +1,118 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "id": "e9075248",
+ "metadata": {},
+ "source": [
+ "# 🤗 + 📚 dbmdz Turkish BERT model\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "0f68224a",
+ "metadata": {},
+ "source": [
+ "In this repository the MDZ Digital Library team (dbmdz) at the Bavarian State\n",
+ "Library open sources a cased model for Turkish 🎉\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "a800751f",
+ "metadata": {},
+ "source": [
+ "# 🇹🇷 BERTurk\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "0f418bcc",
+ "metadata": {},
+ "source": [
+ "BERTurk is a community-driven cased BERT model for Turkish.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "059528cb",
+ "metadata": {},
+ "source": [
+ "Some datasets used for pretraining and evaluation are contributed from the\n",
+ "awesome Turkish NLP community, as well as the decision for the model name: BERTurk.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "ec8d00db",
+ "metadata": {},
+ "source": [
+ "## How to use"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "1cb273ef",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "!pip install --upgrade paddlenlp"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "45fd943c",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import paddle\n",
+ "from paddlenlp.transformers import AutoModel\n",
+ "\n",
+ "model = AutoModel.from_pretrained(\"dbmdz/bert-base-turkish-cased\")\n",
+ "input_ids = paddle.randint(100, 200, shape=[1, 20])\n",
+ "print(model(input_ids))"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "0653e10b",
+ "metadata": {},
+ "source": [
+ "# Reference"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "14b8d869",
+ "metadata": {},
+ "source": [
+ "\n",
+ "\n",
+ "> 此模型介绍及权重来源于[https://huggingface.co/dbmdz/bert-base-turkish-cased](https://huggingface.co/dbmdz/bert-base-turkish-cased),并转换为飞桨模型格式。\n"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3 (ipykernel)",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.7.13"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 5
+}
diff --git a/modelcenter/community/dbmdz/bert-base-turkish-cased/introduction_en.ipynb b/modelcenter/community/dbmdz/bert-base-turkish-cased/introduction_en.ipynb
new file mode 100644
index 0000000000000000000000000000000000000000..f2d90a6ded8cb2dfad99f718cd13a0dfeb038e4d
--- /dev/null
+++ b/modelcenter/community/dbmdz/bert-base-turkish-cased/introduction_en.ipynb
@@ -0,0 +1,117 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "id": "22b9df2e",
+ "metadata": {},
+ "source": [
+ "# 🤗 + 📚 dbmdz Turkish BERT model\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "509b461d",
+ "metadata": {},
+ "source": [
+ "In this repository the MDZ Digital Library team (dbmdz) at the Bavarian State\n",
+ "Library open sources a cased model for Turkish 🎉\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "84ab205a",
+ "metadata": {},
+ "source": [
+ "# 🇹🇷 BERTurk\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "aafa4b5d",
+ "metadata": {},
+ "source": [
+ "BERTurk is a community-driven cased BERT model for Turkish.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "16251feb",
+ "metadata": {},
+ "source": [
+ "Some datasets used for pretraining and evaluation are contributed from the\n",
+ "awesome Turkish NLP community, as well as the decision for the model name: BERTurk.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "1bdf0158",
+ "metadata": {},
+ "source": [
+ "## Usage\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "aa2b4d91",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "!pip install --upgrade paddlenlp"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "0f55d31d",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import paddle\n",
+ "from paddlenlp.transformers import AutoModel\n",
+ "\n",
+ "model = AutoModel.from_pretrained(\"dbmdz/bert-base-turkish-cased\")\n",
+ "input_ids = paddle.randint(100, 200, shape=[1, 20])\n",
+ "print(model(input_ids))"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "9aae3e54",
+ "metadata": {},
+ "source": [
+ "# Reference"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "839b89b9",
+ "metadata": {},
+ "source": [
+ "\n",
+ "> The model introduction and model weights originate from [https://huggingface.co/dbmdz/bert-base-turkish-cased](https://huggingface.co/dbmdz/bert-base-turkish-cased) and were converted to PaddlePaddle format for ease of use in PaddleNLP.\n"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3 (ipykernel)",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.7.13"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 5
+}
diff --git a/modelcenter/community/dbmdz/bert-base-turkish-uncased/info.yaml b/modelcenter/community/dbmdz/bert-base-turkish-uncased/info.yaml
index f771d3f68b52bf37c901a717c3d74a92a2156fb8..ffabf371a04554e26cf1b4a505a8d0347bd73c9a 100644
--- a/modelcenter/community/dbmdz/bert-base-turkish-uncased/info.yaml
+++ b/modelcenter/community/dbmdz/bert-base-turkish-uncased/info.yaml
@@ -1,19 +1,15 @@
-Model_Info:
- name: "dbmdz/bert-base-turkish-uncased"
- description: "🤗 + 📚 dbmdz Turkish BERT model"
- description_en: "🤗 + 📚 dbmdz Turkish BERT model"
- icon: ""
- from_repo: "https://huggingface.co/dbmdz/bert-base-turkish-uncased"
-
-Task:
-
-Example:
-
-Datasets: ""
-Publisher: "dbmdz"
-License: "mit"
-Language: "Turkish"
-Paper:
-
+Datasets: ''
+Example: null
+IfOnlineDemo: 0
IfTraining: 0
-IfOnlineDemo: 0
\ No newline at end of file
+Language: Turkish
+License: mit
+Model_Info:
+ description: 🤗 + 📚 dbmdz Turkish BERT model
+ description_en: 🤗 + 📚 dbmdz Turkish BERT model
+ from_repo: https://huggingface.co/dbmdz/bert-base-turkish-uncased
+ icon: https://paddlenlp.bj.bcebos.com/models/community/transformer-layer.png
+ name: dbmdz/bert-base-turkish-uncased
+Paper: null
+Publisher: dbmdz
+Task: null
diff --git a/modelcenter/community/dbmdz/bert-base-turkish-uncased/introduction_cn.ipynb b/modelcenter/community/dbmdz/bert-base-turkish-uncased/introduction_cn.ipynb
new file mode 100644
index 0000000000000000000000000000000000000000..c9332fb9eca2330d332aca6d1dfaa1ff855999df
--- /dev/null
+++ b/modelcenter/community/dbmdz/bert-base-turkish-uncased/introduction_cn.ipynb
@@ -0,0 +1,118 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "id": "f3dbf349",
+ "metadata": {},
+ "source": [
+ "# 🤗 + 📚 dbmdz Turkish BERT model\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "479d8e10",
+ "metadata": {},
+ "source": [
+ "In this repository the MDZ Digital Library team (dbmdz) at the Bavarian State\n",
+ "Library open sources an uncased model for Turkish 🎉\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "fc31d938",
+ "metadata": {},
+ "source": [
+ "# 🇹🇷 BERTurk\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "c05c98f4",
+ "metadata": {},
+ "source": [
+ "BERTurk is a community-driven uncased BERT model for Turkish.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "116bbd89",
+ "metadata": {},
+ "source": [
+ "Some datasets used for pretraining and evaluation are contributed from the\n",
+ "awesome Turkish NLP community, as well as the decision for the model name: BERTurk.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "eab29ae1",
+ "metadata": {},
+ "source": [
+ "## How to use"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "531e7c2f",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "!pip install --upgrade paddlenlp"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "c23a11a9",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import paddle\n",
+ "from paddlenlp.transformers import AutoModel\n",
+ "\n",
+ "model = AutoModel.from_pretrained(\"dbmdz/bert-base-turkish-uncased\")\n",
+ "input_ids = paddle.randint(100, 200, shape=[1, 20])\n",
+ "print(model(input_ids))"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "1a4d2556",
+ "metadata": {},
+ "source": [
+ "# Reference"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "4e10e25f",
+ "metadata": {},
+ "source": [
+ "\n",
+ "\n",
+ "> 此模型介绍及权重来源于[https://huggingface.co/dbmdz/bert-base-turkish-uncased](https://huggingface.co/dbmdz/bert-base-turkish-uncased),并转换为飞桨模型格式。\n"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3 (ipykernel)",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.7.13"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 5
+}
diff --git a/modelcenter/community/dbmdz/bert-base-turkish-uncased/introduction_en.ipynb b/modelcenter/community/dbmdz/bert-base-turkish-uncased/introduction_en.ipynb
new file mode 100644
index 0000000000000000000000000000000000000000..18d5794ee74f4d15ca5b050d057d4831ce9307be
--- /dev/null
+++ b/modelcenter/community/dbmdz/bert-base-turkish-uncased/introduction_en.ipynb
@@ -0,0 +1,118 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "id": "f1968bb1",
+ "metadata": {},
+ "source": [
+ "# 🤗 + 📚 dbmdz Turkish BERT model\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "37119e6e",
+ "metadata": {},
+ "source": [
+ "In this repository the MDZ Digital Library team (dbmdz) at the Bavarian State\n",
+ "Library open sources an uncased model for Turkish 🎉\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "e2428d3f",
+ "metadata": {},
+ "source": [
+ "# 🇹🇷 BERTurk\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "455a98e2",
+ "metadata": {},
+ "source": [
+ "BERTurk is a community-driven uncased BERT model for Turkish.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "3c7b1272",
+ "metadata": {},
+ "source": [
+ "Some datasets used for pretraining and evaluation are contributed from the\n",
+ "awesome Turkish NLP community, as well as the decision for the model name: BERTurk.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "cdd8f852",
+ "metadata": {},
+ "source": [
+ "## How to use"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "81436ade",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "!pip install --upgrade paddlenlp"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "bd223538",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import paddle\n",
+ "from paddlenlp.transformers import AutoModel\n",
+ "\n",
+ "model = AutoModel.from_pretrained(\"dbmdz/bert-base-turkish-uncased\")\n",
+ "input_ids = paddle.randint(100, 200, shape=[1, 20])\n",
+ "print(model(input_ids))"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "7edb6fa7",
+ "metadata": {},
+ "source": [
+ "# Reference"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "95b108cb",
+ "metadata": {},
+ "source": [
+ "\n",
+ "\n",
+ "> The model introduction and model weights originate from [https://huggingface.co/dbmdz/bert-base-turkish-uncased](https://huggingface.co/dbmdz/bert-base-turkish-uncased) and were converted to PaddlePaddle format for ease of use in PaddleNLP.\n"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3 (ipykernel)",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.7.13"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 5
+}
diff --git a/modelcenter/community/deepparag/Aeona/info.yaml b/modelcenter/community/deepparag/Aeona/info.yaml
index 65ec5dc9572ca5e1e4180cc77a0dce91abd96c17..e9e858f766354f7f547ebfa1a07a2603038b93f8 100644
--- a/modelcenter/community/deepparag/Aeona/info.yaml
+++ b/modelcenter/community/deepparag/Aeona/info.yaml
@@ -1,23 +1,19 @@
+Datasets: ''
+Example: null
+IfOnlineDemo: 0
+IfTraining: 0
+Language: ''
+License: mit
Model_Info:
- name: "deepparag/Aeona"
- description: "Aeona | Chatbot"
- description_en: "Aeona | Chatbot"
- icon: ""
- from_repo: "https://huggingface.co/deepparag/Aeona"
-
+ description: Aeona | Chatbot
+ description_en: Aeona | Chatbot
+ from_repo: https://huggingface.co/deepparag/Aeona
+ icon: https://paddlenlp.bj.bcebos.com/models/community/transformer-layer.png
+ name: deepparag/Aeona
+Paper: null
+Publisher: deepparag
Task:
-- tag_en: "Natural Language Processing"
- tag: "自然语言处理"
- sub_tag_en: "Text Generation"
- sub_tag: "文本生成"
-
-Example:
-
-Datasets: ""
-Publisher: "deepparag"
-License: "mit"
-Language: ""
-Paper:
-
-IfTraining: 0
-IfOnlineDemo: 0
\ No newline at end of file
+- sub_tag: 文本生成
+ sub_tag_en: Text Generation
+ tag: 自然语言处理
+ tag_en: Natural Language Processing
diff --git a/modelcenter/community/deepparag/Aeona/introduction_cn.ipynb b/modelcenter/community/deepparag/Aeona/introduction_cn.ipynb
new file mode 100644
index 0000000000000000000000000000000000000000..7ccce23b10d222fda60c6923d7a261aee1b42464
--- /dev/null
+++ b/modelcenter/community/deepparag/Aeona/introduction_cn.ipynb
@@ -0,0 +1,116 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "id": "9d9bb2aa",
+ "metadata": {},
+ "source": [
+ "# Aeona | Chatbot\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "7361d804",
+ "metadata": {},
+ "source": [
+ "An generative AI made using [microsoft/DialoGPT-small](https://huggingface.co/microsoft/DialoGPT-small).\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "008bcb8d",
+ "metadata": {},
+ "source": [
+ "Recommended to use along with an [AIML Chatbot](https://github.com/deepsarda/Aeona-Aiml) to reduce load, get better replies, add name and personality to your bot.\n",
+ "Using an AIML Chatbot will allow you to hardcode some replies also.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "b4bfb9cd",
+ "metadata": {},
+ "source": [
+ "## Evaluation\n",
+ "Below is a comparison of Aeona vs. other baselines on the mixed dataset given above using automatic evaluation metrics.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "4d478ffa",
+ "metadata": {},
+ "source": [
+ "| Model | Perplexity |\n",
+ "|---|---|\n",
+ "| Seq2seq Baseline [3] | 29.8 |\n",
+ "| Wolf et al. [5] | 16.3 |\n",
+ "| GPT-2 baseline | 99.5 |\n",
+ "| DialoGPT baseline | 56.6 |\n",
+ "| DialoGPT finetuned | 11.4 |\n",
+ "| PersonaGPT | 10.2 |\n",
+ "| **Aeona** | **7.9** |\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "ebb927ce",
+ "metadata": {},
+ "source": [
+ "## Usage\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "ea2a9d8e",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "!pip install --upgrade paddlenlp"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "dc15795c",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import paddle\n",
+ "from paddlenlp.transformers import AutoModel\n",
+ "\n",
+ "model = AutoModel.from_pretrained(\"deepparag/Aeona\")\n",
+ "input_ids = paddle.randint(100, 200, shape=[1, 20])\n",
+ "print(model(input_ids))"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "074bd20d",
+ "metadata": {},
+ "source": [
+ "> 此模型介绍及权重来源于[https://huggingface.co/deepparag/Aeona](https://huggingface.co/deepparag/Aeona),并转换为飞桨模型格式。\n"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3 (ipykernel)",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.7.13"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 5
+}
diff --git a/modelcenter/community/deepparag/Aeona/introduction_en.ipynb b/modelcenter/community/deepparag/Aeona/introduction_en.ipynb
new file mode 100644
index 0000000000000000000000000000000000000000..e55b926e280f85db85fab4bed68273f9d2ada18a
--- /dev/null
+++ b/modelcenter/community/deepparag/Aeona/introduction_en.ipynb
@@ -0,0 +1,116 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "id": "f8079990",
+ "metadata": {},
+ "source": [
+ "# Aeona | Chatbot\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "6a69f81a",
+ "metadata": {},
+ "source": [
+ "An generative AI made using [microsoft/DialoGPT-small](https://huggingface.co/microsoft/DialoGPT-small).\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "a65479b8",
+ "metadata": {},
+ "source": [
+ "Recommended to use along with an [AIML Chatbot](https://github.com/deepsarda/Aeona-Aiml) to reduce load, get better replies, add name and personality to your bot.\n",
+ "Using an AIML Chatbot will allow you to hardcode some replies also.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "ea390590",
+ "metadata": {},
+ "source": [
+ "## Evaluation\n",
+ "Below is a comparison of Aeona vs. other baselines on the mixed dataset given above using automatic evaluation metrics.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "5b64325a",
+ "metadata": {},
+ "source": [
+ "| Model | Perplexity |\n",
+ "|---|---|\n",
+ "| Seq2seq Baseline [3] | 29.8 |\n",
+ "| Wolf et al. [5] | 16.3 |\n",
+ "| GPT-2 baseline | 99.5 |\n",
+ "| DialoGPT baseline | 56.6 |\n",
+ "| DialoGPT finetuned | 11.4 |\n",
+ "| PersonaGPT | 10.2 |\n",
+ "| **Aeona** | **7.9** |\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "bf7f0d0e",
+ "metadata": {},
+ "source": [
+ "## Usage\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "16b58290",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "!pip install --upgrade paddlenlp"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "cf18c96e",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import paddle\n",
+ "from paddlenlp.transformers import AutoModel\n",
+ "\n",
+ "model = AutoModel.from_pretrained(\"deepparag/Aeona\")\n",
+ "input_ids = paddle.randint(100, 200, shape=[1, 20])\n",
+ "print(model(input_ids))"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "fae16f6e",
+ "metadata": {},
+ "source": [
+ "> The model introduction and model weights originate from [https://huggingface.co/deepparag/Aeona](https://huggingface.co/deepparag/Aeona) and were converted to PaddlePaddle format for ease of use in PaddleNLP.\n"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3 (ipykernel)",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.7.13"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 5
+}
diff --git a/modelcenter/community/deepparag/DumBot/download_cn.md b/modelcenter/community/deepparag/DumBot/download_cn.md
deleted file mode 100644
index 4a06958c07563ed41bab7ee79f3debd41a8ec89d..0000000000000000000000000000000000000000
--- a/modelcenter/community/deepparag/DumBot/download_cn.md
+++ /dev/null
@@ -1,23 +0,0 @@
-# 模型列表
-
-## deepparag/DumBot
-
-| 模型名称 | 模型介绍 | 模型大小 | 模型下载 |
-| --- | --- | --- | --- |
-|deepparag/DumBot| | 621.95MB | [merges.txt](https://bj.bcebos.com/paddlenlp/models/community/deepparag/DumBot/merges.txt)
[model_config.json](https://bj.bcebos.com/paddlenlp/models/community/deepparag/DumBot/model_config.json)
[model_state.pdparams](https://bj.bcebos.com/paddlenlp/models/community/deepparag/DumBot/model_state.pdparams)
[tokenizer_config.json](https://bj.bcebos.com/paddlenlp/models/community/deepparag/DumBot/tokenizer_config.json)
[vocab.json](https://bj.bcebos.com/paddlenlp/models/community/deepparag/DumBot/vocab.json) |
-
-也可以通过`paddlenlp` cli 工具来下载对应的模型权重,使用步骤如下所示:
-
-* 安装paddlenlp
-
-```shell
-pip install --upgrade paddlenlp
-```
-
-* 下载命令行
-
-```shell
-paddlenlp download --cache-dir ./pretrained_models deepparag/DumBot
-```
-
-有任何下载的问题都可以到[PaddleNLP](https://github.com/PaddlePaddle/PaddleNLP)中发Issue提问。
\ No newline at end of file
diff --git a/modelcenter/community/deepparag/DumBot/download_en.md b/modelcenter/community/deepparag/DumBot/download_en.md
deleted file mode 100644
index f2bd3c7436283f60730f9eb46958044c3a54eca3..0000000000000000000000000000000000000000
--- a/modelcenter/community/deepparag/DumBot/download_en.md
+++ /dev/null
@@ -1,23 +0,0 @@
-# model list
-
-##
-
-| model | description | model_size | download |
-| --- | --- | --- | --- |
-|deepparag/DumBot| | 621.95MB | [merges.txt](https://bj.bcebos.com/paddlenlp/models/community/deepparag/DumBot/merges.txt)
[model_config.json](https://bj.bcebos.com/paddlenlp/models/community/deepparag/DumBot/model_config.json)
[model_state.pdparams](https://bj.bcebos.com/paddlenlp/models/community/deepparag/DumBot/model_state.pdparams)
[tokenizer_config.json](https://bj.bcebos.com/paddlenlp/models/community/deepparag/DumBot/tokenizer_config.json)
[vocab.json](https://bj.bcebos.com/paddlenlp/models/community/deepparag/DumBot/vocab.json) |
-
-or you can download all of model file with the following steps:
-
-* install paddlenlp
-
-```shell
-pip install --upgrade paddlenlp
-```
-
-* download model with cli tool
-
-```shell
-paddlenlp download --cache-dir ./pretrained_models deepparag/DumBot
-```
-
-If you have any problems with it, you can post issue on [PaddleNLP](https://github.com/PaddlePaddle/PaddleNLP) to get support.
diff --git a/modelcenter/community/deepparag/DumBot/info.yaml b/modelcenter/community/deepparag/DumBot/info.yaml
deleted file mode 100644
index 8f99ea06b4e1bc0e947407ff5c51bff15654c4c5..0000000000000000000000000000000000000000
--- a/modelcenter/community/deepparag/DumBot/info.yaml
+++ /dev/null
@@ -1,23 +0,0 @@
-Model_Info:
- name: "deepparag/DumBot"
- description: "THIS AI IS OUTDATED. See [Aeona](https://huggingface.co/deepparag/Aeona)"
- description_en: "THIS AI IS OUTDATED. See [Aeona](https://huggingface.co/deepparag/Aeona)"
- icon: ""
- from_repo: "https://huggingface.co/deepparag/DumBot"
-
-Task:
-- tag_en: "Natural Language Processing"
- tag: "自然语言处理"
- sub_tag_en: "Text Generation"
- sub_tag: "文本生成"
-
-Example:
-
-Datasets: ""
-Publisher: "deepparag"
-License: "mit"
-Language: ""
-Paper:
-
-IfTraining: 0
-IfOnlineDemo: 0
\ No newline at end of file
diff --git a/modelcenter/community/deepset/roberta-base-squad2-distilled/info.yaml b/modelcenter/community/deepset/roberta-base-squad2-distilled/info.yaml
index f351a6e3f7a836db46c759f7b962c17f240dbf02..2db8b542ffeb3de088e024b156e7fa1cdf744e50 100644
--- a/modelcenter/community/deepset/roberta-base-squad2-distilled/info.yaml
+++ b/modelcenter/community/deepset/roberta-base-squad2-distilled/info.yaml
@@ -1,23 +1,19 @@
+Datasets: squad_v2
+Example: null
+IfOnlineDemo: 0
+IfTraining: 0
+Language: English
+License: mit
Model_Info:
- name: "deepset/roberta-base-squad2-distilled"
- description: "Overview"
- description_en: "Overview"
- icon: ""
- from_repo: "https://huggingface.co/deepset/roberta-base-squad2-distilled"
-
+ description: Overview
+ description_en: Overview
+ from_repo: https://huggingface.co/deepset/roberta-base-squad2-distilled
+ icon: https://paddlenlp.bj.bcebos.com/models/community/transformer-layer.png
+ name: deepset/roberta-base-squad2-distilled
+Paper: null
+Publisher: deepset
Task:
-- tag_en: "Natural Language Processing"
- tag: "自然语言处理"
- sub_tag_en: "Question Answering"
- sub_tag: "回答问题"
-
-Example:
-
-Datasets: "squad_v2"
-Publisher: "deepset"
-License: "mit"
-Language: "English"
-Paper:
-
-IfTraining: 0
-IfOnlineDemo: 0
\ No newline at end of file
+- sub_tag: 回答问题
+ sub_tag_en: Question Answering
+ tag: 自然语言处理
+ tag_en: Natural Language Processing
diff --git a/modelcenter/community/deepset/roberta-base-squad2-distilled/introduction_cn.ipynb b/modelcenter/community/deepset/roberta-base-squad2-distilled/introduction_cn.ipynb
new file mode 100644
index 0000000000000000000000000000000000000000..c456482d7f23ddbe471aaea16b1a98e5add84810
--- /dev/null
+++ b/modelcenter/community/deepset/roberta-base-squad2-distilled/introduction_cn.ipynb
@@ -0,0 +1,98 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "id": "85b7cc2e",
+ "metadata": {},
+ "source": [
+ "## Overview\n",
+ "\n",
+ "Language model: deepset/roberta-base-squad2-distilled\n",
+ "\n",
+ "Language: English\n",
+ "\n",
+ "Training data: SQuAD 2.0 training set Eval data: SQuAD 2.0 dev set Infrastructure: 4x V100 GPU\n",
+ "\n",
+ "Published: Dec 8th, 2021"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "a455ff64",
+ "metadata": {},
+ "source": [
+ "## How to use"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "d51fa907",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "!pip install --upgrade paddlenlp"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "4590c7eb",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import paddle\n",
+ "from paddlenlp.transformers import AutoModel\n",
+ "\n",
+ "model = AutoModel.from_pretrained(\"deepset/roberta-base-squad2-distilled\")\n",
+ "input_ids = paddle.randint(100, 200, shape=[1, 20])\n",
+ "print(model(input_ids))"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "ac6e34fd",
+ "metadata": {},
+ "source": [
+ "## Authors\n",
+ "- Timo Möller: `timo.moeller [at] deepset.ai`\n",
+ "- Julian Risch: `julian.risch [at] deepset.ai`\n",
+ "- Malte Pietsch: `malte.pietsch [at] deepset.ai`\n",
+ "- Michel Bartels: `michel.bartels [at] deepset.ai`\n",
+ "## About us\n",
+ "![deepset logo](https://workablehr.s3.amazonaws.com/uploads/account/logo/476306/logo)\n",
+ "We bring NLP to the industry via open source!\n",
+ "Our focus: Industry specific language models & large scale QA systems.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "3d22bf87",
+ "metadata": {},
+ "source": [
+ "> 此模型介绍及权重来源于[https://huggingface.co/deepset/roberta-base-squad2-distilled](https://huggingface.co/deepset/roberta-base-squad2-distilled),并转换为飞桨模型格式。\n"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3 (ipykernel)",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.7.13"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 5
+}
diff --git a/modelcenter/community/deepset/roberta-base-squad2-distilled/introduction_en.ipynb b/modelcenter/community/deepset/roberta-base-squad2-distilled/introduction_en.ipynb
new file mode 100644
index 0000000000000000000000000000000000000000..fe7b0fa8216a4e048acb13216b0ba1d7e0e1363c
--- /dev/null
+++ b/modelcenter/community/deepset/roberta-base-squad2-distilled/introduction_en.ipynb
@@ -0,0 +1,98 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "id": "b917c220",
+ "metadata": {},
+ "source": [
+ "## Overview\n",
+ "\n",
+ "Language model: deepset/roberta-base-squad2-distilled\n",
+ "\n",
+ "Language: English\n",
+ "\n",
+ "Training data: SQuAD 2.0 training set Eval data: SQuAD 2.0 dev set Infrastructure: 4x V100 GPU\n",
+ "\n",
+ "Published: Dec 8th, 2021"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "94e41c66",
+ "metadata": {},
+ "source": [
+ "## How to use"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "8b2c9009",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "!pip install --upgrade paddlenlp"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "b9472a8e",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import paddle\n",
+ "from paddlenlp.transformers import AutoModel\n",
+ "\n",
+ "model = AutoModel.from_pretrained(\"deepset/roberta-base-squad2-distilled\")\n",
+ "input_ids = paddle.randint(100, 200, shape=[1, 20])\n",
+ "print(model(input_ids))"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "942ce61d",
+ "metadata": {},
+ "source": [
+ "## Authors\n",
+ "- Timo Möller: `timo.moeller [at] deepset.ai`\n",
+ "- Julian Risch: `julian.risch [at] deepset.ai`\n",
+ "- Malte Pietsch: `malte.pietsch [at] deepset.ai`\n",
+ "- Michel Bartels: `michel.bartels [at] deepset.ai`\n",
+ "## About us\n",
+ "![deepset logo](https://workablehr.s3.amazonaws.com/uploads/account/logo/476306/logo)\n",
+ "We bring NLP to the industry via open source!\n",
+ "Our focus: Industry specific language models & large scale QA systems.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "d65be46f",
+ "metadata": {},
+ "source": [
+ "> The model introduction and model weights originate from [https://huggingface.co/deepset/roberta-base-squad2-distilled](https://huggingface.co/deepset/roberta-base-squad2-distilled) and were converted to PaddlePaddle format for ease of use in PaddleNLP.\n"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3 (ipykernel)",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.7.13"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 5
+}
diff --git a/modelcenter/community/dslim/bert-base-NER/info.yaml b/modelcenter/community/dslim/bert-base-NER/info.yaml
index 763642eb18d0b0b5cc0d87ae9be28b06d40e674d..29aea2ab9d6f208cdf160933c3831eb53801efc9 100644
--- a/modelcenter/community/dslim/bert-base-NER/info.yaml
+++ b/modelcenter/community/dslim/bert-base-NER/info.yaml
@@ -1,24 +1,21 @@
+Datasets: conll2003
+Example: null
+IfOnlineDemo: 0
+IfTraining: 0
+Language: English
+License: mit
Model_Info:
- name: "dslim/bert-base-NER"
- description: "bert-base-NER"
- description_en: "bert-base-NER"
- icon: ""
- from_repo: "https://huggingface.co/dslim/bert-base-NER"
-
-Task:
-- tag_en: "Natural Language Processing"
- tag: "自然语言处理"
- sub_tag_en: "Token Classification"
- sub_tag: "Token分类"
-
-Example:
-
-Datasets: "conll2003"
-Publisher: "dslim"
-License: "mit"
-Language: "English"
+ description: bert-base-NER
+ description_en: bert-base-NER
+ from_repo: https://huggingface.co/dslim/bert-base-NER
+ icon: https://paddlenlp.bj.bcebos.com/models/community/transformer-layer.png
+ name: dslim/bert-base-NER
Paper:
- - title: 'BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding'
- url: 'http://arxiv.org/abs/1810.04805v2'
-IfTraining: 0
-IfOnlineDemo: 0
\ No newline at end of file
+- title: 'BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding'
+ url: http://arxiv.org/abs/1810.04805v2
+Publisher: dslim
+Task:
+- sub_tag: Token分类
+ sub_tag_en: Token Classification
+ tag: 自然语言处理
+ tag_en: Natural Language Processing
diff --git a/modelcenter/community/dslim/bert-base-NER/introduction_cn.ipynb b/modelcenter/community/dslim/bert-base-NER/introduction_cn.ipynb
new file mode 100644
index 0000000000000000000000000000000000000000..191633124b33be6710a112cb1980fe67e7ac3e10
--- /dev/null
+++ b/modelcenter/community/dslim/bert-base-NER/introduction_cn.ipynb
@@ -0,0 +1,125 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "id": "4dd2d9a8",
+ "metadata": {},
+ "source": [
+ "# bert-base-NER\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "39c0b4be",
+ "metadata": {},
+ "source": [
+ "## Model description\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "0961b24f",
+ "metadata": {},
+ "source": [
+ "**bert-base-NER** is a fine-tuned BERT model that is ready to use for **Named Entity Recognition** and achieves **state-of-the-art performance** for the NER task. It has been trained to recognize four types of entities: location (LOC), organizations (ORG), person (PER) and Miscellaneous (MISC).\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "58641459",
+ "metadata": {},
+ "source": [
+ "Specifically, this model is a *bert-base-cased* model that was fine-tuned on the English version of the standard [CoNLL-2003 Named Entity Recognition](https://www.aclweb.org/anthology/W03-0419.pdf) dataset.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "9da0ddda",
+ "metadata": {},
+ "source": [
+ "If you'd like to use a larger BERT-large model fine-tuned on the same dataset, a **bert-large-NER** version is also available.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "4d5adc68",
+ "metadata": {},
+ "source": [
+ "## How to use\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "88f3ea49",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "!pip install --upgrade paddlenlp"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "76ef1f0e",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import paddle\n",
+ "from paddlenlp.transformers import AutoModel\n",
+ "\n",
+ "model = AutoModel.from_pretrained(\"dslim/bert-base-NER\")\n",
+ "input_ids = paddle.randint(100, 200, shape=[1, 20])\n",
+ "print(model(input_ids))"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "137e381c",
+ "metadata": {},
+ "source": [
+ "## Citation\n",
+ "```\n",
+ "@inproceedings{tjong-kim-sang-de-meulder-2003-introduction,\n",
+ "title = \"Introduction to the {C}o{NLL}-2003 Shared Task: Language-Independent Named Entity Recognition\",\n",
+ "author = \"Tjong Kim Sang, Erik F. and\n",
+ "De Meulder, Fien\",\n",
+ "booktitle = \"Proceedings of the Seventh Conference on Natural Language Learning at {HLT}-{NAACL} 2003\",\n",
+ "year = \"2003\",\n",
+ "url = \"https://www.aclweb.org/anthology/W03-0419\",\n",
+ "pages = \"142--147\",\n",
+ "}\n",
+ "```"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "3a632df2",
+ "metadata": {},
+ "source": [
+ "> 此模型介绍及权重来源于[https://huggingface.co/dslim/bert-base-NER](https://huggingface.co/dslim/bert-base-NER),并转换为飞桨模型格式。\n"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3 (ipykernel)",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.7.13"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 5
+}
diff --git a/modelcenter/community/dslim/bert-base-NER/introduction_en.ipynb b/modelcenter/community/dslim/bert-base-NER/introduction_en.ipynb
new file mode 100644
index 0000000000000000000000000000000000000000..67ed3a6ff04d56b05272420a88884aceb15b8d32
--- /dev/null
+++ b/modelcenter/community/dslim/bert-base-NER/introduction_en.ipynb
@@ -0,0 +1,126 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "id": "c5180cf2",
+ "metadata": {},
+ "source": [
+ "# bert-base-NER\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "dbf08fd8",
+ "metadata": {},
+ "source": [
+ "## Model description\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "11690dda",
+ "metadata": {},
+ "source": [
+ "**bert-base-NER** is a fine-tuned BERT model that is ready to use for **Named Entity Recognition** and achieves **state-of-the-art performance** for the NER task. It has been trained to recognize four types of entities: location (LOC), organizations (ORG), person (PER) and Miscellaneous (MISC).\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "738f98db",
+ "metadata": {},
+ "source": [
+ "Specifically, this model is a *bert-base-cased* model that was fine-tuned on the English version of the standard [CoNLL-2003 Named Entity Recognition](https://www.aclweb.org/anthology/W03-0419.pdf) dataset.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "03c5db03",
+ "metadata": {},
+ "source": [
+ "If you'd like to use a larger BERT-large model fine-tuned on the same dataset, a **bert-large-NER** version is also available.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "da040b29",
+ "metadata": {},
+ "source": [
+ "## How to use\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "726ee6e9",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "!pip install --upgrade paddlenlp"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "73564a0c",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import paddle\n",
+ "from paddlenlp.transformers import AutoModel\n",
+ "\n",
+ "model = AutoModel.from_pretrained(\"dslim/bert-base-NER\")\n",
+ "input_ids = paddle.randint(100, 200, shape=[1, 20])\n",
+ "print(model(input_ids))"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "c08bc233",
+ "metadata": {},
+ "source": [
+ "## Citation\n",
+ "\n",
+ "```\n",
+ "@inproceedings{tjong-kim-sang-de-meulder-2003-introduction,\n",
+ "title = \"Introduction to the {C}o{NLL}-2003 Shared Task: Language-Independent Named Entity Recognition\",\n",
+ "author = \"Tjong Kim Sang, Erik F. and\n",
+ "De Meulder, Fien\",\n",
+ "booktitle = \"Proceedings of the Seventh Conference on Natural Language Learning at {HLT}-{NAACL} 2003\",\n",
+ "year = \"2003\",\n",
+ "url = \"https://www.aclweb.org/anthology/W03-0419\",\n",
+ "pages = \"142--147\",\n",
+ "}\n",
+ "```"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "a56e1055",
+ "metadata": {},
+ "source": [
+ "> The model introduction and model weights originate from [https://huggingface.co/dslim/bert-base-NER](https://huggingface.co/dslim/bert-base-NER) and were converted to PaddlePaddle format for ease of use in PaddleNLP.\n"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3 (ipykernel)",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.7.13"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 5
+}
diff --git a/modelcenter/community/dslim/bert-large-NER/info.yaml b/modelcenter/community/dslim/bert-large-NER/info.yaml
index 48b413ddd9bbfb929a6a262f35f423daa2ccac84..64bdd181068e46e9d330c7d169fc8d84d47b034a 100644
--- a/modelcenter/community/dslim/bert-large-NER/info.yaml
+++ b/modelcenter/community/dslim/bert-large-NER/info.yaml
@@ -1,24 +1,21 @@
+Datasets: conll2003
+Example: null
+IfOnlineDemo: 0
+IfTraining: 0
+Language: English
+License: mit
Model_Info:
- name: "dslim/bert-large-NER"
- description: "bert-base-NER"
- description_en: "bert-base-NER"
- icon: ""
- from_repo: "https://huggingface.co/dslim/bert-large-NER"
-
-Task:
-- tag_en: "Natural Language Processing"
- tag: "自然语言处理"
- sub_tag_en: "Token Classification"
- sub_tag: "Token分类"
-
-Example:
-
-Datasets: "conll2003"
-Publisher: "dslim"
-License: "mit"
-Language: "English"
+ description: bert-base-NER
+ description_en: bert-base-NER
+ from_repo: https://huggingface.co/dslim/bert-large-NER
+ icon: https://paddlenlp.bj.bcebos.com/models/community/transformer-layer.png
+ name: dslim/bert-large-NER
Paper:
- - title: 'BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding'
- url: 'http://arxiv.org/abs/1810.04805v2'
-IfTraining: 0
-IfOnlineDemo: 0
\ No newline at end of file
+- title: 'BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding'
+ url: http://arxiv.org/abs/1810.04805v2
+Publisher: dslim
+Task:
+- sub_tag: Token分类
+ sub_tag_en: Token Classification
+ tag: 自然语言处理
+ tag_en: Natural Language Processing
diff --git a/modelcenter/community/dslim/bert-large-NER/introduction_cn.ipynb b/modelcenter/community/dslim/bert-large-NER/introduction_cn.ipynb
new file mode 100644
index 0000000000000000000000000000000000000000..e33561abdcbc856b31f94dc09b9d10b210d5926f
--- /dev/null
+++ b/modelcenter/community/dslim/bert-large-NER/introduction_cn.ipynb
@@ -0,0 +1,126 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "id": "70a24d70",
+ "metadata": {},
+ "source": [
+ "# bert-base-NER\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "72df2cc8",
+ "metadata": {},
+ "source": [
+ "## Model description\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "d1aabc01",
+ "metadata": {},
+ "source": [
+ "**bert-large-NER** is a fine-tuned BERT model that is ready to use for **Named Entity Recognition** and achieves **state-of-the-art performance** for the NER task. It has been trained to recognize four types of entities: location (LOC), organizations (ORG), person (PER) and Miscellaneous (MISC).\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "2d53a70b",
+ "metadata": {},
+ "source": [
+ "Specifically, this model is a *bert-large-cased* model that was fine-tuned on the English version of the standard [CoNLL-2003 Named Entity Recognition](https://www.aclweb.org/anthology/W03-0419.pdf) dataset.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "60c2ceb7",
+ "metadata": {},
+ "source": [
+ "If you'd like to use a smaller BERT model fine-tuned on the same dataset, a **bert-base-NER** version is also available.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "42d984a9",
+ "metadata": {},
+ "source": [
+ "## How to use"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "9ef70bc3",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "!pip install --upgrade paddlenlp"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "1177b32e",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import paddle\n",
+ "from paddlenlp.transformers import AutoModel\n",
+ "\n",
+ "model = AutoModel.from_pretrained(\"dslim/bert-large-NER\")\n",
+ "input_ids = paddle.randint(100, 200, shape=[1, 20])\n",
+ "print(model(input_ids))"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "353c5156",
+ "metadata": {},
+ "source": [
+ "## Citation\n",
+ "\n",
+ "```\n",
+ "@inproceedings{tjong-kim-sang-de-meulder-2003-introduction,\n",
+ "title = \"Introduction to the {C}o{NLL}-2003 Shared Task: Language-Independent Named Entity Recognition\",\n",
+ "author = \"Tjong Kim Sang, Erik F. and\n",
+ "De Meulder, Fien\",\n",
+ "booktitle = \"Proceedings of the Seventh Conference on Natural Language Learning at {HLT}-{NAACL} 2003\",\n",
+ "year = \"2003\",\n",
+ "url = \"https://www.aclweb.org/anthology/W03-0419\",\n",
+ "pages = \"142--147\",\n",
+ "}\n",
+ "```"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "5705ae48",
+ "metadata": {},
+ "source": [
+ "> 此模型介绍及权重来源于[https://huggingface.co/dslim/bert-large-NER](https://huggingface.co/dslim/bert-large-NER),并转换为飞桨模型格式。\n"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3 (ipykernel)",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.7.13"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 5
+}
diff --git a/modelcenter/community/dslim/bert-large-NER/introduction_en.ipynb b/modelcenter/community/dslim/bert-large-NER/introduction_en.ipynb
new file mode 100644
index 0000000000000000000000000000000000000000..047acf0a727a07f9381bdce72626977a566694cf
--- /dev/null
+++ b/modelcenter/community/dslim/bert-large-NER/introduction_en.ipynb
@@ -0,0 +1,126 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "id": "574c41aa",
+ "metadata": {},
+ "source": [
+ "# bert-base-NER\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "430be48c",
+ "metadata": {},
+ "source": [
+ "## Model description\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "4bdfd881",
+ "metadata": {},
+ "source": [
+ "**bert-large-NER** is a fine-tuned BERT model that is ready to use for **Named Entity Recognition** and achieves **state-of-the-art performance** for the NER task. It has been trained to recognize four types of entities: location (LOC), organizations (ORG), person (PER) and Miscellaneous (MISC).\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "84ed4f8f",
+ "metadata": {},
+ "source": [
+ "Specifically, this model is a *bert-large-cased* model that was fine-tuned on the English version of the standard [CoNLL-2003 Named Entity Recognition](https://www.aclweb.org/anthology/W03-0419.pdf) dataset.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "b4acb8a4",
+ "metadata": {},
+ "source": [
+ "If you'd like to use a smaller BERT model fine-tuned on the same dataset, a **bert-base-NER** version is also available.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "46ad4f1f",
+ "metadata": {},
+ "source": [
+ "## How to use\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "b7e64545",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "!pip install --upgrade paddlenlp"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "380aa0dc",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import paddle\n",
+ "from paddlenlp.transformers import AutoModel\n",
+ "\n",
+ "model = AutoModel.from_pretrained(\"dslim/bert-large-NER\")\n",
+ "input_ids = paddle.randint(100, 200, shape=[1, 20])\n",
+ "print(model(input_ids))"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "220eb907",
+ "metadata": {},
+ "source": [
+ "## Citation\n",
+ "\n",
+ "```\n",
+ "@inproceedings{tjong-kim-sang-de-meulder-2003-introduction,\n",
+ "title = \"Introduction to the {C}o{NLL}-2003 Shared Task: Language-Independent Named Entity Recognition\",\n",
+ "author = \"Tjong Kim Sang, Erik F. and\n",
+ "De Meulder, Fien\",\n",
+ "booktitle = \"Proceedings of the Seventh Conference on Natural Language Learning at {HLT}-{NAACL} 2003\",\n",
+ "year = \"2003\",\n",
+ "url = \"https://www.aclweb.org/anthology/W03-0419\",\n",
+ "pages = \"142--147\",\n",
+ "}\n",
+ "```"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "dc0b9503",
+ "metadata": {},
+ "source": [
+ "> The model introduction and model weights originate from [https://huggingface.co/dslim/bert-large-NER](https://huggingface.co/dslim/bert-large-NER) and were converted to PaddlePaddle format for ease of use in PaddleNLP.\n"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3 (ipykernel)",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.7.13"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 5
+}
diff --git a/modelcenter/community/dumitrescustefan/bert-base-romanian-cased-v1/info.yaml b/modelcenter/community/dumitrescustefan/bert-base-romanian-cased-v1/info.yaml
index 04a33129d0d954d2340dd7ca34d193b7350b88d2..74203f9330466fee14a74ad6785fb00ffff8d4b4 100644
--- a/modelcenter/community/dumitrescustefan/bert-base-romanian-cased-v1/info.yaml
+++ b/modelcenter/community/dumitrescustefan/bert-base-romanian-cased-v1/info.yaml
@@ -1,23 +1,19 @@
+Datasets: ''
+Example: null
+IfOnlineDemo: 0
+IfTraining: 0
+Language: Romanian
+License: mit
Model_Info:
- name: "dumitrescustefan/bert-base-romanian-cased-v1"
- description: "bert-base-romanian-cased-v1"
- description_en: "bert-base-romanian-cased-v1"
- icon: ""
- from_repo: "https://huggingface.co/dumitrescustefan/bert-base-romanian-cased-v1"
-
+ description: bert-base-romanian-cased-v1
+ description_en: bert-base-romanian-cased-v1
+ from_repo: https://huggingface.co/dumitrescustefan/bert-base-romanian-cased-v1
+ icon: https://paddlenlp.bj.bcebos.com/models/community/transformer-layer.png
+ name: dumitrescustefan/bert-base-romanian-cased-v1
+Paper: null
+Publisher: dumitrescustefan
Task:
-- tag_en: "Natural Language Processing"
- tag: "自然语言处理"
- sub_tag_en: "Fill-Mask"
- sub_tag: "槽位填充"
-
-Example:
-
-Datasets: ""
-Publisher: "dumitrescustefan"
-License: "mit"
-Language: "Romanian"
-Paper:
-
-IfTraining: 0
-IfOnlineDemo: 0
\ No newline at end of file
+- sub_tag: 槽位填充
+ sub_tag_en: Fill-Mask
+ tag: 自然语言处理
+ tag_en: Natural Language Processing
diff --git a/modelcenter/community/dumitrescustefan/bert-base-romanian-cased-v1/introduction_cn.ipynb b/modelcenter/community/dumitrescustefan/bert-base-romanian-cased-v1/introduction_cn.ipynb
new file mode 100644
index 0000000000000000000000000000000000000000..cc2fc93e540a125c3b72b4b31ca2bfae6dad70d3
--- /dev/null
+++ b/modelcenter/community/dumitrescustefan/bert-base-romanian-cased-v1/introduction_cn.ipynb
@@ -0,0 +1,116 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "id": "2a485f7a",
+ "metadata": {},
+ "source": [
+ "# bert-base-romanian-cased-v1\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "5f911938",
+ "metadata": {},
+ "source": [
+ "The BERT **base**, **cased** model for Romanian, trained on a 15GB corpus.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "e2cccf2e",
+ "metadata": {},
+ "source": [
+ "### How to use\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "64b86b26",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "!pip install --upgrade paddlenlp"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "f84498aa",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import paddle\n",
+ "from paddlenlp.transformers import AutoModel\n",
+ "\n",
+ "model = AutoModel.from_pretrained(\"dumitrescustefan/bert-base-romanian-cased-v1\")\n",
+ "input_ids = paddle.randint(100, 200, shape=[1, 20])\n",
+ "print(model(input_ids))"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "40176abc",
+ "metadata": {},
+ "source": [
+ "## Citation\n",
+ "\n",
+ "```\n",
+ "@inproceedings{dumitrescu-etal-2020-birth,\n",
+ "title = \"The birth of {R}omanian {BERT}\",\n",
+ "author = \"Dumitrescu, Stefan and\n",
+ "Avram, Andrei-Marius and\n",
+ "Pyysalo, Sampo\",\n",
+ "booktitle = \"Findings of the Association for Computational Linguistics: EMNLP 2020\",\n",
+ "month = nov,\n",
+ "year = \"2020\",\n",
+ "address = \"Online\",\n",
+ "publisher = \"Association for Computational Linguistics\",\n",
+ "url = \"https://aclanthology.org/2020.findings-emnlp.387\",\n",
+ "doi = \"10.18653/v1/2020.findings-emnlp.387\",\n",
+ "pages = \"4324--4328\",\n",
+ "}\n",
+ "```"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "550b09f3",
+ "metadata": {},
+ "source": [
+ "#### Acknowledgements\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "fda88b7c",
+ "metadata": {},
+ "source": [
+ "- We'd like to thank [Sampo Pyysalo](https://github.com/spyysalo) from TurkuNLP for helping us out with the compute needed to pretrain the v1.0 BERT models. He's awesome!\n",
+ "> 此模型介绍及权重来源于[https://huggingface.co/dumitrescustefan/bert-base-romanian-cased-v1](https://huggingface.co/dumitrescustefan/bert-base-romanian-cased-v1),并转换为飞桨模型格式。\n"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3 (ipykernel)",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.7.13"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 5
+}
diff --git a/modelcenter/community/dumitrescustefan/bert-base-romanian-cased-v1/introduction_en.ipynb b/modelcenter/community/dumitrescustefan/bert-base-romanian-cased-v1/introduction_en.ipynb
new file mode 100644
index 0000000000000000000000000000000000000000..be66e19cc0cd954493b98a4153e1887dfe3fdd52
--- /dev/null
+++ b/modelcenter/community/dumitrescustefan/bert-base-romanian-cased-v1/introduction_en.ipynb
@@ -0,0 +1,116 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "id": "28a330b8",
+ "metadata": {},
+ "source": [
+ "# bert-base-romanian-cased-v1\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "36f0d74f",
+ "metadata": {},
+ "source": [
+ "The BERT **base**, **cased** model for Romanian, trained on a 15GB corpus."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "0104e14e",
+ "metadata": {},
+ "source": [
+ "## How to use"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "b4ca4271",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "!pip install --upgrade paddlenlp"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "9f3ca553",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import paddle\n",
+ "from paddlenlp.transformers import AutoModel\n",
+ "\n",
+ "model = AutoModel.from_pretrained(\"dumitrescustefan/bert-base-romanian-cased-v1\")\n",
+ "input_ids = paddle.randint(100, 200, shape=[1, 20])\n",
+ "print(model(input_ids))"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "51754d3f",
+ "metadata": {},
+ "source": [
+ "## Citation\n",
+ "\n",
+ "```\n",
+ "@inproceedings{dumitrescu-etal-2020-birth,\n",
+ "title = \"The birth of {R}omanian {BERT}\",\n",
+ "author = \"Dumitrescu, Stefan and\n",
+ "Avram, Andrei-Marius and\n",
+ "Pyysalo, Sampo\",\n",
+ "booktitle = \"Findings of the Association for Computational Linguistics: EMNLP 2020\",\n",
+ "month = nov,\n",
+ "year = \"2020\",\n",
+ "address = \"Online\",\n",
+ "publisher = \"Association for Computational Linguistics\",\n",
+ "url = \"https://aclanthology.org/2020.findings-emnlp.387\",\n",
+ "doi = \"10.18653/v1/2020.findings-emnlp.387\",\n",
+ "pages = \"4324--4328\",\n",
+ "}\n",
+ "```"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "2143146f",
+ "metadata": {},
+ "source": [
+ "#### Acknowledgements\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "d983ac22",
+ "metadata": {},
+ "source": [
+ "- We'd like to thank [Sampo Pyysalo](https://github.com/spyysalo) from TurkuNLP for helping us out with the compute needed to pretrain the v1.0 BERT models. He's awesome!\n",
+ "> The model introduction and model weights originate from [https://huggingface.co/dumitrescustefan/bert-base-romanian-cased-v1](https://huggingface.co/dumitrescustefan/bert-base-romanian-cased-v1) and were converted to PaddlePaddle format for ease of use in PaddleNLP.\n"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3 (ipykernel)",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.7.13"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 5
+}
diff --git a/modelcenter/community/dumitrescustefan/bert-base-romanian-uncased-v1/info.yaml b/modelcenter/community/dumitrescustefan/bert-base-romanian-uncased-v1/info.yaml
index f307e47f29bbe9143551e1d773302b3ca84159ff..05f2d42a81b597beccae2f4b070eda57fdf99613 100644
--- a/modelcenter/community/dumitrescustefan/bert-base-romanian-uncased-v1/info.yaml
+++ b/modelcenter/community/dumitrescustefan/bert-base-romanian-uncased-v1/info.yaml
@@ -1,23 +1,19 @@
+Datasets: ''
+Example: null
+IfOnlineDemo: 0
+IfTraining: 0
+Language: Romanian
+License: mit
Model_Info:
- name: "dumitrescustefan/bert-base-romanian-uncased-v1"
- description: "bert-base-romanian-uncased-v1"
- description_en: "bert-base-romanian-uncased-v1"
- icon: ""
- from_repo: "https://huggingface.co/dumitrescustefan/bert-base-romanian-uncased-v1"
-
+ description: bert-base-romanian-uncased-v1
+ description_en: bert-base-romanian-uncased-v1
+ from_repo: https://huggingface.co/dumitrescustefan/bert-base-romanian-uncased-v1
+ icon: https://paddlenlp.bj.bcebos.com/models/community/transformer-layer.png
+ name: dumitrescustefan/bert-base-romanian-uncased-v1
+Paper: null
+Publisher: dumitrescustefan
Task:
-- tag_en: "Natural Language Processing"
- tag: "自然语言处理"
- sub_tag_en: "Fill-Mask"
- sub_tag: "槽位填充"
-
-Example:
-
-Datasets: ""
-Publisher: "dumitrescustefan"
-License: "mit"
-Language: "Romanian"
-Paper:
-
-IfTraining: 0
-IfOnlineDemo: 0
\ No newline at end of file
+- sub_tag: 槽位填充
+ sub_tag_en: Fill-Mask
+ tag: 自然语言处理
+ tag_en: Natural Language Processing
diff --git a/modelcenter/community/dumitrescustefan/bert-base-romanian-uncased-v1/introduction_cn.ipynb b/modelcenter/community/dumitrescustefan/bert-base-romanian-uncased-v1/introduction_cn.ipynb
new file mode 100644
index 0000000000000000000000000000000000000000..d4de60883e281cffad060f5c863604f3dd033f0a
--- /dev/null
+++ b/modelcenter/community/dumitrescustefan/bert-base-romanian-uncased-v1/introduction_cn.ipynb
@@ -0,0 +1,116 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "id": "922f44e2",
+ "metadata": {},
+ "source": [
+ "# bert-base-romanian-uncased-v1\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "2f5259bd",
+ "metadata": {},
+ "source": [
+ "The BERT **base**, **uncased** model for Romanian, trained on a 15GB corpus, version ![v1.0](https://img.shields.io/badge/v1.0-21%20Apr%202020-ff6666)\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "408f4468",
+ "metadata": {},
+ "source": [
+ "## How to use"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "acd14372",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "!pip install --upgrade paddlenlp"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "cc5d539c",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import paddle\n",
+ "from paddlenlp.transformers import AutoModel\n",
+ "\n",
+ "model = AutoModel.from_pretrained(\"dumitrescustefan/bert-base-romanian-uncased-v1\")\n",
+ "input_ids = paddle.randint(100, 200, shape=[1, 20])\n",
+ "print(model(input_ids))"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "adbbab44",
+ "metadata": {},
+ "source": [
+ "## Citation\n",
+ "\n",
+ "```\n",
+ "@inproceedings{dumitrescu-etal-2020-birth,\n",
+ "title = \"The birth of {R}omanian {BERT}\",\n",
+ "author = \"Dumitrescu, Stefan and\n",
+ "Avram, Andrei-Marius and\n",
+ "Pyysalo, Sampo\",\n",
+ "booktitle = \"Findings of the Association for Computational Linguistics: EMNLP 2020\",\n",
+ "month = nov,\n",
+ "year = \"2020\",\n",
+ "address = \"Online\",\n",
+ "publisher = \"Association for Computational Linguistics\",\n",
+ "url = \"https://aclanthology.org/2020.findings-emnlp.387\",\n",
+ "doi = \"10.18653/v1/2020.findings-emnlp.387\",\n",
+ "pages = \"4324--4328\",\n",
+ "}\n",
+ "```"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "4276651e",
+ "metadata": {},
+ "source": [
+ "#### Acknowledgements\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "84a91796",
+ "metadata": {},
+ "source": [
+ "- We'd like to thank [Sampo Pyysalo](https://github.com/spyysalo) from TurkuNLP for helping us out with the compute needed to pretrain the v1.0 BERT models. He's awesome!\n",
+ "> 此模型介绍及权重来源于[https://huggingface.co/dumitrescustefan/bert-base-romanian-uncased-v1](https://huggingface.co/dumitrescustefan/bert-base-romanian-uncased-v1),并转换为飞桨模型格式。\n"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3 (ipykernel)",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.8.13"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 5
+}
diff --git a/modelcenter/community/dumitrescustefan/bert-base-romanian-uncased-v1/introduction_en.ipynb b/modelcenter/community/dumitrescustefan/bert-base-romanian-uncased-v1/introduction_en.ipynb
new file mode 100644
index 0000000000000000000000000000000000000000..ca76cb10fb0800534f1b6dcc3a3e9f8e7fb499d8
--- /dev/null
+++ b/modelcenter/community/dumitrescustefan/bert-base-romanian-uncased-v1/introduction_en.ipynb
@@ -0,0 +1,116 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "id": "cf268d0f",
+ "metadata": {},
+ "source": [
+ "# bert-base-romanian-uncased-v1\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "453405af",
+ "metadata": {},
+ "source": [
+ "The BERT **base**, **uncased** model for Romanian, trained on a 15GB corpus, version ![v1.0](https://img.shields.io/badge/v1.0-21%20Apr%202020-ff6666)\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "4100824e",
+ "metadata": {},
+ "source": [
+ "## How to use"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "cd182732",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "!pip install --upgrade paddlenlp"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "1c16cd09",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import paddle\n",
+ "from paddlenlp.transformers import AutoModel\n",
+ "\n",
+ "model = AutoModel.from_pretrained(\"dumitrescustefan/bert-base-romanian-uncased-v1\")\n",
+ "input_ids = paddle.randint(100, 200, shape=[1, 20])\n",
+ "print(model(input_ids))"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "ba32e8ff",
+ "metadata": {},
+ "source": [
+ "## Citation\n",
+ "\n",
+ "```\n",
+ "@inproceedings{dumitrescu-etal-2020-birth,\n",
+ "title = \"The birth of {R}omanian {BERT}\",\n",
+ "author = \"Dumitrescu, Stefan and\n",
+ "Avram, Andrei-Marius and\n",
+ "Pyysalo, Sampo\",\n",
+ "booktitle = \"Findings of the Association for Computational Linguistics: EMNLP 2020\",\n",
+ "month = nov,\n",
+ "year = \"2020\",\n",
+ "address = \"Online\",\n",
+ "publisher = \"Association for Computational Linguistics\",\n",
+ "url = \"https://aclanthology.org/2020.findings-emnlp.387\",\n",
+ "doi = \"10.18653/v1/2020.findings-emnlp.387\",\n",
+ "pages = \"4324--4328\",\n",
+ "}\n",
+ "```"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "faa200c7",
+ "metadata": {},
+ "source": [
+ "#### Acknowledgements\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "cb74a943",
+ "metadata": {},
+ "source": [
+ "- We'd like to thank [Sampo Pyysalo](https://github.com/spyysalo) from TurkuNLP for helping us out with the compute needed to pretrain the v1.0 BERT models. He's awesome!\n",
+ "> The model introduction and model weights originate from [https://huggingface.co/dumitrescustefan/bert-base-romanian-uncased-v1](https://huggingface.co/dumitrescustefan/bert-base-romanian-uncased-v1) and were converted to PaddlePaddle format for ease of use in PaddleNLP.\n"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3 (ipykernel)",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.8.13"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 5
+}
diff --git a/modelcenter/community/emilyalsentzer/Bio_ClinicalBERT/info.yaml b/modelcenter/community/emilyalsentzer/Bio_ClinicalBERT/info.yaml
index ea7b3848812d15c141bedd9c4b7d9110a615f91b..a0fd84b93ad01547c1aeaa438035ef6a03423e1b 100644
--- a/modelcenter/community/emilyalsentzer/Bio_ClinicalBERT/info.yaml
+++ b/modelcenter/community/emilyalsentzer/Bio_ClinicalBERT/info.yaml
@@ -1,26 +1,24 @@
+Datasets: ''
+Example: null
+IfOnlineDemo: 0
+IfTraining: 0
+Language: English
+License: mit
Model_Info:
- name: "emilyalsentzer/Bio_ClinicalBERT"
- description: "ClinicalBERT - Bio + Clinical BERT Model"
- description_en: "ClinicalBERT - Bio + Clinical BERT Model"
- icon: ""
- from_repo: "https://huggingface.co/emilyalsentzer/Bio_ClinicalBERT"
-
-Task:
-- tag_en: "Natural Language Processing"
- tag: "自然语言处理"
- sub_tag_en: "Fill-Mask"
- sub_tag: "槽位填充"
-
-Example:
-
-Datasets: ""
-Publisher: "emilyalsentzer"
-License: "mit"
-Language: "English"
+ description: ClinicalBERT - Bio + Clinical BERT Model
+ description_en: ClinicalBERT - Bio + Clinical BERT Model
+ from_repo: https://huggingface.co/emilyalsentzer/Bio_ClinicalBERT
+ icon: https://paddlenlp.bj.bcebos.com/models/community/transformer-layer.png
+ name: emilyalsentzer/Bio_ClinicalBERT
Paper:
- - title: 'Publicly Available Clinical BERT Embeddings'
- url: 'http://arxiv.org/abs/1904.03323v3'
- - title: 'BioBERT: a pre-trained biomedical language representation model for biomedical text mining'
- url: 'http://arxiv.org/abs/1901.08746v4'
-IfTraining: 0
-IfOnlineDemo: 0
\ No newline at end of file
+- title: Publicly Available Clinical BERT Embeddings
+ url: http://arxiv.org/abs/1904.03323v3
+- title: 'BioBERT: a pre-trained biomedical language representation model for biomedical
+ text mining'
+ url: http://arxiv.org/abs/1901.08746v4
+Publisher: emilyalsentzer
+Task:
+- sub_tag: 槽位填充
+ sub_tag_en: Fill-Mask
+ tag: 自然语言处理
+ tag_en: Natural Language Processing
diff --git a/modelcenter/community/emilyalsentzer/Bio_ClinicalBERT/introduction_cn.ipynb b/modelcenter/community/emilyalsentzer/Bio_ClinicalBERT/introduction_cn.ipynb
new file mode 100644
index 0000000000000000000000000000000000000000..7064ebfbc0cf914da1739fb2647defb91a11c2d0
--- /dev/null
+++ b/modelcenter/community/emilyalsentzer/Bio_ClinicalBERT/introduction_cn.ipynb
@@ -0,0 +1,90 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "id": "22b0e4db",
+ "metadata": {},
+ "source": [
+ "# ClinicalBERT - Bio + Clinical BERT Model\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "f9d9ac37",
+ "metadata": {},
+ "source": [
+ "The [Publicly Available Clinical BERT Embeddings](https://arxiv.org/abs/1904.03323) paper contains four unique clinicalBERT models: initialized with BERT-Base (`cased_L-12_H-768_A-12`) or BioBERT (`BioBERT-Base v1.0 + PubMed 200K + PMC 270K`) & trained on either all MIMIC notes or only discharge summaries.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "24aaa0b1",
+ "metadata": {},
+ "source": [
+ "This model card describes the Bio+Clinical BERT model, which was initialized from [BioBERT](https://arxiv.org/abs/1901.08746) & trained on all MIMIC notes.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "1449fef2",
+ "metadata": {},
+ "source": [
+ "## How to use"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "be5241ea",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "!pip install --upgrade paddlenlp"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "f4c3cf6f",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import paddle\n",
+ "from paddlenlp.transformers import AutoModel\n",
+ "\n",
+ "model = AutoModel.from_pretrained(\"emilyalsentzer/Bio_ClinicalBERT\")\n",
+ "input_ids = paddle.randint(100, 200, shape=[1, 20])\n",
+ "print(model(input_ids))"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "451e4ff6",
+ "metadata": {},
+ "source": [
+ "> 此模型介绍及权重来源于[https://huggingface.co/emilyalsentzer/Bio_ClinicalBERT](https://huggingface.co/emilyalsentzer/Bio_ClinicalBERT),并转换为飞桨模型格式。\n"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3 (ipykernel)",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.7.13"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 5
+}
diff --git a/modelcenter/community/emilyalsentzer/Bio_ClinicalBERT/introduction_en.ipynb b/modelcenter/community/emilyalsentzer/Bio_ClinicalBERT/introduction_en.ipynb
new file mode 100644
index 0000000000000000000000000000000000000000..fab51acf8dcc32f955310509b092a8d228657c83
--- /dev/null
+++ b/modelcenter/community/emilyalsentzer/Bio_ClinicalBERT/introduction_en.ipynb
@@ -0,0 +1,90 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "id": "91c5f94f",
+ "metadata": {},
+ "source": [
+ "# ClinicalBERT - Bio + Clinical BERT Model\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "ec471b16",
+ "metadata": {},
+ "source": [
+ "The [Publicly Available Clinical BERT Embeddings](https://arxiv.org/abs/1904.03323) paper contains four unique clinicalBERT models: initialized with BERT-Base (`cased_L-12_H-768_A-12`) or BioBERT (`BioBERT-Base v1.0 + PubMed 200K + PMC 270K`) & trained on either all MIMIC notes or only discharge summaries.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "9ab166b8",
+ "metadata": {},
+ "source": [
+ "This model card describes the Bio+Clinical BERT model, which was initialized from [BioBERT](https://arxiv.org/abs/1901.08746) & trained on all MIMIC notes.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "69f6ed08",
+ "metadata": {},
+ "source": [
+ "## How to use the model\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "62913fa8",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "!pip install --upgrade paddlenlp"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "7b055241",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import paddle\n",
+ "from paddlenlp.transformers import AutoModel\n",
+ "\n",
+ "model = AutoModel.from_pretrained(\"emilyalsentzer/Bio_ClinicalBERT\")\n",
+ "input_ids = paddle.randint(100, 200, shape=[1, 20])\n",
+ "print(model(input_ids))"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "0716a06f",
+ "metadata": {},
+ "source": [
+ "> The model introduction and model weights originate from [https://huggingface.co/emilyalsentzer/Bio_ClinicalBERT](https://huggingface.co/emilyalsentzer/Bio_ClinicalBERT) and were converted to PaddlePaddle format for ease of use in PaddleNLP.\n"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3 (ipykernel)",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.7.13"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 5
+}
diff --git a/modelcenter/community/emilyalsentzer/Bio_Discharge_Summary_BERT/info.yaml b/modelcenter/community/emilyalsentzer/Bio_Discharge_Summary_BERT/info.yaml
index 3f91657ab383fffd105c8fdf0d4d76f336df5689..34d508f8f54e1abbe0a2d7337354d4bb44ea7578 100644
--- a/modelcenter/community/emilyalsentzer/Bio_Discharge_Summary_BERT/info.yaml
+++ b/modelcenter/community/emilyalsentzer/Bio_Discharge_Summary_BERT/info.yaml
@@ -1,26 +1,24 @@
+Datasets: ''
+Example: null
+IfOnlineDemo: 0
+IfTraining: 0
+Language: English
+License: mit
Model_Info:
- name: "emilyalsentzer/Bio_Discharge_Summary_BERT"
- description: "ClinicalBERT - Bio + Discharge Summary BERT Model"
- description_en: "ClinicalBERT - Bio + Discharge Summary BERT Model"
- icon: ""
- from_repo: "https://huggingface.co/emilyalsentzer/Bio_Discharge_Summary_BERT"
-
-Task:
-- tag_en: "Natural Language Processing"
- tag: "自然语言处理"
- sub_tag_en: "Fill-Mask"
- sub_tag: "槽位填充"
-
-Example:
-
-Datasets: ""
-Publisher: "emilyalsentzer"
-License: "mit"
-Language: "English"
+ description: ClinicalBERT - Bio + Discharge Summary BERT Model
+ description_en: ClinicalBERT - Bio + Discharge Summary BERT Model
+ from_repo: https://huggingface.co/emilyalsentzer/Bio_Discharge_Summary_BERT
+ icon: https://paddlenlp.bj.bcebos.com/models/community/transformer-layer.png
+ name: emilyalsentzer/Bio_Discharge_Summary_BERT
Paper:
- - title: 'Publicly Available Clinical BERT Embeddings'
- url: 'http://arxiv.org/abs/1904.03323v3'
- - title: 'BioBERT: a pre-trained biomedical language representation model for biomedical text mining'
- url: 'http://arxiv.org/abs/1901.08746v4'
-IfTraining: 0
-IfOnlineDemo: 0
\ No newline at end of file
+- title: Publicly Available Clinical BERT Embeddings
+ url: http://arxiv.org/abs/1904.03323v3
+- title: 'BioBERT: a pre-trained biomedical language representation model for biomedical
+ text mining'
+ url: http://arxiv.org/abs/1901.08746v4
+Publisher: emilyalsentzer
+Task:
+- sub_tag: 槽位填充
+ sub_tag_en: Fill-Mask
+ tag: 自然语言处理
+ tag_en: Natural Language Processing
diff --git a/modelcenter/community/emilyalsentzer/Bio_Discharge_Summary_BERT/introduction_cn.ipynb b/modelcenter/community/emilyalsentzer/Bio_Discharge_Summary_BERT/introduction_cn.ipynb
new file mode 100644
index 0000000000000000000000000000000000000000..3c3fd2a4660427e5bca19c69e92fa54c37d8704c
--- /dev/null
+++ b/modelcenter/community/emilyalsentzer/Bio_Discharge_Summary_BERT/introduction_cn.ipynb
@@ -0,0 +1,90 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "id": "67503ba7",
+ "metadata": {},
+ "source": [
+ "# ClinicalBERT - Bio + Discharge Summary BERT Model\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "e2d38260",
+ "metadata": {},
+ "source": [
+ "The [Publicly Available Clinical BERT Embeddings](https://arxiv.org/abs/1904.03323) paper contains four unique clinicalBERT models: initialized with BERT-Base (`cased_L-12_H-768_A-12`) or BioBERT (`BioBERT-Base v1.0 + PubMed 200K + PMC 270K`) & trained on either all MIMIC notes or only discharge summaries.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "1c92755e",
+ "metadata": {},
+ "source": [
+ "This model card describes the Bio+Discharge Summary BERT model, which was initialized from [BioBERT](https://arxiv.org/abs/1901.08746) & trained on only discharge summaries from MIMIC.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "068ba168",
+ "metadata": {},
+ "source": [
+ "## How to use"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "24e8b203",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "!pip install --upgrade paddlenlp"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "4bcd1b84",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import paddle\n",
+ "from paddlenlp.transformers import AutoModel\n",
+ "\n",
+ "model = AutoModel.from_pretrained(\"emilyalsentzer/Bio_Discharge_Summary_BERT\")\n",
+ "input_ids = paddle.randint(100, 200, shape=[1, 20])\n",
+ "print(model(input_ids))"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "0cebe09b",
+ "metadata": {},
+ "source": [
+ "> 此模型介绍及权重来源于[https://huggingface.co/emilyalsentzer/Bio_Discharge_Summary_BERT](https://huggingface.co/emilyalsentzer/Bio_Discharge_Summary_BERT),并转换为飞桨模型格式。\n"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3 (ipykernel)",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.7.13"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 5
+}
diff --git a/modelcenter/community/emilyalsentzer/Bio_Discharge_Summary_BERT/introduction_en.ipynb b/modelcenter/community/emilyalsentzer/Bio_Discharge_Summary_BERT/introduction_en.ipynb
new file mode 100644
index 0000000000000000000000000000000000000000..f879e8224776c3d963d7894b2862008e7ca22841
--- /dev/null
+++ b/modelcenter/community/emilyalsentzer/Bio_Discharge_Summary_BERT/introduction_en.ipynb
@@ -0,0 +1,90 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "id": "a786c8f0",
+ "metadata": {},
+ "source": [
+ "# ClinicalBERT - Bio + Discharge Summary BERT Model\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "4d8e4f1f",
+ "metadata": {},
+ "source": [
+ "The [Publicly Available Clinical BERT Embeddings](https://arxiv.org/abs/1904.03323) paper contains four unique clinicalBERT models: initialized with BERT-Base (`cased_L-12_H-768_A-12`) or BioBERT (`BioBERT-Base v1.0 + PubMed 200K + PMC 270K`) & trained on either all MIMIC notes or only discharge summaries.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "83bf8287",
+ "metadata": {},
+ "source": [
+ "This model card describes the Bio+Discharge Summary BERT model, which was initialized from [BioBERT](https://arxiv.org/abs/1901.08746) & trained on only discharge summaries from MIMIC.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "ee7d03ef",
+ "metadata": {},
+ "source": [
+ "## How to use the model\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "3ef75bb2",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "!pip install --upgrade paddlenlp"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "c04f99b3",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import paddle\n",
+ "from paddlenlp.transformers import AutoModel\n",
+ "\n",
+ "model = AutoModel.from_pretrained(\"emilyalsentzer/Bio_Discharge_Summary_BERT\")\n",
+ "input_ids = paddle.randint(100, 200, shape=[1, 20])\n",
+ "print(model(input_ids))"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "e4459a1c",
+ "metadata": {},
+ "source": [
+ "> The model introduction and model weights originate from [https://huggingface.co/emilyalsentzer/Bio_Discharge_Summary_BERT](https://huggingface.co/emilyalsentzer/Bio_Discharge_Summary_BERT) and were converted to PaddlePaddle format for ease of use in PaddleNLP.\n"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3 (ipykernel)",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.7.13"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 5
+}
diff --git a/modelcenter/community/google/t5-base-lm-adapt/info.yaml b/modelcenter/community/google/t5-base-lm-adapt/info.yaml
index 90a398a8481eefd839f9de0375ef5ff1998e2090..7afa8d89790305b2d852485a7d9b4507bc07137e 100644
--- a/modelcenter/community/google/t5-base-lm-adapt/info.yaml
+++ b/modelcenter/community/google/t5-base-lm-adapt/info.yaml
@@ -1,26 +1,23 @@
+Datasets: c4
+Example: null
+IfOnlineDemo: 0
+IfTraining: 0
+Language: English
+License: apache-2.0
Model_Info:
- name: "google/t5-base-lm-adapt"
- description: "Version 1.1 - LM-Adapted"
- description_en: "Version 1.1 - LM-Adapted"
- icon: ""
- from_repo: "https://huggingface.co/google/t5-base-lm-adapt"
-
-Task:
-- tag_en: "Natural Language Processing"
- tag: "自然语言处理"
- sub_tag_en: "Text2Text Generation"
- sub_tag: "文本生成"
-
-Example:
-
-Datasets: "c4"
-Publisher: "google"
-License: "apache-2.0"
-Language: "English"
+ description: Version 1.1 - LM-Adapted
+ description_en: Version 1.1 - LM-Adapted
+ from_repo: https://huggingface.co/google/t5-base-lm-adapt
+ icon: https://paddlenlp.bj.bcebos.com/models/community/transformer-layer.png
+ name: google/t5-base-lm-adapt
Paper:
- - title: 'GLU Variants Improve Transformer'
- url: 'http://arxiv.org/abs/2002.05202v1'
- - title: 'Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer'
- url: 'http://arxiv.org/abs/1910.10683v3'
-IfTraining: 0
-IfOnlineDemo: 0
\ No newline at end of file
+- title: GLU Variants Improve Transformer
+ url: http://arxiv.org/abs/2002.05202v1
+- title: Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer
+ url: http://arxiv.org/abs/1910.10683v3
+Publisher: google
+Task:
+- sub_tag: 文本生成
+ sub_tag_en: Text2Text Generation
+ tag: 自然语言处理
+ tag_en: Natural Language Processing
diff --git a/modelcenter/community/google/t5-base-lm-adapt/introduction_cn.ipynb b/modelcenter/community/google/t5-base-lm-adapt/introduction_cn.ipynb
new file mode 100644
index 0000000000000000000000000000000000000000..8e4a107f98c9710ec2d8a01652ef5bab7e90efa5
--- /dev/null
+++ b/modelcenter/community/google/t5-base-lm-adapt/introduction_cn.ipynb
@@ -0,0 +1,102 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "id": "c59ed826",
+ "metadata": {},
+ "source": [
+ "[Google's T5](https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html) Version 1.1 - LM-Adapted\n",
+ "\n",
+ "\n",
+ "## Version 1.1 - LM-Adapted\n",
+ "\n",
+ "[T5 Version 1.1 - LM Adapted](https://github.com/google-research/text-to-text-transfer-transformer/blob/main/released_checkpoints.md#lm-adapted-t511lm100k) includes the following improvements compared to the original T5 model:\n",
+ "\n",
+ "- GEGLU activation in feed-forward hidden layer, rather than ReLU - see [here](https://arxiv.org/abs/2002.05202).\n",
+ "\n",
+ "- Dropout was turned off in pre-training (quality win). Dropout should be re-enabled during fine-tuning.\n",
+ "\n",
+ "- Pre-trained on C4 only without mixing in the downstream tasks.\n",
+ "\n",
+ "- no parameter sharing between embedding and classifier layer\n",
+ "\n",
+ "- \"xl\" and \"xxl\" replace \"3B\" and \"11B\". The model shapes are a bit different - larger `d_model` and smaller `num_heads` and `d_ff`.\n",
+ "\n",
+ "and is pretrained on both the denoising and language modeling objective.\n",
+ "\n",
+ "More specifically, this checkpoint is initialized from T5 Version 1.1 - Base\n",
+ "and then trained for an additional 100K steps on the LM objective discussed in the [T5 paper](https://arxiv.org/pdf/1910.10683.pdf).\n",
+ "This adaptation improves the ability of the model to be used for prompt tuning.\n",
+ "\n",
+ "**Note**: A popular fine-tuned version of the *T5 Version 1.1 - LM Adapted* model is BigScience's T0pp.\n",
+ "\n",
+ "Pretraining Dataset: C4\n",
+ "\n",
+ "Paper: [Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer](https://arxiv.org/pdf/1910.10683.pdf)\n",
+ "\n",
+ "Authors: *Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi Zhou, Wei Li, Peter J. Liu*\n",
+ "\n",
+ "\n",
+ "## Abstract\n",
+ "\n",
+ "Transfer learning, where a model is first pre-trained on a data-rich task before being fine-tuned on a downstream task, has emerged as a powerful technique in natural language processing (NLP). The effectiveness of transfer learning has given rise to a diversity of approaches, methodology, and practice. In this paper, we explore the landscape of transfer learning techniques for NLP by introducing a unified framework that converts every language problem into a text-to-text format. Our systematic study compares pre-training objectives, architectures, unlabeled datasets, transfer approaches, and other factors on dozens of language understanding tasks. By combining the insights from our exploration with scale and our new “Colossal Clean Crawled Corpus”, we achieve state-of-the-art results on many benchmarks covering summarization, question answering, text classification, and more. To facilitate future work on transfer learning for NLP, we release our dataset, pre-trained models, and code.\n",
+ "\n",
+ "![model image](https://camo.githubusercontent.com/623b4dea0b653f2ad3f36c71ebfe749a677ac0a1/68747470733a2f2f6d69726f2e6d656469756d2e636f6d2f6d61782f343030362f312a44304a31674e51663876727255704b657944387750412e706e67)"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "6db9a194",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "!pip install --upgrade paddlenlp"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "b70ecb24",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import paddle\n",
+ "from paddlenlp.transformers import AutoModel\n",
+ "\n",
+ "model = AutoModel.from_pretrained(\"google/t5-base-lm-adapt\")\n",
+ "input_ids = paddle.randint(100, 200, shape=[1, 20])\n",
+ "print(model(input_ids))"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "46aee335",
+ "metadata": {},
+ "source": [
+ "> 此模型介绍及权重来源于[https://huggingface.co/google/t5-base-lm-adapt](https://huggingface.co/google/t5-base-lm-adapt),并转换为飞桨模型格式。"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3 (ipykernel)",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.7.13"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 5
+}
diff --git a/modelcenter/community/google/t5-base-lm-adapt/introduction_en.ipynb b/modelcenter/community/google/t5-base-lm-adapt/introduction_en.ipynb
new file mode 100644
index 0000000000000000000000000000000000000000..c1a177787bace69a5b7f32d56c47dd73fcaaed08
--- /dev/null
+++ b/modelcenter/community/google/t5-base-lm-adapt/introduction_en.ipynb
@@ -0,0 +1,103 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "id": "35f226d7",
+ "metadata": {},
+ "source": [
+ "[Google's T5](https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html) Version 1.1 - LM-Adapted\n",
+ "\n",
+ "\n",
+ "## Version 1.1 - LM-Adapted\n",
+ "\n",
+ "[T5 Version 1.1 - LM Adapted](https://github.com/google-research/text-to-text-transfer-transformer/blob/main/released_checkpoints.md#lm-adapted-t511lm100k) includes the following improvements compared to the original T5 model:\n",
+ "\n",
+ "- GEGLU activation in feed-forward hidden layer, rather than ReLU - see [here](https://arxiv.org/abs/2002.05202).\n",
+ "\n",
+ "- Dropout was turned off in pre-training (quality win). Dropout should be re-enabled during fine-tuning.\n",
+ "\n",
+ "- Pre-trained on C4 only without mixing in the downstream tasks.\n",
+ "\n",
+ "- no parameter sharing between embedding and classifier layer\n",
+ "\n",
+ "- \"xl\" and \"xxl\" replace \"3B\" and \"11B\". The model shapes are a bit different - larger `d_model` and smaller `num_heads` and `d_ff`.\n",
+ "\n",
+ "and is pretrained on both the denoising and language modeling objective.\n",
+ "\n",
+ "More specifically, this checkpoint is initialized from T5 Version 1.1 - Base\n",
+ "and then trained for an additional 100K steps on the LM objective discussed in the [T5 paper](https://arxiv.org/pdf/1910.10683.pdf).\n",
+ "This adaptation improves the ability of the model to be used for prompt tuning.\n",
+ "\n",
+ "**Note**: A popular fine-tuned version of the *T5 Version 1.1 - LM Adapted* model is BigScience's T0pp.\n",
+ "\n",
+ "Pretraining Dataset: C4\n",
+ "\n",
+ "Paper: [Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer](https://arxiv.org/pdf/1910.10683.pdf)\n",
+ "\n",
+ "Authors: *Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi Zhou, Wei Li, Peter J. Liu*\n",
+ "\n",
+ "\n",
+ "## Abstract\n",
+ "\n",
+ "Transfer learning, where a model is first pre-trained on a data-rich task before being fine-tuned on a downstream task, has emerged as a powerful technique in natural language processing (NLP). The effectiveness of transfer learning has given rise to a diversity of approaches, methodology, and practice. In this paper, we explore the landscape of transfer learning techniques for NLP by introducing a unified framework that converts every language problem into a text-to-text format. Our systematic study compares pre-training objectives, architectures, unlabeled datasets, transfer approaches, and other factors on dozens of language understanding tasks. By combining the insights from our exploration with scale and our new “Colossal Clean Crawled Corpus”, we achieve state-of-the-art results on many benchmarks covering summarization, question answering, text classification, and more. To facilitate future work on transfer learning for NLP, we release our dataset, pre-trained models, and code.\n",
+ "\n",
+ "![model image](https://camo.githubusercontent.com/623b4dea0b653f2ad3f36c71ebfe749a677ac0a1/68747470733a2f2f6d69726f2e6d656469756d2e636f6d2f6d61782f343030362f312a44304a31674e51663876727255704b657944387750412e706e67)\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "b471855d",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "!pip install --upgrade paddlenlp"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "f74ec3ef",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import paddle\n",
+ "from paddlenlp.transformers import AutoModel\n",
+ "\n",
+ "model = AutoModel.from_pretrained(\"google/t5-base-lm-adapt\")\n",
+ "input_ids = paddle.randint(100, 200, shape=[1, 20])\n",
+ "print(model(input_ids))"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "e431d080",
+ "metadata": {},
+ "source": [
+ "\n",
+ "> The model introduction and model weights originate from [https://huggingface.co/google/t5-base-lm-adapt](https://huggingface.co/google/t5-base-lm-adapt) and were converted to PaddlePaddle format for ease of use in PaddleNLP."
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3 (ipykernel)",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.7.13"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 5
+}
diff --git a/modelcenter/community/google/t5-large-lm-adapt/info.yaml b/modelcenter/community/google/t5-large-lm-adapt/info.yaml
index db5c0320439bf643bb37b8cd991f703f26a824ee..417bbe7127babac160861022f0ab34fb372992e1 100644
--- a/modelcenter/community/google/t5-large-lm-adapt/info.yaml
+++ b/modelcenter/community/google/t5-large-lm-adapt/info.yaml
@@ -1,26 +1,23 @@
+Datasets: c4
+Example: null
+IfOnlineDemo: 0
+IfTraining: 0
+Language: English
+License: apache-2.0
Model_Info:
- name: "google/t5-large-lm-adapt"
- description: "Version 1.1 - LM-Adapted"
- description_en: "Version 1.1 - LM-Adapted"
- icon: ""
- from_repo: "https://huggingface.co/google/t5-large-lm-adapt"
-
-Task:
-- tag_en: "Natural Language Processing"
- tag: "自然语言处理"
- sub_tag_en: "Text2Text Generation"
- sub_tag: "文本生成"
-
-Example:
-
-Datasets: "c4"
-Publisher: "google"
-License: "apache-2.0"
-Language: "English"
+ description: Version 1.1 - LM-Adapted
+ description_en: Version 1.1 - LM-Adapted
+ from_repo: https://huggingface.co/google/t5-large-lm-adapt
+ icon: https://paddlenlp.bj.bcebos.com/models/community/transformer-layer.png
+ name: google/t5-large-lm-adapt
Paper:
- - title: 'GLU Variants Improve Transformer'
- url: 'http://arxiv.org/abs/2002.05202v1'
- - title: 'Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer'
- url: 'http://arxiv.org/abs/1910.10683v3'
-IfTraining: 0
-IfOnlineDemo: 0
\ No newline at end of file
+- title: GLU Variants Improve Transformer
+ url: http://arxiv.org/abs/2002.05202v1
+- title: Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer
+ url: http://arxiv.org/abs/1910.10683v3
+Publisher: google
+Task:
+- sub_tag: 文本生成
+ sub_tag_en: Text2Text Generation
+ tag: 自然语言处理
+ tag_en: Natural Language Processing
diff --git a/modelcenter/community/google/t5-large-lm-adapt/introduction_cn.ipynb b/modelcenter/community/google/t5-large-lm-adapt/introduction_cn.ipynb
new file mode 100644
index 0000000000000000000000000000000000000000..ce6a76d6967ca309d287645ba3c89fcce983e823
--- /dev/null
+++ b/modelcenter/community/google/t5-large-lm-adapt/introduction_cn.ipynb
@@ -0,0 +1,111 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "id": "71352026",
+ "metadata": {},
+ "source": [
+ "[Google's T5](https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html) Version 1.1 - LM-Adapted\n",
+ "\n",
+ "\n",
+ "## Version 1.1 - LM-Adapted\n",
+ "\n",
+ "[T5 Version 1.1 - LM Adapted](https://github.com/google-research/text-to-text-transfer-transformer/blob/main/released_checkpoints.md#lm-adapted-t511lm100k) includes the following improvements compared to the original [T5 model](https://huggingface.co/t5-large):\n",
+ "\n",
+ "- GEGLU activation in feed-forward hidden layer, rather than ReLU - see [here](https://arxiv.org/abs/2002.05202).\n",
+ "\n",
+ "- Dropout was turned off in pre-training (quality win). Dropout should be re-enabled during fine-tuning.\n",
+ "\n",
+ "- Pre-trained on C4 only without mixing in the downstream tasks.\n",
+ "\n",
+ "- no parameter sharing between embedding and classifier layer\n",
+ "\n",
+ "- \"xl\" and \"xxl\" replace \"3B\" and \"11B\". The model shapes are a bit different - larger `d_model` and smaller `num_heads` and `d_ff`.\n",
+ "\n",
+ "and is pretrained on both the denoising and language modeling objective.\n",
+ "\n",
+ "More specifically, this checkpoint is initialized from T5 Version 1.1 - Large\n",
+ "and then trained for an additional 100K steps on the LM objective discussed in the [T5 paper](https://arxiv.org/pdf/1910.10683.pdf).\n",
+ "This adaptation improves the ability of the model to be used for prompt tuning.\n",
+ "\n",
+ "**Note**: A popular fine-tuned version of the *T5 Version 1.1 - LM Adapted* model is BigScience's T0pp.\n",
+ "\n",
+ "Pretraining Dataset: C4\n",
+ "\n",
+ "Paper: [Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer](https://arxiv.org/pdf/1910.10683.pdf)\n",
+ "\n",
+ "Authors: *Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi Zhou, Wei Li, Peter J. Liu*\n",
+ "\n",
+ "\n",
+ "## Abstract\n",
+ "\n",
+ "Transfer learning, where a model is first pre-trained on a data-rich task before being fine-tuned on a downstream task, has emerged as a powerful technique in natural language processing (NLP). The effectiveness of transfer learning has given rise to a diversity of approaches, methodology, and practice. In this paper, we explore the landscape of transfer learning techniques for NLP by introducing a unified framework that converts every language problem into a text-to-text format. Our systematic study compares pre-training objectives, architectures, unlabeled datasets, transfer approaches, and other factors on dozens of language understanding tasks. By combining the insights from our exploration with scale and our new “Colossal Clean Crawled Corpus”, we achieve state-of-the-art results on many benchmarks covering summarization, question answering, text classification, and more. To facilitate future work on transfer learning for NLP, we release our dataset, pre-trained models, and code.\n",
+ "\n",
+ "![model image](https://camo.githubusercontent.com/623b4dea0b653f2ad3f36c71ebfe749a677ac0a1/68747470733a2f2f6d69726f2e6d656469756d2e636f6d2f6d61782f343030362f312a44304a31674e51663876727255704b657944387750412e706e67)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "d41870db",
+ "metadata": {},
+ "source": [
+ "## How to use"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "b9451fd3",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "!pip install --upgrade paddlenlp"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "6392031c",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import paddle\n",
+ "from paddlenlp.transformers import AutoModel\n",
+ "\n",
+ "model = AutoModel.from_pretrained(\"google/t5-large-lm-adapt\")\n",
+ "input_ids = paddle.randint(100, 200, shape=[1, 20])\n",
+ "print(model(input_ids))"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "3b35551f",
+ "metadata": {},
+ "source": [
+ "\n",
+ "> 此模型介绍及权重来源于[https://huggingface.co/google/t5-large-lm-adapt](https://huggingface.co/google/t5-large-lm-adapt),并转换为飞桨模型格式。"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3 (ipykernel)",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.7.13"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 5
+}
diff --git a/modelcenter/community/google/t5-large-lm-adapt/introduction_en.ipynb b/modelcenter/community/google/t5-large-lm-adapt/introduction_en.ipynb
new file mode 100644
index 0000000000000000000000000000000000000000..fdc71cd138926da6979d64bad9d23f67d5914135
--- /dev/null
+++ b/modelcenter/community/google/t5-large-lm-adapt/introduction_en.ipynb
@@ -0,0 +1,111 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "id": "70cb903f",
+ "metadata": {},
+ "source": [
+ "[Google's T5](https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html) Version 1.1 - LM-Adapted\n",
+ "\n",
+ "\n",
+ "## Version 1.1 - LM-Adapted\n",
+ "\n",
+ "[T5 Version 1.1 - LM Adapted](https://github.com/google-research/text-to-text-transfer-transformer/blob/main/released_checkpoints.md#lm-adapted-t511lm100k) includes the following improvements compared to the original [T5 model](https://huggingface.co/t5-large):\n",
+ "\n",
+ "- GEGLU activation in feed-forward hidden layer, rather than ReLU - see [here](https://arxiv.org/abs/2002.05202).\n",
+ "\n",
+ "- Dropout was turned off in pre-training (quality win). Dropout should be re-enabled during fine-tuning.\n",
+ "\n",
+ "- Pre-trained on C4 only without mixing in the downstream tasks.\n",
+ "\n",
+ "- no parameter sharing between embedding and classifier layer\n",
+ "\n",
+ "- \"xl\" and \"xxl\" replace \"3B\" and \"11B\". The model shapes are a bit different - larger `d_model` and smaller `num_heads` and `d_ff`.\n",
+ "\n",
+ "and is pretrained on both the denoising and language modeling objective.\n",
+ "\n",
+ "More specifically, this checkpoint is initialized from T5 Version 1.1 - Large\n",
+ "and then trained for an additional 100K steps on the LM objective discussed in the [T5 paper](https://arxiv.org/pdf/1910.10683.pdf).\n",
+ "This adaptation improves the ability of the model to be used for prompt tuning.\n",
+ "\n",
+ "**Note**: A popular fine-tuned version of the *T5 Version 1.1 - LM Adapted* model is BigScience's T0pp.\n",
+ "\n",
+ "Pretraining Dataset: C4\n",
+ "\n",
+ "Paper: [Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer](https://arxiv.org/pdf/1910.10683.pdf)\n",
+ "\n",
+ "Authors: *Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi Zhou, Wei Li, Peter J. Liu*\n",
+ "\n",
+ "\n",
+ "## Abstract\n",
+ "\n",
+ "Transfer learning, where a model is first pre-trained on a data-rich task before being fine-tuned on a downstream task, has emerged as a powerful technique in natural language processing (NLP). The effectiveness of transfer learning has given rise to a diversity of approaches, methodology, and practice. In this paper, we explore the landscape of transfer learning techniques for NLP by introducing a unified framework that converts every language problem into a text-to-text format. Our systematic study compares pre-training objectives, architectures, unlabeled datasets, transfer approaches, and other factors on dozens of language understanding tasks. By combining the insights from our exploration with scale and our new “Colossal Clean Crawled Corpus”, we achieve state-of-the-art results on many benchmarks covering summarization, question answering, text classification, and more. To facilitate future work on transfer learning for NLP, we release our dataset, pre-trained models, and code.\n",
+ "\n",
+ "![model image](https://camo.githubusercontent.com/623b4dea0b653f2ad3f36c71ebfe749a677ac0a1/68747470733a2f2f6d69726f2e6d656469756d2e636f6d2f6d61782f343030362f312a44304a31674e51663876727255704b657944387750412e706e67)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "cab0c1ea",
+ "metadata": {},
+ "source": [
+ "## How to use"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "e37976b5",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "!pip install --upgrade paddlenlp"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "0673661a",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import paddle\n",
+ "from paddlenlp.transformers import AutoModel\n",
+ "\n",
+ "model = AutoModel.from_pretrained(\"google/t5-large-lm-adapt\")\n",
+ "input_ids = paddle.randint(100, 200, shape=[1, 20])\n",
+ "print(model(input_ids))"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "7b24e77f",
+ "metadata": {},
+ "source": [
+ "\n",
+ "> The model introduction and model weights originate from [https://huggingface.co/google/t5-large-lm-adapt](https://huggingface.co/google/t5-large-lm-adapt) and were converted to PaddlePaddle format for ease of use in PaddleNLP."
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3 (ipykernel)",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.7.13"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 5
+}
diff --git a/modelcenter/community/google/t5-large-ssm/download_cn.md b/modelcenter/community/google/t5-large-ssm/download_cn.md
deleted file mode 100644
index 344edafe14bbc236e03312ce3492c28459055d00..0000000000000000000000000000000000000000
--- a/modelcenter/community/google/t5-large-ssm/download_cn.md
+++ /dev/null
@@ -1,23 +0,0 @@
-# 模型列表
-
-## google/t5-large-ssm
-
-| 模型名称 | 模型介绍 | 模型大小 | 模型下载 |
-| --- | --- | --- | --- |
-|google/t5-large-ssm| | 3.12G | [model_config.json](https://bj.bcebos.com/paddlenlp/models/community/google/t5-large-ssm/model_config.json)
[model_state.pdparams](https://bj.bcebos.com/paddlenlp/models/community/google/t5-large-ssm/model_state.pdparams)
[tokenizer_config.json](https://bj.bcebos.com/paddlenlp/models/community/google/t5-large-ssm/tokenizer_config.json) |
-
-也可以通过`paddlenlp` cli 工具来下载对应的模型权重,使用步骤如下所示:
-
-* 安装paddlenlp
-
-```shell
-pip install --upgrade paddlenlp
-```
-
-* 下载命令行
-
-```shell
-paddlenlp download --cache-dir ./pretrained_models google/t5-large-ssm
-```
-
-有任何下载的问题都可以到[PaddleNLP](https://github.com/PaddlePaddle/PaddleNLP)中发Issue提问。
\ No newline at end of file
diff --git a/modelcenter/community/google/t5-large-ssm/download_en.md b/modelcenter/community/google/t5-large-ssm/download_en.md
deleted file mode 100644
index 000055d34d5df923908f515a46d93d5435b8450f..0000000000000000000000000000000000000000
--- a/modelcenter/community/google/t5-large-ssm/download_en.md
+++ /dev/null
@@ -1,23 +0,0 @@
-# model list
-
-##
-
-| model | description | model_size | download |
-| --- | --- | --- | --- |
-|google/t5-large-ssm| | 3.12G | [model_config.json](https://bj.bcebos.com/paddlenlp/models/community/google/t5-large-ssm/model_config.json)
[model_state.pdparams](https://bj.bcebos.com/paddlenlp/models/community/google/t5-large-ssm/model_state.pdparams)
[tokenizer_config.json](https://bj.bcebos.com/paddlenlp/models/community/google/t5-large-ssm/tokenizer_config.json) |
-
-or you can download all of model file with the following steps:
-
-* install paddlenlp
-
-```shell
-pip install --upgrade paddlenlp
-```
-
-* download model with cli tool
-
-```shell
-paddlenlp download --cache-dir ./pretrained_models google/t5-large-ssm
-```
-
-If you have any problems with it, you can post issue on [PaddleNLP](https://github.com/PaddlePaddle/PaddleNLP) to get support.
diff --git a/modelcenter/community/google/t5-large-ssm/info.yaml b/modelcenter/community/google/t5-large-ssm/info.yaml
deleted file mode 100644
index 5a7cafb195e355c6db8872c1adabc6e7cca651ef..0000000000000000000000000000000000000000
--- a/modelcenter/community/google/t5-large-ssm/info.yaml
+++ /dev/null
@@ -1,26 +0,0 @@
-Model_Info:
- name: "google/t5-large-ssm"
- description: "Abstract"
- description_en: "Abstract"
- icon: ""
- from_repo: "https://huggingface.co/google/t5-large-ssm"
-
-Task:
-- tag_en: "Natural Language Processing"
- tag: "自然语言处理"
- sub_tag_en: "Text2Text Generation"
- sub_tag: "文本生成"
-
-Example:
-
-Datasets: "c4,wikipedia"
-Publisher: "google"
-License: "apache-2.0"
-Language: "English"
-Paper:
- - title: 'REALM: Retrieval-Augmented Language Model Pre-Training'
- url: 'http://arxiv.org/abs/2002.08909v1'
- - title: 'Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer'
- url: 'http://arxiv.org/abs/1910.10683v3'
-IfTraining: 0
-IfOnlineDemo: 0
\ No newline at end of file
diff --git a/modelcenter/community/google/t5-small-lm-adapt/info.yaml b/modelcenter/community/google/t5-small-lm-adapt/info.yaml
index db6f3a7e6d3dc2d002dfff2b9aae9b503704646e..9e9b014a9865efbe406d6d3e296d30587e1779dc 100644
--- a/modelcenter/community/google/t5-small-lm-adapt/info.yaml
+++ b/modelcenter/community/google/t5-small-lm-adapt/info.yaml
@@ -1,26 +1,23 @@
+Datasets: c4
+Example: null
+IfOnlineDemo: 0
+IfTraining: 0
+Language: English
+License: apache-2.0
Model_Info:
- name: "google/t5-small-lm-adapt"
- description: "Version 1.1 - LM-Adapted"
- description_en: "Version 1.1 - LM-Adapted"
- icon: ""
- from_repo: "https://huggingface.co/google/t5-small-lm-adapt"
-
-Task:
-- tag_en: "Natural Language Processing"
- tag: "自然语言处理"
- sub_tag_en: "Text2Text Generation"
- sub_tag: "文本生成"
-
-Example:
-
-Datasets: "c4"
-Publisher: "google"
-License: "apache-2.0"
-Language: "English"
+ description: Version 1.1 - LM-Adapted
+ description_en: Version 1.1 - LM-Adapted
+ from_repo: https://huggingface.co/google/t5-small-lm-adapt
+ icon: https://paddlenlp.bj.bcebos.com/models/community/transformer-layer.png
+ name: google/t5-small-lm-adapt
Paper:
- - title: 'GLU Variants Improve Transformer'
- url: 'http://arxiv.org/abs/2002.05202v1'
- - title: 'Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer'
- url: 'http://arxiv.org/abs/1910.10683v3'
-IfTraining: 0
-IfOnlineDemo: 0
\ No newline at end of file
+- title: GLU Variants Improve Transformer
+ url: http://arxiv.org/abs/2002.05202v1
+- title: Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer
+ url: http://arxiv.org/abs/1910.10683v3
+Publisher: google
+Task:
+- sub_tag: 文本生成
+ sub_tag_en: Text2Text Generation
+ tag: 自然语言处理
+ tag_en: Natural Language Processing
diff --git a/modelcenter/community/google/t5-small-lm-adapt/introduction_cn.ipynb b/modelcenter/community/google/t5-small-lm-adapt/introduction_cn.ipynb
new file mode 100644
index 0000000000000000000000000000000000000000..641edd7a0924ca16d7d1b2fa9ba620ed8e1cf799
--- /dev/null
+++ b/modelcenter/community/google/t5-small-lm-adapt/introduction_cn.ipynb
@@ -0,0 +1,111 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "id": "9dca1445",
+ "metadata": {},
+ "source": [
+ "[Google's T5](https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html) Version 1.1 - LM-Adapted\n",
+ "\n",
+ "\n",
+ "## Version 1.1 - LM-Adapted\n",
+ "\n",
+ "[T5 Version 1.1 - LM Adapted](https://github.com/google-research/text-to-text-transfer-transformer/blob/main/released_checkpoints.md#lm-adapted-t511lm100k) includes the following improvements compared to the original [T5 model](https://huggingface.co/t5-small):\n",
+ "\n",
+ "- GEGLU activation in feed-forward hidden layer, rather than ReLU - see [here](https://arxiv.org/abs/2002.05202).\n",
+ "\n",
+ "- Dropout was turned off in pre-training (quality win). Dropout should be re-enabled during fine-tuning.\n",
+ "\n",
+ "- Pre-trained on C4 only without mixing in the downstream tasks.\n",
+ "\n",
+ "- no parameter sharing between embedding and classifier layer\n",
+ "\n",
+ "- \"xl\" and \"xxl\" replace \"3B\" and \"11B\". The model shapes are a bit different - larger `d_model` and smaller `num_heads` and `d_ff`.\n",
+ "\n",
+ "and is pretrained on both the denoising and language modeling objective.\n",
+ "\n",
+ "More specifically, this checkpoint is initialized from T5 Version 1.1 - Small\n",
+ "and then trained for an additional 100K steps on the LM objective discussed in the [T5 paper](https://arxiv.org/pdf/1910.10683.pdf).\n",
+ "This adaptation improves the ability of the model to be used for prompt tuning.\n",
+ "\n",
+ "**Note**: A popular fine-tuned version of the *T5 Version 1.1 - LM Adapted* model is BigScience's T0pp.\n",
+ "\n",
+ "Pretraining Dataset: C4\n",
+ "\n",
+ "Paper: [Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer](https://arxiv.org/pdf/1910.10683.pdf)\n",
+ "\n",
+ "Authors: *Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi Zhou, Wei Li, Peter J. Liu*\n",
+ "\n",
+ "\n",
+ "## Abstract\n",
+ "\n",
+ "Transfer learning, where a model is first pre-trained on a data-rich task before being fine-tuned on a downstream task, has emerged as a powerful technique in natural language processing (NLP). The effectiveness of transfer learning has given rise to a diversity of approaches, methodology, and practice. In this paper, we explore the landscape of transfer learning techniques for NLP by introducing a unified framework that converts every language problem into a text-to-text format. Our systematic study compares pre-training objectives, architectures, unlabeled datasets, transfer approaches, and other factors on dozens of language understanding tasks. By combining the insights from our exploration with scale and our new “Colossal Clean Crawled Corpus”, we achieve state-of-the-art results on many benchmarks covering summarization, question answering, text classification, and more. To facilitate future work on transfer learning for NLP, we release our dataset, pre-trained models, and code.\n",
+ "\n",
+ "![model image](https://camo.githubusercontent.com/623b4dea0b653f2ad3f36c71ebfe749a677ac0a1/68747470733a2f2f6d69726f2e6d656469756d2e636f6d2f6d61782f343030362f312a44304a31674e51663876727255704b657944387750412e706e67)\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "4c63de98",
+ "metadata": {},
+ "source": [
+ "## How to use"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "8030fcb4",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "!pip install --upgrade paddlenlp"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "8f6f14dd",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import paddle\n",
+ "from paddlenlp.transformers import AutoModel\n",
+ "\n",
+ "model = AutoModel.from_pretrained(\"google/t5-small-lm-adapt\")\n",
+ "input_ids = paddle.randint(100, 200, shape=[1, 20])\n",
+ "print(model(input_ids))"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "b8dd698b",
+ "metadata": {},
+ "source": [
+ "\n",
+ "> 此模型介绍及权重来源于[https://huggingface.co/google/t5-small-lm-adapt](https://huggingface.co/google/t5-small-lm-adapt),并转换为飞桨模型格式。"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3 (ipykernel)",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.7.13"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 5
+}
diff --git a/modelcenter/community/google/t5-small-lm-adapt/introduction_en.ipynb b/modelcenter/community/google/t5-small-lm-adapt/introduction_en.ipynb
new file mode 100644
index 0000000000000000000000000000000000000000..21c1e824d139596eb4f84f841e1c1414eca2f1cc
--- /dev/null
+++ b/modelcenter/community/google/t5-small-lm-adapt/introduction_en.ipynb
@@ -0,0 +1,111 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "id": "42de6200",
+ "metadata": {},
+ "source": [
+ "[Google's T5](https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html) Version 1.1 - LM-Adapted\n",
+ "\n",
+ "\n",
+ "## Version 1.1 - LM-Adapted\n",
+ "\n",
+ "[T5 Version 1.1 - LM Adapted](https://github.com/google-research/text-to-text-transfer-transformer/blob/main/released_checkpoints.md#lm-adapted-t511lm100k) includes the following improvements compared to the original [T5 model](https://huggingface.co/t5-small):\n",
+ "\n",
+ "- GEGLU activation in feed-forward hidden layer, rather than ReLU - see [here](https://arxiv.org/abs/2002.05202).\n",
+ "\n",
+ "- Dropout was turned off in pre-training (quality win). Dropout should be re-enabled during fine-tuning.\n",
+ "\n",
+ "- Pre-trained on C4 only without mixing in the downstream tasks.\n",
+ "\n",
+ "- no parameter sharing between embedding and classifier layer\n",
+ "\n",
+ "- \"xl\" and \"xxl\" replace \"3B\" and \"11B\". The model shapes are a bit different - larger `d_model` and smaller `num_heads` and `d_ff`.\n",
+ "\n",
+ "and is pretrained on both the denoising and language modeling objective.\n",
+ "\n",
+ "More specifically, this checkpoint is initialized from [T5 Version 1.1 - Small](https://huggingface.co/google/https://huggingface.co/google/t5-v1_1-small)\n",
+ "and then trained for an additional 100K steps on the LM objective discussed in the [T5 paper](https://arxiv.org/pdf/1910.10683.pdf).\n",
+ "This adaptation improves the ability of the model to be used for prompt tuning.\n",
+ "\n",
+ "**Note**: A popular fine-tuned version of the *T5 Version 1.1 - LM Adapted* model is BigScience's T0pp.\n",
+ "\n",
+ "Pretraining Dataset: C4\n",
+ "\n",
+ "Paper: [Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer](https://arxiv.org/pdf/1910.10683.pdf)\n",
+ "\n",
+ "Authors: *Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi Zhou, Wei Li, Peter J. Liu*\n",
+ "\n",
+ "\n",
+ "## Abstract\n",
+ "\n",
+ "Transfer learning, where a model is first pre-trained on a data-rich task before being fine-tuned on a downstream task, has emerged as a powerful technique in natural language processing (NLP). The effectiveness of transfer learning has given rise to a diversity of approaches, methodology, and practice. In this paper, we explore the landscape of transfer learning techniques for NLP by introducing a unified framework that converts every language problem into a text-to-text format. Our systematic study compares pre-training objectives, architectures, unlabeled datasets, transfer approaches, and other factors on dozens of language understanding tasks. By combining the insights from our exploration with scale and our new “Colossal Clean Crawled Corpus”, we achieve state-of-the-art results on many benchmarks covering summarization, question answering, text classification, and more. To facilitate future work on transfer learning for NLP, we release our dataset, pre-trained models, and code.\n",
+ "\n",
+ "![model image](https://camo.githubusercontent.com/623b4dea0b653f2ad3f36c71ebfe749a677ac0a1/68747470733a2f2f6d69726f2e6d656469756d2e636f6d2f6d61782f343030362f312a44304a31674e51663876727255704b657944387750412e706e67)\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "39071317",
+ "metadata": {},
+ "source": [
+ "## How to use"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "31a774de",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "!pip install --upgrade paddlenlp"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "a1cd7a50",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import paddle\n",
+ "from paddlenlp.transformers import AutoModel\n",
+ "\n",
+ "model = AutoModel.from_pretrained(\"google/t5-small-lm-adapt\")\n",
+ "input_ids = paddle.randint(100, 200, shape=[1, 20])\n",
+ "print(model(input_ids))"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "4d283d3d",
+ "metadata": {},
+ "source": [
+ "\n",
+ "> The model introduction and model weights originate from [https://huggingface.co/google/t5-small-lm-adapt](https://huggingface.co/google/t5-small-lm-adapt) and were converted to PaddlePaddle format for ease of use in PaddleNLP."
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3 (ipykernel)",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.7.13"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 5
+}
diff --git a/modelcenter/community/google/t5-v1_1-base/info.yaml b/modelcenter/community/google/t5-v1_1-base/info.yaml
index 3cedf8d0e891e3b9d8b9bb3f14aae7c4ad58efd0..971ea7d892c3a968cc05af7d109ab635076b8f00 100644
--- a/modelcenter/community/google/t5-v1_1-base/info.yaml
+++ b/modelcenter/community/google/t5-v1_1-base/info.yaml
@@ -1,26 +1,23 @@
+Datasets: c4
+Example: null
+IfOnlineDemo: 0
+IfTraining: 0
+Language: English
+License: apache-2.0
Model_Info:
- name: "google/t5-v1_1-base"
- description: "Version 1.1"
- description_en: "Version 1.1"
- icon: ""
- from_repo: "https://huggingface.co/google/t5-v1_1-base"
-
-Task:
-- tag_en: "Natural Language Processing"
- tag: "自然语言处理"
- sub_tag_en: "Text2Text Generation"
- sub_tag: "文本生成"
-
-Example:
-
-Datasets: "c4"
-Publisher: "google"
-License: "apache-2.0"
-Language: "English"
+ description: Version 1.1
+ description_en: Version 1.1
+ from_repo: https://huggingface.co/google/t5-v1_1-base
+ icon: https://paddlenlp.bj.bcebos.com/models/community/transformer-layer.png
+ name: google/t5-v1_1-base
Paper:
- - title: 'GLU Variants Improve Transformer'
- url: 'http://arxiv.org/abs/2002.05202v1'
- - title: 'Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer'
- url: 'http://arxiv.org/abs/1910.10683v3'
-IfTraining: 0
-IfOnlineDemo: 0
\ No newline at end of file
+- title: GLU Variants Improve Transformer
+ url: http://arxiv.org/abs/2002.05202v1
+- title: Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer
+ url: http://arxiv.org/abs/1910.10683v3
+Publisher: google
+Task:
+- sub_tag: 文本生成
+ sub_tag_en: Text2Text Generation
+ tag: 自然语言处理
+ tag_en: Natural Language Processing
diff --git a/modelcenter/community/google/t5-v1_1-base/introduction_cn.ipynb b/modelcenter/community/google/t5-v1_1-base/introduction_cn.ipynb
new file mode 100644
index 0000000000000000000000000000000000000000..fb4d969aa56526b40ede0b6a47b812304e514db9
--- /dev/null
+++ b/modelcenter/community/google/t5-v1_1-base/introduction_cn.ipynb
@@ -0,0 +1,101 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "id": "83a0cdfd",
+ "metadata": {},
+ "source": [
+ "[Google's T5](https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html) Version 1.1\n",
+ "\n",
+ "\n",
+ "## Version 1.1\n",
+ "\n",
+ "[T5 Version 1.1](https://github.com/google-research/text-to-text-transfer-transformer/blob/master/released_checkpoints.md#t511) includes the following improvements compared to the original T5 model- GEGLU activation in feed-forward hidden layer, rather than ReLU - see [here](https://arxiv.org/abs/2002.05202).\n",
+ "\n",
+ "- Dropout was turned off in pre-training (quality win). Dropout should be re-enabled during fine-tuning.\n",
+ "\n",
+ "- Pre-trained on C4 only without mixing in the downstream tasks.\n",
+ "\n",
+ "- no parameter sharing between embedding and classifier layer\n",
+ "\n",
+ "- \"xl\" and \"xxl\" replace \"3B\" and \"11B\". The model shapes are a bit different - larger `d_model` and smaller `num_heads` and `d_ff`.\n",
+ "\n",
+ "**Note**: T5 Version 1.1 was only pre-trained on C4 excluding any supervised training. Therefore, this model has to be fine-tuned before it is useable on a downstream task.\n",
+ "Pretraining Dataset: C4\n",
+ "\n",
+ "Paper: [Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer](https://arxiv.org/pdf/1910.10683.pdf)\n",
+ "\n",
+ "Authors: *Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi Zhou, Wei Li, Peter J. Liu*\n",
+ "\n",
+ "\n",
+ "## Abstract\n",
+ "\n",
+ "Transfer learning, where a model is first pre-trained on a data-rich task before being fine-tuned on a downstream task, has emerged as a powerful technique in natural language processing (NLP). The effectiveness of transfer learning has given rise to a diversity of approaches, methodology, and practice. In this paper, we explore the landscape of transfer learning techniques for NLP by introducing a unified framework that converts every language problem into a text-to-text format. Our systematic study compares pre-training objectives, architectures, unlabeled datasets, transfer approaches, and other factors on dozens of language understanding tasks. By combining the insights from our exploration with scale and our new “Colossal Clean Crawled Corpus”, we achieve state-of-the-art results on many benchmarks covering summarization, question answering, text classification, and more. To facilitate future work on transfer learning for NLP, we release our dataset, pre-trained models, and code.\n",
+ "\n",
+ "![model image](https://camo.githubusercontent.com/623b4dea0b653f2ad3f36c71ebfe749a677ac0a1/68747470733a2f2f6d69726f2e6d656469756d2e636f6d2f6d61782f343030362f312a44304a31674e51663876727255704b657944387750412e706e67)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "6196f74c",
+ "metadata": {},
+ "source": [
+ "## How to use"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "6c13cb82",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "!pip install --upgrade paddlenlp"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "1d62f626",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import paddle\n",
+ "from paddlenlp.transformers import AutoModel\n",
+ "\n",
+ "model = AutoModel.from_pretrained(\"google/t5-v1_1-base\")\n",
+ "input_ids = paddle.randint(100, 200, shape=[1, 20])\n",
+ "print(model(input_ids))"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "016545f2",
+ "metadata": {},
+ "source": [
+ "> 此模型介绍及权重来源于[https://huggingface.co/google/t5-v1_1-base](https://huggingface.co/google/t5-v1_1-base),并转换为飞桨模型格式。"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3 (ipykernel)",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.7.13"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 5
+}
diff --git a/modelcenter/community/google/t5-v1_1-base/introduction_en.ipynb b/modelcenter/community/google/t5-v1_1-base/introduction_en.ipynb
new file mode 100644
index 0000000000000000000000000000000000000000..4084d70fab28230aacbe2d3576f7c70af1c097af
--- /dev/null
+++ b/modelcenter/community/google/t5-v1_1-base/introduction_en.ipynb
@@ -0,0 +1,101 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "id": "2656a571",
+ "metadata": {},
+ "source": [
+ "[Google's T5](https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html) Version 1.1\n",
+ "\n",
+ "\n",
+ "## Version 1.1\n",
+ "\n",
+ "[T5 Version 1.1](https://github.com/google-research/text-to-text-transfer-transformer/blob/master/released_checkpoints.md#t511) includes the following improvements compared to the original T5 model- GEGLU activation in feed-forward hidden layer, rather than ReLU - see [here](https://arxiv.org/abs/2002.05202).\n",
+ "\n",
+ "- Dropout was turned off in pre-training (quality win). Dropout should be re-enabled during fine-tuning.\n",
+ "\n",
+ "- Pre-trained on C4 only without mixing in the downstream tasks.\n",
+ "\n",
+ "- no parameter sharing between embedding and classifier layer\n",
+ "\n",
+ "- \"xl\" and \"xxl\" replace \"3B\" and \"11B\". The model shapes are a bit different - larger `d_model` and smaller `num_heads` and `d_ff`.\n",
+ "\n",
+ "**Note**: T5 Version 1.1 was only pre-trained on C4 excluding any supervised training. Therefore, this model has to be fine-tuned before it is useable on a downstream task.\n",
+ "Pretraining Dataset: C4\n",
+ "\n",
+ "Paper: [Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer](https://arxiv.org/pdf/1910.10683.pdf)\n",
+ "\n",
+ "Authors: *Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi Zhou, Wei Li, Peter J. Liu*\n",
+ "\n",
+ "\n",
+ "## Abstract\n",
+ "\n",
+ "Transfer learning, where a model is first pre-trained on a data-rich task before being fine-tuned on a downstream task, has emerged as a powerful technique in natural language processing (NLP). The effectiveness of transfer learning has given rise to a diversity of approaches, methodology, and practice. In this paper, we explore the landscape of transfer learning techniques for NLP by introducing a unified framework that converts every language problem into a text-to-text format. Our systematic study compares pre-training objectives, architectures, unlabeled datasets, transfer approaches, and other factors on dozens of language understanding tasks. By combining the insights from our exploration with scale and our new “Colossal Clean Crawled Corpus”, we achieve state-of-the-art results on many benchmarks covering summarization, question answering, text classification, and more. To facilitate future work on transfer learning for NLP, we release our dataset, pre-trained models, and code.\n",
+ "\n",
+ "![model image](https://camo.githubusercontent.com/623b4dea0b653f2ad3f36c71ebfe749a677ac0a1/68747470733a2f2f6d69726f2e6d656469756d2e636f6d2f6d61782f343030362f312a44304a31674e51663876727255704b657944387750412e706e67)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "c0cd9f02",
+ "metadata": {},
+ "source": [
+ "## How to use"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "9323615d",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "!pip install --upgrade paddlenlp"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "0b9994b3",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import paddle\n",
+ "from paddlenlp.transformers import AutoModel\n",
+ "\n",
+ "model = AutoModel.from_pretrained(\"google/t5-v1_1-base\")\n",
+ "input_ids = paddle.randint(100, 200, shape=[1, 20])\n",
+ "print(model(input_ids))"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "8daa264b",
+ "metadata": {},
+ "source": [
+ "> The model introduction and model weights originate from [https://huggingface.co/google/t5-v1_1-base](https://huggingface.co/google/t5-v1_1-base) and were converted to PaddlePaddle format for ease of use in PaddleNLP."
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3 (ipykernel)",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.7.13"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 5
+}
diff --git a/modelcenter/community/google/t5-v1_1-large/info.yaml b/modelcenter/community/google/t5-v1_1-large/info.yaml
index b9315915d38ce0062ea55a39835614d74733eb2c..46201b8220551c21533cc2714f7f976211e2f951 100644
--- a/modelcenter/community/google/t5-v1_1-large/info.yaml
+++ b/modelcenter/community/google/t5-v1_1-large/info.yaml
@@ -1,26 +1,23 @@
+Datasets: c4
+Example: null
+IfOnlineDemo: 0
+IfTraining: 0
+Language: English
+License: apache-2.0
Model_Info:
- name: "google/t5-v1_1-large"
- description: "Version 1.1"
- description_en: "Version 1.1"
- icon: ""
- from_repo: "https://huggingface.co/google/t5-v1_1-large"
-
-Task:
-- tag_en: "Natural Language Processing"
- tag: "自然语言处理"
- sub_tag_en: "Text2Text Generation"
- sub_tag: "文本生成"
-
-Example:
-
-Datasets: "c4"
-Publisher: "google"
-License: "apache-2.0"
-Language: "English"
+ description: Version 1.1
+ description_en: Version 1.1
+ from_repo: https://huggingface.co/google/t5-v1_1-large
+ icon: https://paddlenlp.bj.bcebos.com/models/community/transformer-layer.png
+ name: google/t5-v1_1-large
Paper:
- - title: 'GLU Variants Improve Transformer'
- url: 'http://arxiv.org/abs/2002.05202v1'
- - title: 'Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer'
- url: 'http://arxiv.org/abs/1910.10683v3'
-IfTraining: 0
-IfOnlineDemo: 0
\ No newline at end of file
+- title: GLU Variants Improve Transformer
+ url: http://arxiv.org/abs/2002.05202v1
+- title: Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer
+ url: http://arxiv.org/abs/1910.10683v3
+Publisher: google
+Task:
+- sub_tag: 文本生成
+ sub_tag_en: Text2Text Generation
+ tag: 自然语言处理
+ tag_en: Natural Language Processing
diff --git a/modelcenter/community/google/t5-v1_1-large/introduction_cn.ipynb b/modelcenter/community/google/t5-v1_1-large/introduction_cn.ipynb
new file mode 100644
index 0000000000000000000000000000000000000000..1ad787e785db45c64ad232e6d8742db04bae908f
--- /dev/null
+++ b/modelcenter/community/google/t5-v1_1-large/introduction_cn.ipynb
@@ -0,0 +1,101 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "id": "11d36429",
+ "metadata": {},
+ "source": [
+ "[Google's T5](https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html) Version 1.1\n",
+ "\n",
+ "\n",
+ "## Version 1.1\n",
+ "\n",
+ "[T5 Version 1.1](https://github.com/google-research/text-to-text-transfer-transformer/blob/master/released_checkpoints.md#t511) includes the following improvements compared to the original T5 model- GEGLU activation in feed-forward hidden layer, rather than ReLU - see [here](https://arxiv.org/abs/2002.05202).\n",
+ "\n",
+ "- Dropout was turned off in pre-training (quality win). Dropout should be re-enabled during fine-tuning.\n",
+ "\n",
+ "- Pre-trained on C4 only without mixing in the downstream tasks.\n",
+ "\n",
+ "- no parameter sharing between embedding and classifier layer\n",
+ "\n",
+ "- \"xl\" and \"xxl\" replace \"3B\" and \"11B\". The model shapes are a bit different - larger `d_model` and smaller `num_heads` and `d_ff`.\n",
+ "\n",
+ "**Note**: T5 Version 1.1 was only pre-trained on C4 excluding any supervised training. Therefore, this model has to be fine-tuned before it is useable on a downstream task.\n",
+ "Pretraining Dataset: C4\n",
+ "\n",
+ "Paper: [Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer](https://arxiv.org/pdf/1910.10683.pdf)\n",
+ "\n",
+ "Authors: *Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi Zhou, Wei Li, Peter J. Liu*\n",
+ "\n",
+ "\n",
+ "## Abstract\n",
+ "\n",
+ "Transfer learning, where a model is first pre-trained on a data-rich task before being fine-tuned on a downstream task, has emerged as a powerful technique in natural language processing (NLP). The effectiveness of transfer learning has given rise to a diversity of approaches, methodology, and practice. In this paper, we explore the landscape of transfer learning techniques for NLP by introducing a unified framework that converts every language problem into a text-to-text format. Our systematic study compares pre-training objectives, architectures, unlabeled datasets, transfer approaches, and other factors on dozens of language understanding tasks. By combining the insights from our exploration with scale and our new “Colossal Clean Crawled Corpus”, we achieve state-of-the-art results on many benchmarks covering summarization, question answering, text classification, and more. To facilitate future work on transfer learning for NLP, we release our dataset, pre-trained models, and code.\n",
+ "\n",
+ "![model image](https://camo.githubusercontent.com/623b4dea0b653f2ad3f36c71ebfe749a677ac0a1/68747470733a2f2f6d69726f2e6d656469756d2e636f6d2f6d61782f343030362f312a44304a31674e51663876727255704b657944387750412e706e67)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "c11ad8cf",
+ "metadata": {},
+ "source": [
+ "## How to use"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "480104f2",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "!pip install --upgrade paddlenlp"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "e1323ff9",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import paddle\n",
+ "from paddlenlp.transformers import AutoModel\n",
+ "\n",
+ "model = AutoModel.from_pretrained(\"google/t5-v1_1-large\")\n",
+ "input_ids = paddle.randint(100, 200, shape=[1, 20])\n",
+ "print(model(input_ids))"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "4348828e",
+ "metadata": {},
+ "source": [
+ "> 此模型介绍及权重来源于[https://huggingface.co/google/t5-v1_1-large](https://huggingface.co/google/t5-v1_1-large),并转换为飞桨模型格式。"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3 (ipykernel)",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.7.13"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 5
+}
diff --git a/modelcenter/community/google/t5-v1_1-large/introduction_en.ipynb b/modelcenter/community/google/t5-v1_1-large/introduction_en.ipynb
new file mode 100644
index 0000000000000000000000000000000000000000..4efcfb2f376056a749dbe870708cbe17aea5bb38
--- /dev/null
+++ b/modelcenter/community/google/t5-v1_1-large/introduction_en.ipynb
@@ -0,0 +1,101 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "id": "5f0c769f",
+ "metadata": {},
+ "source": [
+ "[Google's T5](https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html) Version 1.1\n",
+ "\n",
+ "\n",
+ "## Version 1.1\n",
+ "\n",
+ "[T5 Version 1.1](https://github.com/google-research/text-to-text-transfer-transformer/blob/master/released_checkpoints.md#t511) includes the following improvements compared to the original T5 model- GEGLU activation in feed-forward hidden layer, rather than ReLU - see [here](https://arxiv.org/abs/2002.05202).\n",
+ "\n",
+ "- Dropout was turned off in pre-training (quality win). Dropout should be re-enabled during fine-tuning.\n",
+ "\n",
+ "- Pre-trained on C4 only without mixing in the downstream tasks.\n",
+ "\n",
+ "- no parameter sharing between embedding and classifier layer\n",
+ "\n",
+ "- \"xl\" and \"xxl\" replace \"3B\" and \"11B\". The model shapes are a bit different - larger `d_model` and smaller `num_heads` and `d_ff`.\n",
+ "\n",
+ "**Note**: T5 Version 1.1 was only pre-trained on C4 excluding any supervised training. Therefore, this model has to be fine-tuned before it is useable on a downstream task.\n",
+ "Pretraining Dataset: C4\n",
+ "\n",
+ "Paper: [Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer](https://arxiv.org/pdf/1910.10683.pdf)\n",
+ "\n",
+ "Authors: *Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi Zhou, Wei Li, Peter J. Liu*\n",
+ "\n",
+ "\n",
+ "## Abstract\n",
+ "\n",
+ "Transfer learning, where a model is first pre-trained on a data-rich task before being fine-tuned on a downstream task, has emerged as a powerful technique in natural language processing (NLP). The effectiveness of transfer learning has given rise to a diversity of approaches, methodology, and practice. In this paper, we explore the landscape of transfer learning techniques for NLP by introducing a unified framework that converts every language problem into a text-to-text format. Our systematic study compares pre-training objectives, architectures, unlabeled datasets, transfer approaches, and other factors on dozens of language understanding tasks. By combining the insights from our exploration with scale and our new “Colossal Clean Crawled Corpus”, we achieve state-of-the-art results on many benchmarks covering summarization, question answering, text classification, and more. To facilitate future work on transfer learning for NLP, we release our dataset, pre-trained models, and code.\n",
+ "\n",
+ "![model image](https://camo.githubusercontent.com/623b4dea0b653f2ad3f36c71ebfe749a677ac0a1/68747470733a2f2f6d69726f2e6d656469756d2e636f6d2f6d61782f343030362f312a44304a31674e51663876727255704b657944387750412e706e67)"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "27e206b9",
+ "metadata": {},
+ "source": [
+ "## How to use"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "3cf23148",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "!pip install --upgrade paddlenlp"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "467b7ff7",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import paddle\n",
+ "from paddlenlp.transformers import AutoModel\n",
+ "\n",
+ "model = AutoModel.from_pretrained(\"google/t5-v1_1-large\")\n",
+ "input_ids = paddle.randint(100, 200, shape=[1, 20])\n",
+ "print(model(input_ids))"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "a5616bca",
+ "metadata": {},
+ "source": [
+ "> The model introduction and model weights originate from [https://huggingface.co/google/t5-v1_1-large](https://huggingface.co/google/t5-v1_1-large) and were converted to PaddlePaddle format for ease of use in PaddleNLP."
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3 (ipykernel)",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.7.13"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 5
+}
diff --git a/modelcenter/community/google/t5-v1_1-small/info.yaml b/modelcenter/community/google/t5-v1_1-small/info.yaml
index ffaf1b744010f53450fe2b0de22d3d4010005950..8cd8aced2ddee0d900e2cac24e5294596ac9dd57 100644
--- a/modelcenter/community/google/t5-v1_1-small/info.yaml
+++ b/modelcenter/community/google/t5-v1_1-small/info.yaml
@@ -1,26 +1,23 @@
+Datasets: c4
+Example: null
+IfOnlineDemo: 0
+IfTraining: 0
+Language: English
+License: apache-2.0
Model_Info:
- name: "google/t5-v1_1-small"
- description: "Version 1.1"
- description_en: "Version 1.1"
- icon: ""
- from_repo: "https://huggingface.co/google/t5-v1_1-small"
-
-Task:
-- tag_en: "Natural Language Processing"
- tag: "自然语言处理"
- sub_tag_en: "Text2Text Generation"
- sub_tag: "文本生成"
-
-Example:
-
-Datasets: "c4"
-Publisher: "google"
-License: "apache-2.0"
-Language: "English"
+ description: Version 1.1
+ description_en: Version 1.1
+ from_repo: https://huggingface.co/google/t5-v1_1-small
+ icon: https://paddlenlp.bj.bcebos.com/models/community/transformer-layer.png
+ name: google/t5-v1_1-small
Paper:
- - title: 'GLU Variants Improve Transformer'
- url: 'http://arxiv.org/abs/2002.05202v1'
- - title: 'Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer'
- url: 'http://arxiv.org/abs/1910.10683v3'
-IfTraining: 0
-IfOnlineDemo: 0
\ No newline at end of file
+- title: GLU Variants Improve Transformer
+ url: http://arxiv.org/abs/2002.05202v1
+- title: Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer
+ url: http://arxiv.org/abs/1910.10683v3
+Publisher: google
+Task:
+- sub_tag: 文本生成
+ sub_tag_en: Text2Text Generation
+ tag: 自然语言处理
+ tag_en: Natural Language Processing
diff --git a/modelcenter/community/google/t5-v1_1-small/introduction_cn.ipynb b/modelcenter/community/google/t5-v1_1-small/introduction_cn.ipynb
new file mode 100644
index 0000000000000000000000000000000000000000..ebcc34ea3ac005d55e3a000df91bc1359847a60f
--- /dev/null
+++ b/modelcenter/community/google/t5-v1_1-small/introduction_cn.ipynb
@@ -0,0 +1,103 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "id": "51d7e9ca",
+ "metadata": {},
+ "source": [
+ "[Google's T5](https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html) Version 1.1\n",
+ "\n",
+ "\n",
+ "## Version 1.1\n",
+ "\n",
+ "[T5 Version 1.1](https://github.com/google-research/text-to-text-transfer-transformer/blob/master/released_checkpoints.md#t511) includes the following improvements compared to the original T5 model- GEGLU activation in feed-forward hidden layer, rather than ReLU - see [here](https://arxiv.org/abs/2002.05202).\n",
+ "\n",
+ "- Dropout was turned off in pre-training (quality win). Dropout should be re-enabled during fine-tuning.\n",
+ "\n",
+ "- Pre-trained on C4 only without mixing in the downstream tasks.\n",
+ "\n",
+ "- no parameter sharing between embedding and classifier layer\n",
+ "\n",
+ "- \"xl\" and \"xxl\" replace \"3B\" and \"11B\". The model shapes are a bit different - larger `d_model` and smaller `num_heads` and `d_ff`.\n",
+ "\n",
+ "**Note**: T5 Version 1.1 was only pre-trained on C4 excluding any supervised training. Therefore, this model has to be fine-tuned before it is useable on a downstream task.\n",
+ "Pretraining Dataset: [C4](https://huggingface.co/datasets/c4)\n",
+ "\n",
+ "Other Community Checkpoints: [here](https://huggingface.co/models?search=t5-v1_1)\n",
+ "\n",
+ "Paper: [Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer](https://arxiv.org/pdf/1910.10683.pdf)\n",
+ "\n",
+ "Authors: *Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi Zhou, Wei Li, Peter J. Liu*\n",
+ "\n",
+ "\n",
+ "## Abstract\n",
+ "\n",
+ "Transfer learning, where a model is first pre-trained on a data-rich task before being fine-tuned on a downstream task, has emerged as a powerful technique in natural language processing (NLP). The effectiveness of transfer learning has given rise to a diversity of approaches, methodology, and practice. In this paper, we explore the landscape of transfer learning techniques for NLP by introducing a unified framework that converts every language problem into a text-to-text format. Our systematic study compares pre-training objectives, architectures, unlabeled datasets, transfer approaches, and other factors on dozens of language understanding tasks. By combining the insights from our exploration with scale and our new “Colossal Clean Crawled Corpus”, we achieve state-of-the-art results on many benchmarks covering summarization, question answering, text classification, and more. To facilitate future work on transfer learning for NLP, we release our dataset, pre-trained models, and code.\n",
+ "\n",
+ "![model image](https://camo.githubusercontent.com/623b4dea0b653f2ad3f36c71ebfe749a677ac0a1/68747470733a2f2f6d69726f2e6d656469756d2e636f6d2f6d61782f343030362f312a44304a31674e51663876727255704b657944387750412e706e67)\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "b4b5fc59",
+ "metadata": {},
+ "source": [
+ "## How to use"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "ae31cbc9",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "!pip install --upgrade paddlenlp"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "81d25d09",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import paddle\n",
+ "from paddlenlp.transformers import AutoModel\n",
+ "\n",
+ "model = AutoModel.from_pretrained(\"google/t5-v1_1-small\")\n",
+ "input_ids = paddle.randint(100, 200, shape=[1, 20])\n",
+ "print(model(input_ids))"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "6e0459f7",
+ "metadata": {},
+ "source": [
+ "> 此模型介绍及权重来源于[https://huggingface.co/google/t5-v1_1-small](https://huggingface.co/google/t5-v1_1-small),并转换为飞桨模型格式。"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3 (ipykernel)",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.7.13"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 5
+}
diff --git a/modelcenter/community/google/t5-v1_1-small/introduction_en.ipynb b/modelcenter/community/google/t5-v1_1-small/introduction_en.ipynb
new file mode 100644
index 0000000000000000000000000000000000000000..e89ecb34792133edff852bb34e62a500917e512c
--- /dev/null
+++ b/modelcenter/community/google/t5-v1_1-small/introduction_en.ipynb
@@ -0,0 +1,103 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "id": "95b64b6f",
+ "metadata": {},
+ "source": [
+ "[Google's T5](https://ai.googleblog.com/2020/02/exploring-transfer-learning-with-t5.html) Version 1.1\n",
+ "\n",
+ "\n",
+ "## Version 1.1\n",
+ "\n",
+ "[T5 Version 1.1](https://github.com/google-research/text-to-text-transfer-transformer/blob/master/released_checkpoints.md#t511) includes the following improvements compared to the original T5 model- GEGLU activation in feed-forward hidden layer, rather than ReLU - see [here](https://arxiv.org/abs/2002.05202).\n",
+ "\n",
+ "- Dropout was turned off in pre-training (quality win). Dropout should be re-enabled during fine-tuning.\n",
+ "\n",
+ "- Pre-trained on C4 only without mixing in the downstream tasks.\n",
+ "\n",
+ "- no parameter sharing between embedding and classifier layer\n",
+ "\n",
+ "- \"xl\" and \"xxl\" replace \"3B\" and \"11B\". The model shapes are a bit different - larger `d_model` and smaller `num_heads` and `d_ff`.\n",
+ "\n",
+ "**Note**: T5 Version 1.1 was only pre-trained on C4 excluding any supervised training. Therefore, this model has to be fine-tuned before it is useable on a downstream task.\n",
+ "Pretraining Dataset: [C4](https://huggingface.co/datasets/c4)\n",
+ "\n",
+ "Other Community Checkpoints: [here](https://huggingface.co/models?search=t5-v1_1)\n",
+ "\n",
+ "Paper: [Exploring the Limits of Transfer Learning with a Unified Text-to-Text Transformer](https://arxiv.org/pdf/1910.10683.pdf)\n",
+ "\n",
+ "Authors: *Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi Zhou, Wei Li, Peter J. Liu*\n",
+ "\n",
+ "\n",
+ "## Abstract\n",
+ "\n",
+ "Transfer learning, where a model is first pre-trained on a data-rich task before being fine-tuned on a downstream task, has emerged as a powerful technique in natural language processing (NLP). The effectiveness of transfer learning has given rise to a diversity of approaches, methodology, and practice. In this paper, we explore the landscape of transfer learning techniques for NLP by introducing a unified framework that converts every language problem into a text-to-text format. Our systematic study compares pre-training objectives, architectures, unlabeled datasets, transfer approaches, and other factors on dozens of language understanding tasks. By combining the insights from our exploration with scale and our new “Colossal Clean Crawled Corpus”, we achieve state-of-the-art results on many benchmarks covering summarization, question answering, text classification, and more. To facilitate future work on transfer learning for NLP, we release our dataset, pre-trained models, and code.\n",
+ "\n",
+ "![model image](https://camo.githubusercontent.com/623b4dea0b653f2ad3f36c71ebfe749a677ac0a1/68747470733a2f2f6d69726f2e6d656469756d2e636f6d2f6d61782f343030362f312a44304a31674e51663876727255704b657944387750412e706e67)\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "88ec53f3",
+ "metadata": {},
+ "source": [
+ "## How to use"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "082cae7f",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "!pip install --upgrade paddlenlp"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "05f7f4d0",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import paddle\n",
+ "from paddlenlp.transformers import AutoModel\n",
+ "\n",
+ "model = AutoModel.from_pretrained(\"google/t5-v1_1-small\")\n",
+ "input_ids = paddle.randint(100, 200, shape=[1, 20])\n",
+ "print(model(input_ids))"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "c7a95cdf",
+ "metadata": {},
+ "source": [
+ "> The model introduction and model weights originate from [https://huggingface.co/google/t5-v1_1-small](https://huggingface.co/google/t5-v1_1-small) and were converted to PaddlePaddle format for ease of use in PaddleNLP."
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3 (ipykernel)",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.7.13"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 5
+}
diff --git a/modelcenter/community/hfl/chinese-bert-wwm-ext/info.yaml b/modelcenter/community/hfl/chinese-bert-wwm-ext/info.yaml
index 8474c936e8a41f7ee4062a6ecd2ed6206f49a9fc..2e118e75cde3385acff469c1552770468d868837 100644
--- a/modelcenter/community/hfl/chinese-bert-wwm-ext/info.yaml
+++ b/modelcenter/community/hfl/chinese-bert-wwm-ext/info.yaml
@@ -1,26 +1,23 @@
+Datasets: ''
+Example: null
+IfOnlineDemo: 0
+IfTraining: 0
+Language: Chinese
+License: apache-2.0
Model_Info:
- name: "hfl/chinese-bert-wwm-ext"
- description: "Chinese BERT with Whole Word Masking"
- description_en: "Chinese BERT with Whole Word Masking"
- icon: ""
- from_repo: "https://huggingface.co/hfl/chinese-bert-wwm-ext"
-
-Task:
-- tag_en: "Natural Language Processing"
- tag: "自然语言处理"
- sub_tag_en: "Fill-Mask"
- sub_tag: "槽位填充"
-
-Example:
-
-Datasets: ""
-Publisher: "hfl"
-License: "apache-2.0"
-Language: "Chinese"
+ description: Chinese BERT with Whole Word Masking
+ description_en: Chinese BERT with Whole Word Masking
+ from_repo: https://huggingface.co/hfl/chinese-bert-wwm-ext
+ icon: https://paddlenlp.bj.bcebos.com/models/community/transformer-layer.png
+ name: hfl/chinese-bert-wwm-ext
Paper:
- - title: 'Pre-Training with Whole Word Masking for Chinese BERT'
- url: 'http://arxiv.org/abs/1906.08101v3'
- - title: 'Revisiting Pre-Trained Models for Chinese Natural Language Processing'
- url: 'http://arxiv.org/abs/2004.13922v2'
-IfTraining: 0
-IfOnlineDemo: 0
\ No newline at end of file
+- title: Pre-Training with Whole Word Masking for Chinese BERT
+ url: http://arxiv.org/abs/1906.08101v3
+- title: Revisiting Pre-Trained Models for Chinese Natural Language Processing
+ url: http://arxiv.org/abs/2004.13922v2
+Publisher: hfl
+Task:
+- sub_tag: 槽位填充
+ sub_tag_en: Fill-Mask
+ tag: 自然语言处理
+ tag_en: Natural Language Processing
diff --git a/modelcenter/community/hfl/chinese-bert-wwm-ext/introduction_cn.ipynb b/modelcenter/community/hfl/chinese-bert-wwm-ext/introduction_cn.ipynb
new file mode 100644
index 0000000000000000000000000000000000000000..7d8a9de39fac2fb23e6be7d3c29dea837d1d25cc
--- /dev/null
+++ b/modelcenter/community/hfl/chinese-bert-wwm-ext/introduction_cn.ipynb
@@ -0,0 +1,153 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "id": "a5e1e8bd",
+ "metadata": {},
+ "source": [
+ "## Chinese BERT with Whole Word Masking\n",
+ "For further accelerating Chinese natural language processing, we provide **Chinese pre-trained BERT with Whole Word Masking**.\n",
+ "\n",
+ "**[Pre-Training with Whole Word Masking for Chinese BERT](https://arxiv.org/abs/1906.08101)**\n",
+ "Yiming Cui, Wanxiang Che, Ting Liu, Bing Qin, Ziqing Yang, Shijin Wang, Guoping Hu\n",
+ "\n",
+ "This repository is developed based on:https://github.com/google-research/bert\n",
+ "\n",
+ "You may also interested in,\n",
+ "- Chinese BERT series: https://github.com/ymcui/Chinese-BERT-wwm\n",
+ "- Chinese MacBERT: https://github.com/ymcui/MacBERT\n",
+ "- Chinese ELECTRA: https://github.com/ymcui/Chinese-ELECTRA\n",
+ "- Chinese XLNet: https://github.com/ymcui/Chinese-XLNet\n",
+ "- Knowledge Distillation Toolkit - TextBrewer: https://github.com/airaria/TextBrewer\n",
+ "\n",
+ "More resources by HFL: https://github.com/ymcui/HFL-Anthology\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "be498a8f",
+ "metadata": {},
+ "source": [
+ "## How to Use"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "0199d11d",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "!pip install --upgrade paddlenlp"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "b71b0698",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import paddle\n",
+ "from paddlenlp.transformers import AutoModel\n",
+ "\n",
+ "model = AutoModel.from_pretrained(\"hfl/chinese-bert-wwm-ext\")\n",
+ "input_ids = paddle.randint(100, 200, shape=[1, 20])\n",
+ "print(model(input_ids))"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "5d6bd99f",
+ "metadata": {},
+ "source": [
+ "\n",
+ "## Citation\n",
+ "If you find the technical report or resource is useful, please cite the following technical report in your paper.\n",
+ "- Primary: https://arxiv.org/abs/2004.13922"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "456616b7",
+ "metadata": {},
+ "source": [
+ "```\n",
+ "@inproceedings{cui-etal-2020-revisiting,\n",
+ "title = \"Revisiting Pre-Trained Models for {C}hinese Natural Language Processing\",\n",
+ "author = \"Cui, Yiming and\n",
+ "Che, Wanxiang and\n",
+ "Liu, Ting and\n",
+ "Qin, Bing and\n",
+ "Wang, Shijin and\n",
+ "Hu, Guoping\",\n",
+ "booktitle = \"Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: Findings\",\n",
+ "month = nov,\n",
+ "year = \"2020\",\n",
+ "address = \"Online\",\n",
+ "publisher = \"Association for Computational Linguistics\",\n",
+ "url = \"https://www.aclweb.org/anthology/2020.findings-emnlp.58\",\n",
+ "pages = \"657--668\",\n",
+ "}\n",
+ "```"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "9784d9b7",
+ "metadata": {},
+ "source": [
+ "- Secondary: https://arxiv.org/abs/1906.08101\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "15ed9adf",
+ "metadata": {},
+ "source": [
+ "```\n",
+ "@article{chinese-bert-wwm,\n",
+ "title={Pre-Training with Whole Word Masking for Chinese BERT},\n",
+ "author={Cui, Yiming and Che, Wanxiang and Liu, Ting and Qin, Bing and Yang, Ziqing and Wang, Shijin and Hu, Guoping},\n",
+ "journal={arXiv preprint arXiv:1906.08101},\n",
+ "year={2019}\n",
+ "}\n",
+ "```"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "3593ecc9",
+ "metadata": {},
+ "source": [
+ "> 此模型介绍及权重来源于[https://huggingface.co/hfl/chinese-bert-wwm-ext](https://huggingface.co/hfl/chinese-bert-wwm-ext),并转换为飞桨模型格式。"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3 (ipykernel)",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.7.13"
+ },
+ "vscode": {
+ "interpreter": {
+ "hash": "606ea184b8fed3419d714b545dc1784fad6c99d0cc940b6b9d787dccf225faa5"
+ }
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 5
+}
diff --git a/modelcenter/community/hfl/chinese-bert-wwm-ext/introduction_en.ipynb b/modelcenter/community/hfl/chinese-bert-wwm-ext/introduction_en.ipynb
new file mode 100644
index 0000000000000000000000000000000000000000..debab5d4a1036e653973add13c9403a5cacbf357
--- /dev/null
+++ b/modelcenter/community/hfl/chinese-bert-wwm-ext/introduction_en.ipynb
@@ -0,0 +1,153 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "id": "faeb5f50",
+ "metadata": {},
+ "source": [
+ "## Chinese BERT with Whole Word Masking\n",
+ "For further accelerating Chinese natural language processing, we provide **Chinese pre-trained BERT with Whole Word Masking**.\n",
+ "\n",
+ "**[Pre-Training with Whole Word Masking for Chinese BERT](https://arxiv.org/abs/1906.08101)**\n",
+ "Yiming Cui, Wanxiang Che, Ting Liu, Bing Qin, Ziqing Yang, Shijin Wang, Guoping Hu\n",
+ "\n",
+ "This repository is developed based on:https://github.com/google-research/bert\n",
+ "\n",
+ "You may also interested in,\n",
+ "- Chinese BERT series: https://github.com/ymcui/Chinese-BERT-wwm\n",
+ "- Chinese MacBERT: https://github.com/ymcui/MacBERT\n",
+ "- Chinese ELECTRA: https://github.com/ymcui/Chinese-ELECTRA\n",
+ "- Chinese XLNet: https://github.com/ymcui/Chinese-XLNet\n",
+ "- Knowledge Distillation Toolkit - TextBrewer: https://github.com/airaria/TextBrewer\n",
+ "\n",
+ "More resources by HFL: https://github.com/ymcui/HFL-Anthology\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "fbf98c0e",
+ "metadata": {},
+ "source": [
+ "## How to Use"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "5f6b3ac7",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "!pip install --upgrade paddlenlp"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "f380cab7",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import paddle\n",
+ "from paddlenlp.transformers import AutoModel\n",
+ "\n",
+ "model = AutoModel.from_pretrained(\"hfl/chinese-bert-wwm-ext\")\n",
+ "input_ids = paddle.randint(100, 200, shape=[1, 20])\n",
+ "print(model(input_ids))"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "a39bca7c",
+ "metadata": {},
+ "source": [
+ "\n",
+ "## Citation\n",
+ "If you find the technical report or resource is useful, please cite the following technical report in your paper.\n",
+ "- Primary: https://arxiv.org/abs/2004.13922"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "5cff4b49",
+ "metadata": {},
+ "source": [
+ "```\n",
+ "@inproceedings{cui-etal-2020-revisiting,\n",
+ "title = \"Revisiting Pre-Trained Models for {C}hinese Natural Language Processing\",\n",
+ "author = \"Cui, Yiming and\n",
+ "Che, Wanxiang and\n",
+ "Liu, Ting and\n",
+ "Qin, Bing and\n",
+ "Wang, Shijin and\n",
+ "Hu, Guoping\",\n",
+ "booktitle = \"Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: Findings\",\n",
+ "month = nov,\n",
+ "year = \"2020\",\n",
+ "address = \"Online\",\n",
+ "publisher = \"Association for Computational Linguistics\",\n",
+ "url = \"https://www.aclweb.org/anthology/2020.findings-emnlp.58\",\n",
+ "pages = \"657--668\",\n",
+ "}\n",
+ "```"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "a8781cbe",
+ "metadata": {},
+ "source": [
+ "- Secondary: https://arxiv.org/abs/1906.08101\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "b7acc10f",
+ "metadata": {},
+ "source": [
+ "```\n",
+ "@article{chinese-bert-wwm,\n",
+ "title={Pre-Training with Whole Word Masking for Chinese BERT},\n",
+ "author={Cui, Yiming and Che, Wanxiang and Liu, Ting and Qin, Bing and Yang, Ziqing and Wang, Shijin and Hu, Guoping},\n",
+ "journal={arXiv preprint arXiv:1906.08101},\n",
+ "year={2019}\n",
+ "}\n",
+ "```"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "86de1995",
+ "metadata": {},
+ "source": [
+ "> The model introduction and model weights originate from [https://huggingface.co/hfl/chinese-bert-wwm-ext](https://huggingface.co/hfl/chinese-bert-wwm-ext) and were converted to PaddlePaddle format for ease of use in PaddleNLP."
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3 (ipykernel)",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.7.13"
+ },
+ "vscode": {
+ "interpreter": {
+ "hash": "606ea184b8fed3419d714b545dc1784fad6c99d0cc940b6b9d787dccf225faa5"
+ }
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 5
+}
diff --git a/modelcenter/community/hfl/chinese-bert-wwm/info.yaml b/modelcenter/community/hfl/chinese-bert-wwm/info.yaml
index 06014fe9d0ccd158deb1f60698717081635d907b..78271b2fe7f3bd4ea353e74942af058d6fd8ed44 100644
--- a/modelcenter/community/hfl/chinese-bert-wwm/info.yaml
+++ b/modelcenter/community/hfl/chinese-bert-wwm/info.yaml
@@ -1,26 +1,23 @@
+Datasets: ''
+Example: null
+IfOnlineDemo: 0
+IfTraining: 0
+Language: Chinese
+License: apache-2.0
Model_Info:
- name: "hfl/chinese-bert-wwm"
- description: "Chinese BERT with Whole Word Masking"
- description_en: "Chinese BERT with Whole Word Masking"
- icon: ""
- from_repo: "https://huggingface.co/hfl/chinese-bert-wwm"
-
-Task:
-- tag_en: "Natural Language Processing"
- tag: "自然语言处理"
- sub_tag_en: "Fill-Mask"
- sub_tag: "槽位填充"
-
-Example:
-
-Datasets: ""
-Publisher: "hfl"
-License: "apache-2.0"
-Language: "Chinese"
+ description: Chinese BERT with Whole Word Masking
+ description_en: Chinese BERT with Whole Word Masking
+ from_repo: https://huggingface.co/hfl/chinese-bert-wwm
+ icon: https://paddlenlp.bj.bcebos.com/models/community/transformer-layer.png
+ name: hfl/chinese-bert-wwm
Paper:
- - title: 'Pre-Training with Whole Word Masking for Chinese BERT'
- url: 'http://arxiv.org/abs/1906.08101v3'
- - title: 'Revisiting Pre-Trained Models for Chinese Natural Language Processing'
- url: 'http://arxiv.org/abs/2004.13922v2'
-IfTraining: 0
-IfOnlineDemo: 0
\ No newline at end of file
+- title: Pre-Training with Whole Word Masking for Chinese BERT
+ url: http://arxiv.org/abs/1906.08101v3
+- title: Revisiting Pre-Trained Models for Chinese Natural Language Processing
+ url: http://arxiv.org/abs/2004.13922v2
+Publisher: hfl
+Task:
+- sub_tag: 槽位填充
+ sub_tag_en: Fill-Mask
+ tag: 自然语言处理
+ tag_en: Natural Language Processing
diff --git a/modelcenter/community/hfl/chinese-bert-wwm/introduction_cn.ipynb b/modelcenter/community/hfl/chinese-bert-wwm/introduction_cn.ipynb
new file mode 100644
index 0000000000000000000000000000000000000000..6de568ac57191597c5d8b38e90e44cecc65058cc
--- /dev/null
+++ b/modelcenter/community/hfl/chinese-bert-wwm/introduction_cn.ipynb
@@ -0,0 +1,153 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "id": "a5e1e8bd",
+ "metadata": {},
+ "source": [
+ "## Chinese BERT with Whole Word Masking\n",
+ "For further accelerating Chinese natural language processing, we provide **Chinese pre-trained BERT with Whole Word Masking**.\n",
+ "\n",
+ "**[Pre-Training with Whole Word Masking for Chinese BERT](https://arxiv.org/abs/1906.08101)**\n",
+ "Yiming Cui, Wanxiang Che, Ting Liu, Bing Qin, Ziqing Yang, Shijin Wang, Guoping Hu\n",
+ "\n",
+ "This repository is developed based on:https://github.com/google-research/bert\n",
+ "\n",
+ "You may also interested in,\n",
+ "- Chinese BERT series: https://github.com/ymcui/Chinese-BERT-wwm\n",
+ "- Chinese MacBERT: https://github.com/ymcui/MacBERT\n",
+ "- Chinese ELECTRA: https://github.com/ymcui/Chinese-ELECTRA\n",
+ "- Chinese XLNet: https://github.com/ymcui/Chinese-XLNet\n",
+ "- Knowledge Distillation Toolkit - TextBrewer: https://github.com/airaria/TextBrewer\n",
+ "\n",
+ "More resources by HFL: https://github.com/ymcui/HFL-Anthology\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "be498a8f",
+ "metadata": {},
+ "source": [
+ "## How to Use"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "0199d11d",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "!pip install --upgrade paddlenlp"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "b71b0698",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import paddle\n",
+ "from paddlenlp.transformers import AutoModel\n",
+ "\n",
+ "model = AutoModel.from_pretrained(\"hfl/chinese-bert-wwm\")\n",
+ "input_ids = paddle.randint(100, 200, shape=[1, 20])\n",
+ "print(model(input_ids))"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "5d6bd99f",
+ "metadata": {},
+ "source": [
+ "\n",
+ "## Citation\n",
+ "If you find the technical report or resource is useful, please cite the following technical report in your paper.\n",
+ "- Primary: https://arxiv.org/abs/2004.13922"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "376186df",
+ "metadata": {},
+ "source": [
+ "```\n",
+ "@inproceedings{cui-etal-2020-revisiting,\n",
+ "title = \"Revisiting Pre-Trained Models for {C}hinese Natural Language Processing\",\n",
+ "author = \"Cui, Yiming and\n",
+ "Che, Wanxiang and\n",
+ "Liu, Ting and\n",
+ "Qin, Bing and\n",
+ "Wang, Shijin and\n",
+ "Hu, Guoping\",\n",
+ "booktitle = \"Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: Findings\",\n",
+ "month = nov,\n",
+ "year = \"2020\",\n",
+ "address = \"Online\",\n",
+ "publisher = \"Association for Computational Linguistics\",\n",
+ "url = \"https://www.aclweb.org/anthology/2020.findings-emnlp.58\",\n",
+ "pages = \"657--668\",\n",
+ "}\n",
+ "```"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "9784d9b7",
+ "metadata": {},
+ "source": [
+ "- Secondary: https://arxiv.org/abs/1906.08101\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "478fe6be",
+ "metadata": {},
+ "source": [
+ "```\n",
+ "@article{chinese-bert-wwm,\n",
+ "title={Pre-Training with Whole Word Masking for Chinese BERT},\n",
+ "author={Cui, Yiming and Che, Wanxiang and Liu, Ting and Qin, Bing and Yang, Ziqing and Wang, Shijin and Hu, Guoping},\n",
+ "journal={arXiv preprint arXiv:1906.08101},\n",
+ "year={2019}\n",
+ "}\n",
+ "```"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "3593ecc9",
+ "metadata": {},
+ "source": [
+ "> 此模型介绍及权重来源于[https://huggingface.co/hfl/chinese-bert-wwm](https://huggingface.co/hfl/chinese-bert-wwm),并转换为飞桨模型格式。"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3 (ipykernel)",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.7.13"
+ },
+ "vscode": {
+ "interpreter": {
+ "hash": "606ea184b8fed3419d714b545dc1784fad6c99d0cc940b6b9d787dccf225faa5"
+ }
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 5
+}
diff --git a/modelcenter/community/hfl/chinese-bert-wwm/introduction_en.ipynb b/modelcenter/community/hfl/chinese-bert-wwm/introduction_en.ipynb
new file mode 100644
index 0000000000000000000000000000000000000000..bba2578ced4304fc59a7ede137feed585d7d9ebe
--- /dev/null
+++ b/modelcenter/community/hfl/chinese-bert-wwm/introduction_en.ipynb
@@ -0,0 +1,153 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "id": "faeb5f50",
+ "metadata": {},
+ "source": [
+ "## Chinese BERT with Whole Word Masking\n",
+ "For further accelerating Chinese natural language processing, we provide **Chinese pre-trained BERT with Whole Word Masking**.\n",
+ "\n",
+ "**[Pre-Training with Whole Word Masking for Chinese BERT](https://arxiv.org/abs/1906.08101)**\n",
+ "Yiming Cui, Wanxiang Che, Ting Liu, Bing Qin, Ziqing Yang, Shijin Wang, Guoping Hu\n",
+ "\n",
+ "This repository is developed based on:https://github.com/google-research/bert\n",
+ "\n",
+ "You may also interested in,\n",
+ "- Chinese BERT series: https://github.com/ymcui/Chinese-BERT-wwm\n",
+ "- Chinese MacBERT: https://github.com/ymcui/MacBERT\n",
+ "- Chinese ELECTRA: https://github.com/ymcui/Chinese-ELECTRA\n",
+ "- Chinese XLNet: https://github.com/ymcui/Chinese-XLNet\n",
+ "- Knowledge Distillation Toolkit - TextBrewer: https://github.com/airaria/TextBrewer\n",
+ "\n",
+ "More resources by HFL: https://github.com/ymcui/HFL-Anthology\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "fbf98c0e",
+ "metadata": {},
+ "source": [
+ "## How to Use"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "5f6b3ac7",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "!pip install --upgrade paddlenlp"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "f380cab7",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import paddle\n",
+ "from paddlenlp.transformers import AutoModel\n",
+ "\n",
+ "model = AutoModel.from_pretrained(\"hfl/chinese-bert-wwm\")\n",
+ "input_ids = paddle.randint(100, 200, shape=[1, 20])\n",
+ "print(model(input_ids))"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "a39bca7c",
+ "metadata": {},
+ "source": [
+ "\n",
+ "## Citation\n",
+ "If you find the technical report or resource is useful, please cite the following technical report in your paper.\n",
+ "- Primary: https://arxiv.org/abs/2004.13922"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "0ebe185e",
+ "metadata": {},
+ "source": [
+ "```\n",
+ "@inproceedings{cui-etal-2020-revisiting,\n",
+ "title = \"Revisiting Pre-Trained Models for {C}hinese Natural Language Processing\",\n",
+ "author = \"Cui, Yiming and\n",
+ "Che, Wanxiang and\n",
+ "Liu, Ting and\n",
+ "Qin, Bing and\n",
+ "Wang, Shijin and\n",
+ "Hu, Guoping\",\n",
+ "booktitle = \"Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: Findings\",\n",
+ "month = nov,\n",
+ "year = \"2020\",\n",
+ "address = \"Online\",\n",
+ "publisher = \"Association for Computational Linguistics\",\n",
+ "url = \"https://www.aclweb.org/anthology/2020.findings-emnlp.58\",\n",
+ "pages = \"657--668\",\n",
+ "}\n",
+ "```"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "a8781cbe",
+ "metadata": {},
+ "source": [
+ "- Secondary: https://arxiv.org/abs/1906.08101\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "85d2437a",
+ "metadata": {},
+ "source": [
+ "```\n",
+ "@article{chinese-bert-wwm,\n",
+ "title={Pre-Training with Whole Word Masking for Chinese BERT},\n",
+ "author={Cui, Yiming and Che, Wanxiang and Liu, Ting and Qin, Bing and Yang, Ziqing and Wang, Shijin and Hu, Guoping},\n",
+ "journal={arXiv preprint arXiv:1906.08101},\n",
+ "year={2019}\n",
+ "}\n",
+ "```"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "86de1995",
+ "metadata": {},
+ "source": [
+ "> The model introduction and model weights originate from [https://huggingface.co/hfl/chinese-bert-wwm-ext](https://huggingface.co/hfl/chinese-bert-wwm-ext) and were converted to PaddlePaddle format for ease of use in PaddleNLP."
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3 (ipykernel)",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.7.13"
+ },
+ "vscode": {
+ "interpreter": {
+ "hash": "606ea184b8fed3419d714b545dc1784fad6c99d0cc940b6b9d787dccf225faa5"
+ }
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 5
+}
diff --git a/modelcenter/community/hfl/chinese-roberta-wwm-ext-large/info.yaml b/modelcenter/community/hfl/chinese-roberta-wwm-ext-large/info.yaml
index 537a41236be847164e4b1c83ff6e0e6e1892418f..fc792db218ffd773a5a8919adf8a3ebaf8fb8c3c 100644
--- a/modelcenter/community/hfl/chinese-roberta-wwm-ext-large/info.yaml
+++ b/modelcenter/community/hfl/chinese-roberta-wwm-ext-large/info.yaml
@@ -1,26 +1,23 @@
+Datasets: ''
+Example: null
+IfOnlineDemo: 0
+IfTraining: 0
+Language: Chinese
+License: apache-2.0
Model_Info:
- name: "hfl/chinese-roberta-wwm-ext-large"
- description: "Please use 'Bert' related functions to load this model!"
- description_en: "Please use 'Bert' related functions to load this model!"
- icon: ""
- from_repo: "https://huggingface.co/hfl/chinese-roberta-wwm-ext-large"
-
-Task:
-- tag_en: "Natural Language Processing"
- tag: "自然语言处理"
- sub_tag_en: "Fill-Mask"
- sub_tag: "槽位填充"
-
-Example:
-
-Datasets: ""
-Publisher: "hfl"
-License: "apache-2.0"
-Language: "Chinese"
+ description: Please use 'Bert' related functions to load this model!
+ description_en: Please use 'Bert' related functions to load this model!
+ from_repo: https://huggingface.co/hfl/chinese-roberta-wwm-ext-large
+ icon: https://paddlenlp.bj.bcebos.com/models/community/transformer-layer.png
+ name: hfl/chinese-roberta-wwm-ext-large
Paper:
- - title: 'Pre-Training with Whole Word Masking for Chinese BERT'
- url: 'http://arxiv.org/abs/1906.08101v3'
- - title: 'Revisiting Pre-Trained Models for Chinese Natural Language Processing'
- url: 'http://arxiv.org/abs/2004.13922v2'
-IfTraining: 0
-IfOnlineDemo: 0
\ No newline at end of file
+- title: Pre-Training with Whole Word Masking for Chinese BERT
+ url: http://arxiv.org/abs/1906.08101v3
+- title: Revisiting Pre-Trained Models for Chinese Natural Language Processing
+ url: http://arxiv.org/abs/2004.13922v2
+Publisher: hfl
+Task:
+- sub_tag: 槽位填充
+ sub_tag_en: Fill-Mask
+ tag: 自然语言处理
+ tag_en: Natural Language Processing
diff --git a/modelcenter/community/hfl/chinese-roberta-wwm-ext-large/introduction_cn.ipynb b/modelcenter/community/hfl/chinese-roberta-wwm-ext-large/introduction_cn.ipynb
new file mode 100644
index 0000000000000000000000000000000000000000..d0394493195d80b2ce8becbf1b2594564528ec03
--- /dev/null
+++ b/modelcenter/community/hfl/chinese-roberta-wwm-ext-large/introduction_cn.ipynb
@@ -0,0 +1,156 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "id": "a5e1e8bd",
+ "metadata": {},
+ "source": [
+ "## Chinese BERT with Whole Word Masking\n",
+ "\n",
+ "### Please use 'Bert' related functions to load this model!\n",
+ "\n",
+ "For further accelerating Chinese natural language processing, we provide **Chinese pre-trained BERT with Whole Word Masking**.\n",
+ "\n",
+ "**[Pre-Training with Whole Word Masking for Chinese BERT](https://arxiv.org/abs/1906.08101)**\n",
+ "Yiming Cui, Wanxiang Che, Ting Liu, Bing Qin, Ziqing Yang, Shijin Wang, Guoping Hu\n",
+ "\n",
+ "This repository is developed based on:https://github.com/google-research/bert\n",
+ "\n",
+ "You may also interested in,\n",
+ "- Chinese BERT series: https://github.com/ymcui/Chinese-BERT-wwm\n",
+ "- Chinese MacBERT: https://github.com/ymcui/MacBERT\n",
+ "- Chinese ELECTRA: https://github.com/ymcui/Chinese-ELECTRA\n",
+ "- Chinese XLNet: https://github.com/ymcui/Chinese-XLNet\n",
+ "- Knowledge Distillation Toolkit - TextBrewer: https://github.com/airaria/TextBrewer\n",
+ "\n",
+ "More resources by HFL: https://github.com/ymcui/HFL-Anthology\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "be498a8f",
+ "metadata": {},
+ "source": [
+ "## How to Use"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "0199d11d",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "!pip install --upgrade paddlenlp"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "b71b0698",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import paddle\n",
+ "from paddlenlp.transformers import AutoModel\n",
+ "\n",
+ "model = AutoModel.from_pretrained(\"hfl/chinese-roberta-wwm-ext-large\")\n",
+ "input_ids = paddle.randint(100, 200, shape=[1, 20])\n",
+ "print(model(input_ids))"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "5d6bd99f",
+ "metadata": {},
+ "source": [
+ "\n",
+ "## Citation\n",
+ "If you find the technical report or resource is useful, please cite the following technical report in your paper.\n",
+ "- Primary: https://arxiv.org/abs/2004.13922"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "9429c396",
+ "metadata": {},
+ "source": [
+ "```\n",
+ "@inproceedings{cui-etal-2020-revisiting,\n",
+ "title = \"Revisiting Pre-Trained Models for {C}hinese Natural Language Processing\",\n",
+ "author = \"Cui, Yiming and\n",
+ "Che, Wanxiang and\n",
+ "Liu, Ting and\n",
+ "Qin, Bing and\n",
+ "Wang, Shijin and\n",
+ "Hu, Guoping\",\n",
+ "booktitle = \"Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: Findings\",\n",
+ "month = nov,\n",
+ "year = \"2020\",\n",
+ "address = \"Online\",\n",
+ "publisher = \"Association for Computational Linguistics\",\n",
+ "url = \"https://www.aclweb.org/anthology/2020.findings-emnlp.58\",\n",
+ "pages = \"657--668\",\n",
+ "}\n",
+ "```"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "9784d9b7",
+ "metadata": {},
+ "source": [
+ "- Secondary: https://arxiv.org/abs/1906.08101\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "eb3e56a1",
+ "metadata": {},
+ "source": [
+ "```\n",
+ "@article{chinese-bert-wwm,\n",
+ "title={Pre-Training with Whole Word Masking for Chinese BERT},\n",
+ "author={Cui, Yiming and Che, Wanxiang and Liu, Ting and Qin, Bing and Yang, Ziqing and Wang, Shijin and Hu, Guoping},\n",
+ "journal={arXiv preprint arXiv:1906.08101},\n",
+ "year={2019}\n",
+ "}\n",
+ "```"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "3593ecc9",
+ "metadata": {},
+ "source": [
+ "> 此模型介绍及权重来源于[https://huggingface.co/hfl/chinese-roberta-wwm-ext-large](https://huggingface.co/hfl/chinese-roberta-wwm-ext-large),并转换为飞桨模型格式。"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3 (ipykernel)",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.7.13"
+ },
+ "vscode": {
+ "interpreter": {
+ "hash": "606ea184b8fed3419d714b545dc1784fad6c99d0cc940b6b9d787dccf225faa5"
+ }
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 5
+}
diff --git a/modelcenter/community/hfl/chinese-roberta-wwm-ext-large/introduction_en.ipynb b/modelcenter/community/hfl/chinese-roberta-wwm-ext-large/introduction_en.ipynb
new file mode 100644
index 0000000000000000000000000000000000000000..43826e439f5707f46f53a4636d1cccc847c6980b
--- /dev/null
+++ b/modelcenter/community/hfl/chinese-roberta-wwm-ext-large/introduction_en.ipynb
@@ -0,0 +1,156 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "id": "faeb5f50",
+ "metadata": {},
+ "source": [
+ "## Chinese BERT with Whole Word Masking\n",
+ "\n",
+ "### Please use 'Bert' related functions to load this model!\n",
+ "\n",
+ "For further accelerating Chinese natural language processing, we provide **Chinese pre-trained BERT with Whole Word Masking**.\n",
+ "\n",
+ "**[Pre-Training with Whole Word Masking for Chinese BERT](https://arxiv.org/abs/1906.08101)**\n",
+ "Yiming Cui, Wanxiang Che, Ting Liu, Bing Qin, Ziqing Yang, Shijin Wang, Guoping Hu\n",
+ "\n",
+ "This repository is developed based on:https://github.com/google-research/bert\n",
+ "\n",
+ "You may also interested in,\n",
+ "- Chinese BERT series: https://github.com/ymcui/Chinese-BERT-wwm\n",
+ "- Chinese MacBERT: https://github.com/ymcui/MacBERT\n",
+ "- Chinese ELECTRA: https://github.com/ymcui/Chinese-ELECTRA\n",
+ "- Chinese XLNet: https://github.com/ymcui/Chinese-XLNet\n",
+ "- Knowledge Distillation Toolkit - TextBrewer: https://github.com/airaria/TextBrewer\n",
+ "\n",
+ "More resources by HFL: https://github.com/ymcui/HFL-Anthology\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "fbf98c0e",
+ "metadata": {},
+ "source": [
+ "## How to Use"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "5f6b3ac7",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "!pip install --upgrade paddlenlp"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "f380cab7",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import paddle\n",
+ "from paddlenlp.transformers import AutoModel\n",
+ "\n",
+ "model = AutoModel.from_pretrained(\"hfl/chinese-roberta-wwm-ext-large\")\n",
+ "input_ids = paddle.randint(100, 200, shape=[1, 20])\n",
+ "print(model(input_ids))"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "a39bca7c",
+ "metadata": {},
+ "source": [
+ "\n",
+ "## Citation\n",
+ "If you find the technical report or resource is useful, please cite the following technical report in your paper.\n",
+ "- Primary: https://arxiv.org/abs/2004.13922"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "b01c1973",
+ "metadata": {},
+ "source": [
+ "```\n",
+ "@inproceedings{cui-etal-2020-revisiting,\n",
+ "title = \"Revisiting Pre-Trained Models for {C}hinese Natural Language Processing\",\n",
+ "author = \"Cui, Yiming and\n",
+ "Che, Wanxiang and\n",
+ "Liu, Ting and\n",
+ "Qin, Bing and\n",
+ "Wang, Shijin and\n",
+ "Hu, Guoping\",\n",
+ "booktitle = \"Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: Findings\",\n",
+ "month = nov,\n",
+ "year = \"2020\",\n",
+ "address = \"Online\",\n",
+ "publisher = \"Association for Computational Linguistics\",\n",
+ "url = \"https://www.aclweb.org/anthology/2020.findings-emnlp.58\",\n",
+ "pages = \"657--668\",\n",
+ "}\n",
+ "```"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "a8781cbe",
+ "metadata": {},
+ "source": [
+ "- Secondary: https://arxiv.org/abs/1906.08101\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "7ad8a810",
+ "metadata": {},
+ "source": [
+ "```\n",
+ "@article{chinese-bert-wwm,\n",
+ "title={Pre-Training with Whole Word Masking for Chinese BERT},\n",
+ "author={Cui, Yiming and Che, Wanxiang and Liu, Ting and Qin, Bing and Yang, Ziqing and Wang, Shijin and Hu, Guoping},\n",
+ "journal={arXiv preprint arXiv:1906.08101},\n",
+ "year={2019}\n",
+ "}\n",
+ "```"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "86de1995",
+ "metadata": {},
+ "source": [
+ "> The model introduction and model weights originate from [https://huggingface.co/hfl/chinese-roberta-wwm-ext-large](https://huggingface.co/hfl/chinese-roberta-wwm-ext-large) and were converted to PaddlePaddle format for ease of use in PaddleNLP."
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3 (ipykernel)",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.7.13"
+ },
+ "vscode": {
+ "interpreter": {
+ "hash": "606ea184b8fed3419d714b545dc1784fad6c99d0cc940b6b9d787dccf225faa5"
+ }
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 5
+}
diff --git a/modelcenter/community/hfl/chinese-roberta-wwm-ext/info.yaml b/modelcenter/community/hfl/chinese-roberta-wwm-ext/info.yaml
index c0e9a0a44492cea0a6770fd5fcdb5fac450f338e..79b37c73f25217f81d3e55136c84c05f2557af19 100644
--- a/modelcenter/community/hfl/chinese-roberta-wwm-ext/info.yaml
+++ b/modelcenter/community/hfl/chinese-roberta-wwm-ext/info.yaml
@@ -1,26 +1,23 @@
+Datasets: ''
+Example: null
+IfOnlineDemo: 0
+IfTraining: 0
+Language: Chinese
+License: apache-2.0
Model_Info:
- name: "hfl/chinese-roberta-wwm-ext"
- description: "Please use 'Bert' related functions to load this model!"
- description_en: "Please use 'Bert' related functions to load this model!"
- icon: ""
- from_repo: "https://huggingface.co/hfl/chinese-roberta-wwm-ext"
-
-Task:
-- tag_en: "Natural Language Processing"
- tag: "自然语言处理"
- sub_tag_en: "Fill-Mask"
- sub_tag: "槽位填充"
-
-Example:
-
-Datasets: ""
-Publisher: "hfl"
-License: "apache-2.0"
-Language: "Chinese"
+ description: Please use 'Bert' related functions to load this model!
+ description_en: Please use 'Bert' related functions to load this model!
+ from_repo: https://huggingface.co/hfl/chinese-roberta-wwm-ext
+ icon: https://paddlenlp.bj.bcebos.com/models/community/transformer-layer.png
+ name: hfl/chinese-roberta-wwm-ext
Paper:
- - title: 'Pre-Training with Whole Word Masking for Chinese BERT'
- url: 'http://arxiv.org/abs/1906.08101v3'
- - title: 'Revisiting Pre-Trained Models for Chinese Natural Language Processing'
- url: 'http://arxiv.org/abs/2004.13922v2'
-IfTraining: 0
-IfOnlineDemo: 0
\ No newline at end of file
+- title: Pre-Training with Whole Word Masking for Chinese BERT
+ url: http://arxiv.org/abs/1906.08101v3
+- title: Revisiting Pre-Trained Models for Chinese Natural Language Processing
+ url: http://arxiv.org/abs/2004.13922v2
+Publisher: hfl
+Task:
+- sub_tag: 槽位填充
+ sub_tag_en: Fill-Mask
+ tag: 自然语言处理
+ tag_en: Natural Language Processing
diff --git a/modelcenter/community/hfl/chinese-roberta-wwm-ext/introduction_cn.ipynb b/modelcenter/community/hfl/chinese-roberta-wwm-ext/introduction_cn.ipynb
new file mode 100644
index 0000000000000000000000000000000000000000..f55e7b223b031b3fc7d81793be7b854fe771378c
--- /dev/null
+++ b/modelcenter/community/hfl/chinese-roberta-wwm-ext/introduction_cn.ipynb
@@ -0,0 +1,153 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "id": "a5e1e8bd",
+ "metadata": {},
+ "source": [
+ "## Chinese BERT with Whole Word Masking\n",
+ "For further accelerating Chinese natural language processing, we provide **Chinese pre-trained BERT with Whole Word Masking**.\n",
+ "\n",
+ "**[Pre-Training with Whole Word Masking for Chinese BERT](https://arxiv.org/abs/1906.08101)**\n",
+ "Yiming Cui, Wanxiang Che, Ting Liu, Bing Qin, Ziqing Yang, Shijin Wang, Guoping Hu\n",
+ "\n",
+ "This repository is developed based on:https://github.com/google-research/bert\n",
+ "\n",
+ "You may also interested in,\n",
+ "- Chinese BERT series: https://github.com/ymcui/Chinese-BERT-wwm\n",
+ "- Chinese MacBERT: https://github.com/ymcui/MacBERT\n",
+ "- Chinese ELECTRA: https://github.com/ymcui/Chinese-ELECTRA\n",
+ "- Chinese XLNet: https://github.com/ymcui/Chinese-XLNet\n",
+ "- Knowledge Distillation Toolkit - TextBrewer: https://github.com/airaria/TextBrewer\n",
+ "\n",
+ "More resources by HFL: https://github.com/ymcui/HFL-Anthology\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "be498a8f",
+ "metadata": {},
+ "source": [
+ "## How to Use"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "0199d11d",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "!pip install --upgrade paddlenlp"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "b71b0698",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import paddle\n",
+ "from paddlenlp.transformers import AutoModel\n",
+ "\n",
+ "model = AutoModel.from_pretrained(\"hfl/chinese-roberta-wwm-ext\")\n",
+ "input_ids = paddle.randint(100, 200, shape=[1, 20])\n",
+ "print(model(input_ids))"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "5d6bd99f",
+ "metadata": {},
+ "source": [
+ "\n",
+ "## Citation\n",
+ "If you find the technical report or resource is useful, please cite the following technical report in your paper.\n",
+ "- Primary: https://arxiv.org/abs/2004.13922"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "737822b2",
+ "metadata": {},
+ "source": [
+ "```\n",
+ "@inproceedings{cui-etal-2020-revisiting,\n",
+ "title = \"Revisiting Pre-Trained Models for {C}hinese Natural Language Processing\",\n",
+ "author = \"Cui, Yiming and\n",
+ "Che, Wanxiang and\n",
+ "Liu, Ting and\n",
+ "Qin, Bing and\n",
+ "Wang, Shijin and\n",
+ "Hu, Guoping\",\n",
+ "booktitle = \"Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: Findings\",\n",
+ "month = nov,\n",
+ "year = \"2020\",\n",
+ "address = \"Online\",\n",
+ "publisher = \"Association for Computational Linguistics\",\n",
+ "url = \"https://www.aclweb.org/anthology/2020.findings-emnlp.58\",\n",
+ "pages = \"657--668\",\n",
+ "}\n",
+ "```"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "9784d9b7",
+ "metadata": {},
+ "source": [
+ "- Secondary: https://arxiv.org/abs/1906.08101\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "22d0c28d",
+ "metadata": {},
+ "source": [
+ "```\n",
+ "@article{chinese-bert-wwm,\n",
+ "title={Pre-Training with Whole Word Masking for Chinese BERT},\n",
+ "author={Cui, Yiming and Che, Wanxiang and Liu, Ting and Qin, Bing and Yang, Ziqing and Wang, Shijin and Hu, Guoping},\n",
+ "journal={arXiv preprint arXiv:1906.08101},\n",
+ "year={2019}\n",
+ "}\n",
+ "```"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "3593ecc9",
+ "metadata": {},
+ "source": [
+ "> 此模型介绍及权重来源于[https://huggingface.co/hfl/chinese-roberta-wwm-ext](https://huggingface.co/hfl/chinese-roberta-wwm-ext),并转换为飞桨模型格式。"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3 (ipykernel)",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.7.13"
+ },
+ "vscode": {
+ "interpreter": {
+ "hash": "606ea184b8fed3419d714b545dc1784fad6c99d0cc940b6b9d787dccf225faa5"
+ }
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 5
+}
diff --git a/modelcenter/community/hfl/chinese-roberta-wwm-ext/introduction_en.ipynb b/modelcenter/community/hfl/chinese-roberta-wwm-ext/introduction_en.ipynb
new file mode 100644
index 0000000000000000000000000000000000000000..506685005df3e9cf1ff577d0af9da1302bd32dad
--- /dev/null
+++ b/modelcenter/community/hfl/chinese-roberta-wwm-ext/introduction_en.ipynb
@@ -0,0 +1,153 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "id": "faeb5f50",
+ "metadata": {},
+ "source": [
+ "## Chinese BERT with Whole Word Masking\n",
+ "For further accelerating Chinese natural language processing, we provide **Chinese pre-trained BERT with Whole Word Masking**.\n",
+ "\n",
+ "**[Pre-Training with Whole Word Masking for Chinese BERT](https://arxiv.org/abs/1906.08101)**\n",
+ "Yiming Cui, Wanxiang Che, Ting Liu, Bing Qin, Ziqing Yang, Shijin Wang, Guoping Hu\n",
+ "\n",
+ "This repository is developed based on:https://github.com/google-research/bert\n",
+ "\n",
+ "You may also interested in,\n",
+ "- Chinese BERT series: https://github.com/ymcui/Chinese-BERT-wwm\n",
+ "- Chinese MacBERT: https://github.com/ymcui/MacBERT\n",
+ "- Chinese ELECTRA: https://github.com/ymcui/Chinese-ELECTRA\n",
+ "- Chinese XLNet: https://github.com/ymcui/Chinese-XLNet\n",
+ "- Knowledge Distillation Toolkit - TextBrewer: https://github.com/airaria/TextBrewer\n",
+ "\n",
+ "More resources by HFL: https://github.com/ymcui/HFL-Anthology\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "fbf98c0e",
+ "metadata": {},
+ "source": [
+ "## How to Use"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "5f6b3ac7",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "!pip install --upgrade paddlenlp"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "f380cab7",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import paddle\n",
+ "from paddlenlp.transformers import AutoModel\n",
+ "\n",
+ "model = AutoModel.from_pretrained(\"hfl/chinese-roberta-wwm-ext\")\n",
+ "input_ids = paddle.randint(100, 200, shape=[1, 20])\n",
+ "print(model(input_ids))"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "a39bca7c",
+ "metadata": {},
+ "source": [
+ "\n",
+ "## Citation\n",
+ "If you find the technical report or resource is useful, please cite the following technical report in your paper.\n",
+ "- Primary: https://arxiv.org/abs/2004.13922"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "f495aec9",
+ "metadata": {},
+ "source": [
+ "```\n",
+ "@inproceedings{cui-etal-2020-revisiting,\n",
+ "title = \"Revisiting Pre-Trained Models for {C}hinese Natural Language Processing\",\n",
+ "author = \"Cui, Yiming and\n",
+ "Che, Wanxiang and\n",
+ "Liu, Ting and\n",
+ "Qin, Bing and\n",
+ "Wang, Shijin and\n",
+ "Hu, Guoping\",\n",
+ "booktitle = \"Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: Findings\",\n",
+ "month = nov,\n",
+ "year = \"2020\",\n",
+ "address = \"Online\",\n",
+ "publisher = \"Association for Computational Linguistics\",\n",
+ "url = \"https://www.aclweb.org/anthology/2020.findings-emnlp.58\",\n",
+ "pages = \"657--668\",\n",
+ "}\n",
+ "```"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "a8781cbe",
+ "metadata": {},
+ "source": [
+ "- Secondary: https://arxiv.org/abs/1906.08101\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "8eebfbf4",
+ "metadata": {},
+ "source": [
+ "```\n",
+ "@article{chinese-bert-wwm,\n",
+ "title={Pre-Training with Whole Word Masking for Chinese BERT},\n",
+ "author={Cui, Yiming and Che, Wanxiang and Liu, Ting and Qin, Bing and Yang, Ziqing and Wang, Shijin and Hu, Guoping},\n",
+ "journal={arXiv preprint arXiv:1906.08101},\n",
+ "year={2019}\n",
+ "}\n",
+ "```"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "86de1995",
+ "metadata": {},
+ "source": [
+ "> The model introduction and model weights originate from [https://huggingface.co/hfl/chinese-roberta-wwm-ext](https://huggingface.co/hfl/chinese-roberta-wwm-ext) and were converted to PaddlePaddle format for ease of use in PaddleNLP."
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3 (ipykernel)",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.7.13"
+ },
+ "vscode": {
+ "interpreter": {
+ "hash": "606ea184b8fed3419d714b545dc1784fad6c99d0cc940b6b9d787dccf225faa5"
+ }
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 5
+}
diff --git a/modelcenter/community/hfl/rbt3/info.yaml b/modelcenter/community/hfl/rbt3/info.yaml
index 36c3c8d5736825c576de4b88b6bfb41c976127f8..b03acf557b36ae55cb48079e0f3a51fb57db0743 100644
--- a/modelcenter/community/hfl/rbt3/info.yaml
+++ b/modelcenter/community/hfl/rbt3/info.yaml
@@ -1,26 +1,23 @@
+Datasets: ''
+Example: null
+IfOnlineDemo: 0
+IfTraining: 0
+Language: Chinese
+License: apache-2.0
Model_Info:
- name: "hfl/rbt3"
- description: "This is a re-trained 3-layer RoBERTa-wwm-ext model."
- description_en: "This is a re-trained 3-layer RoBERTa-wwm-ext model."
- icon: ""
- from_repo: "https://huggingface.co/hfl/rbt3"
-
-Task:
-- tag_en: "Natural Language Processing"
- tag: "自然语言处理"
- sub_tag_en: "Fill-Mask"
- sub_tag: "槽位填充"
-
-Example:
-
-Datasets: ""
-Publisher: "hfl"
-License: "apache-2.0"
-Language: "Chinese"
+ description: This is a re-trained 3-layer RoBERTa-wwm-ext model.
+ description_en: This is a re-trained 3-layer RoBERTa-wwm-ext model.
+ from_repo: https://huggingface.co/hfl/rbt3
+ icon: https://paddlenlp.bj.bcebos.com/models/community/transformer-layer.png
+ name: hfl/rbt3
Paper:
- - title: 'Pre-Training with Whole Word Masking for Chinese BERT'
- url: 'http://arxiv.org/abs/1906.08101v3'
- - title: 'Revisiting Pre-Trained Models for Chinese Natural Language Processing'
- url: 'http://arxiv.org/abs/2004.13922v2'
-IfTraining: 0
-IfOnlineDemo: 0
\ No newline at end of file
+- title: Pre-Training with Whole Word Masking for Chinese BERT
+ url: http://arxiv.org/abs/1906.08101v3
+- title: Revisiting Pre-Trained Models for Chinese Natural Language Processing
+ url: http://arxiv.org/abs/2004.13922v2
+Publisher: hfl
+Task:
+- sub_tag: 槽位填充
+ sub_tag_en: Fill-Mask
+ tag: 自然语言处理
+ tag_en: Natural Language Processing
diff --git a/modelcenter/community/hfl/rbt3/introduction_cn.ipynb b/modelcenter/community/hfl/rbt3/introduction_cn.ipynb
new file mode 100644
index 0000000000000000000000000000000000000000..eb219922d9678184b5c0f39395d906ffbb138934
--- /dev/null
+++ b/modelcenter/community/hfl/rbt3/introduction_cn.ipynb
@@ -0,0 +1,156 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "id": "a5e1e8bd",
+ "metadata": {},
+ "source": [
+ "## Chinese BERT with Whole Word Masking\n",
+ "\n",
+ "### Please use 'Bert' related functions to load this model!\n",
+ "\n",
+ "For further accelerating Chinese natural language processing, we provide **Chinese pre-trained BERT with Whole Word Masking**.\n",
+ "\n",
+ "**[Pre-Training with Whole Word Masking for Chinese BERT](https://arxiv.org/abs/1906.08101)**\n",
+ "Yiming Cui, Wanxiang Che, Ting Liu, Bing Qin, Ziqing Yang, Shijin Wang, Guoping Hu\n",
+ "\n",
+ "This repository is developed based on:https://github.com/google-research/bert\n",
+ "\n",
+ "You may also interested in,\n",
+ "- Chinese BERT series: https://github.com/ymcui/Chinese-BERT-wwm\n",
+ "- Chinese MacBERT: https://github.com/ymcui/MacBERT\n",
+ "- Chinese ELECTRA: https://github.com/ymcui/Chinese-ELECTRA\n",
+ "- Chinese XLNet: https://github.com/ymcui/Chinese-XLNet\n",
+ "- Knowledge Distillation Toolkit - TextBrewer: https://github.com/airaria/TextBrewer\n",
+ "\n",
+ "More resources by HFL: https://github.com/ymcui/HFL-Anthology\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "be498a8f",
+ "metadata": {},
+ "source": [
+ "## How to Use"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "0199d11d",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "!pip install --upgrade paddlenlp"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "b71b0698",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import paddle\n",
+ "from paddlenlp.transformers import AutoModel\n",
+ "\n",
+ "model = AutoModel.from_pretrained(\"hfl/rbt3\")\n",
+ "input_ids = paddle.randint(100, 200, shape=[1, 20])\n",
+ "print(model(input_ids))"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "5d6bd99f",
+ "metadata": {},
+ "source": [
+ "\n",
+ "## Citation\n",
+ "If you find the technical report or resource is useful, please cite the following technical report in your paper.\n",
+ "- Primary: https://arxiv.org/abs/2004.13922"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "73e04675",
+ "metadata": {},
+ "source": [
+ "```\n",
+ "@inproceedings{cui-etal-2020-revisiting,\n",
+ "title = \"Revisiting Pre-Trained Models for {C}hinese Natural Language Processing\",\n",
+ "author = \"Cui, Yiming and\n",
+ "Che, Wanxiang and\n",
+ "Liu, Ting and\n",
+ "Qin, Bing and\n",
+ "Wang, Shijin and\n",
+ "Hu, Guoping\",\n",
+ "booktitle = \"Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: Findings\",\n",
+ "month = nov,\n",
+ "year = \"2020\",\n",
+ "address = \"Online\",\n",
+ "publisher = \"Association for Computational Linguistics\",\n",
+ "url = \"https://www.aclweb.org/anthology/2020.findings-emnlp.58\",\n",
+ "pages = \"657--668\",\n",
+ "}\n",
+ "```"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "9784d9b7",
+ "metadata": {},
+ "source": [
+ "- Secondary: https://arxiv.org/abs/1906.08101\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "068895c6",
+ "metadata": {},
+ "source": [
+ "```\n",
+ "@article{chinese-bert-wwm,\n",
+ "title={Pre-Training with Whole Word Masking for Chinese BERT},\n",
+ "author={Cui, Yiming and Che, Wanxiang and Liu, Ting and Qin, Bing and Yang, Ziqing and Wang, Shijin and Hu, Guoping},\n",
+ "journal={arXiv preprint arXiv:1906.08101},\n",
+ "year={2019}\n",
+ "}\n",
+ "```"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "3593ecc9",
+ "metadata": {},
+ "source": [
+ "> 此模型介绍及权重来源于[https://huggingface.co/hfl/rbt3](https://huggingface.co/hfl/rbt3),并转换为飞桨模型格式。"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3 (ipykernel)",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.7.13"
+ },
+ "vscode": {
+ "interpreter": {
+ "hash": "606ea184b8fed3419d714b545dc1784fad6c99d0cc940b6b9d787dccf225faa5"
+ }
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 5
+}
diff --git a/modelcenter/community/hfl/rbt3/introduction_en.ipynb b/modelcenter/community/hfl/rbt3/introduction_en.ipynb
new file mode 100644
index 0000000000000000000000000000000000000000..4d118772f3472bc9d9a9e87dcf03dc2244cf73d3
--- /dev/null
+++ b/modelcenter/community/hfl/rbt3/introduction_en.ipynb
@@ -0,0 +1,156 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "id": "faeb5f50",
+ "metadata": {},
+ "source": [
+ "## Chinese BERT with Whole Word Masking\n",
+ "\n",
+ "### Please use 'Bert' related functions to load this model!\n",
+ "\n",
+ "For further accelerating Chinese natural language processing, we provide **Chinese pre-trained BERT with Whole Word Masking**.\n",
+ "\n",
+ "**[Pre-Training with Whole Word Masking for Chinese BERT](https://arxiv.org/abs/1906.08101)**\n",
+ "Yiming Cui, Wanxiang Che, Ting Liu, Bing Qin, Ziqing Yang, Shijin Wang, Guoping Hu\n",
+ "\n",
+ "This repository is developed based on:https://github.com/google-research/bert\n",
+ "\n",
+ "You may also interested in,\n",
+ "- Chinese BERT series: https://github.com/ymcui/Chinese-BERT-wwm\n",
+ "- Chinese MacBERT: https://github.com/ymcui/MacBERT\n",
+ "- Chinese ELECTRA: https://github.com/ymcui/Chinese-ELECTRA\n",
+ "- Chinese XLNet: https://github.com/ymcui/Chinese-XLNet\n",
+ "- Knowledge Distillation Toolkit - TextBrewer: https://github.com/airaria/TextBrewer\n",
+ "\n",
+ "More resources by HFL: https://github.com/ymcui/HFL-Anthology\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "fbf98c0e",
+ "metadata": {},
+ "source": [
+ "## How to Use"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "5f6b3ac7",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "!pip install --upgrade paddlenlp"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "f380cab7",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import paddle\n",
+ "from paddlenlp.transformers import AutoModel\n",
+ "\n",
+ "model = AutoModel.from_pretrained(\"hfl/rbt3\")\n",
+ "input_ids = paddle.randint(100, 200, shape=[1, 20])\n",
+ "print(model(input_ids))"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "a39bca7c",
+ "metadata": {},
+ "source": [
+ "\n",
+ "## Citation\n",
+ "If you find the technical report or resource is useful, please cite the following technical report in your paper.\n",
+ "- Primary: https://arxiv.org/abs/2004.13922"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "370bfe67",
+ "metadata": {},
+ "source": [
+ "```\n",
+ "@inproceedings{cui-etal-2020-revisiting,\n",
+ "title = \"Revisiting Pre-Trained Models for {C}hinese Natural Language Processing\",\n",
+ "author = \"Cui, Yiming and\n",
+ "Che, Wanxiang and\n",
+ "Liu, Ting and\n",
+ "Qin, Bing and\n",
+ "Wang, Shijin and\n",
+ "Hu, Guoping\",\n",
+ "booktitle = \"Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: Findings\",\n",
+ "month = nov,\n",
+ "year = \"2020\",\n",
+ "address = \"Online\",\n",
+ "publisher = \"Association for Computational Linguistics\",\n",
+ "url = \"https://www.aclweb.org/anthology/2020.findings-emnlp.58\",\n",
+ "pages = \"657--668\",\n",
+ "}\n",
+ "```"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "a8781cbe",
+ "metadata": {},
+ "source": [
+ "- Secondary: https://arxiv.org/abs/1906.08101\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "4a1fe5aa",
+ "metadata": {},
+ "source": [
+ "```\n",
+ "@article{chinese-bert-wwm,\n",
+ "title={Pre-Training with Whole Word Masking for Chinese BERT},\n",
+ "author={Cui, Yiming and Che, Wanxiang and Liu, Ting and Qin, Bing and Yang, Ziqing and Wang, Shijin and Hu, Guoping},\n",
+ "journal={arXiv preprint arXiv:1906.08101},\n",
+ "year={2019}\n",
+ "}\n",
+ "```"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "86de1995",
+ "metadata": {},
+ "source": [
+ "> The model introduction and model weights originate from [https://huggingface.co/hfl/rbt3](https://huggingface.co/hfl/rbt3) and were converted to PaddlePaddle format for ease of use in PaddleNLP."
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3 (ipykernel)",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.7.13"
+ },
+ "vscode": {
+ "interpreter": {
+ "hash": "606ea184b8fed3419d714b545dc1784fad6c99d0cc940b6b9d787dccf225faa5"
+ }
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 5
+}
diff --git a/modelcenter/community/huggingface/bert-base-cased/info.yaml b/modelcenter/community/huggingface/bert-base-cased/info.yaml
index 20c36035a2f5a18862992ec87f67c6a7619b372c..467ef27a6353e14a8458ed8c29a8080a49369d90 100644
--- a/modelcenter/community/huggingface/bert-base-cased/info.yaml
+++ b/modelcenter/community/huggingface/bert-base-cased/info.yaml
@@ -1,24 +1,21 @@
+Datasets: bookcorpus,wikipedia
+Example: null
+IfOnlineDemo: 0
+IfTraining: 0
+Language: English
+License: apache-2.0
Model_Info:
- name: "bert-base-cased"
- description: "BERT base model (cased)"
- description_en: "BERT base model (cased)"
- icon: ""
- from_repo: "https://huggingface.co/bert-base-cased"
-
-Task:
-- tag_en: "Natural Language Processing"
- tag: "自然语言处理"
- sub_tag_en: "Fill-Mask"
- sub_tag: "槽位填充"
-
-Example:
-
-Datasets: "bookcorpus,wikipedia"
-Publisher: "huggingface"
-License: "apache-2.0"
-Language: "English"
+ description: BERT base model (cased)
+ description_en: BERT base model (cased)
+ from_repo: https://huggingface.co/bert-base-cased
+ icon: https://paddlenlp.bj.bcebos.com/models/community/transformer-layer.png
+ name: bert-base-cased
Paper:
- - title: 'BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding'
- url: 'http://arxiv.org/abs/1810.04805v2'
-IfTraining: 0
-IfOnlineDemo: 0
\ No newline at end of file
+- title: 'BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding'
+ url: http://arxiv.org/abs/1810.04805v2
+Publisher: huggingface
+Task:
+- sub_tag: 槽位填充
+ sub_tag_en: Fill-Mask
+ tag: 自然语言处理
+ tag_en: Natural Language Processing
diff --git a/modelcenter/community/huggingface/bert-base-cased/introduction_cn.ipynb b/modelcenter/community/huggingface/bert-base-cased/introduction_cn.ipynb
new file mode 100644
index 0000000000000000000000000000000000000000..66f9747f240af7bfdf168b05f525348d03a35f7f
--- /dev/null
+++ b/modelcenter/community/huggingface/bert-base-cased/introduction_cn.ipynb
@@ -0,0 +1,170 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "id": "bb008e6f",
+ "metadata": {},
+ "source": [
+ "# BERT base model (cased)\n",
+ "\n",
+ "详细内容请看[Bert in PaddleNLP](https://github.com/PaddlePaddle/PaddleNLP/blob/develop/model_zoo/bert/README.md)。"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "079266fb",
+ "metadata": {},
+ "source": [
+ "Pretrained model on English language using a masked language modeling (MLM) objective. It was introduced in\n",
+ "[this paper](https://arxiv.org/abs/1810.04805) and first released in\n",
+ "[this repository](https://github.com/google-research/bert). This model is case-sensitive: it makes a difference between\n",
+ "english and English.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "5c8220aa",
+ "metadata": {},
+ "source": [
+ "Disclaimer: The team releasing BERT did not write a model card for this model so this model card has been written by\n",
+ "the Hugging Face team.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "8564477f",
+ "metadata": {},
+ "source": [
+ "## Model description\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "7365685d",
+ "metadata": {},
+ "source": [
+ "BERT is a transformers model pretrained on a large corpus of English data in a self-supervised fashion. This means it\n",
+ "was pretrained on the raw texts only, with no humans labelling them in any way (which is why it can use lots of\n",
+ "publicly available data) with an automatic process to generate inputs and labels from those texts. More precisely, it\n",
+ "was pretrained with two objectives:\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "1c979d12",
+ "metadata": {},
+ "source": [
+ "- Masked language modeling (MLM): taking a sentence, the model randomly masks 15% of the words in the input then run\n",
+ "the entire masked sentence through the model and has to predict the masked words. This is different from traditional\n",
+ "recurrent neural networks (RNNs) that usually see the words one after the other, or from autoregressive models like\n",
+ "GPT which internally mask the future tokens. It allows the model to learn a bidirectional representation of the\n",
+ "sentence.\n",
+ "- Next sentence prediction (NSP): the models concatenates two masked sentences as inputs during pretraining. Sometimes\n",
+ "they correspond to sentences that were next to each other in the original text, sometimes not. The model then has to\n",
+ "predict if the two sentences were following each other or not.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "cdc00722",
+ "metadata": {},
+ "source": [
+ "This way, the model learns an inner representation of the English language that can then be used to extract features\n",
+ "useful for downstream tasks: if you have a dataset of labeled sentences for instance, you can train a standard\n",
+ "classifier using the features produced by the BERT model as inputs.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "9253a517",
+ "metadata": {},
+ "source": [
+ "## How to use"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "9fbfcd0a",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "!pip install --upgrade paddlenlp"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "6185db74",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import paddle\n",
+ "from paddlenlp.transformers import AutoModel\n",
+ "\n",
+ "model = AutoModel.from_pretrained(\"bert-base-cased\")\n",
+ "input_ids = paddle.randint(100, 200, shape=[1, 20])\n",
+ "print(model(input_ids))"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "8e0ca3bd",
+ "metadata": {},
+ "source": [
+ "```\n",
+ "@article{DBLP:journals/corr/abs-1810-04805,\n",
+ "author = {Jacob Devlin and\n",
+ "Ming{-}Wei Chang and\n",
+ "Kenton Lee and\n",
+ "Kristina Toutanova},\n",
+ "title = {{BERT:} Pre-training of Deep Bidirectional Transformers for Language\n",
+ "Understanding},\n",
+ "journal = {CoRR},\n",
+ "volume = {abs/1810.04805},\n",
+ "year = {2018},\n",
+ "url = {http://arxiv.org/abs/1810.04805},\n",
+ "archivePrefix = {arXiv},\n",
+ "eprint = {1810.04805},\n",
+ "timestamp = {Tue, 30 Oct 2018 20:39:56 +0100},\n",
+ "biburl = {https://dblp.org/rec/journals/corr/abs-1810-04805.bib},\n",
+ "bibsource = {dblp computer science bibliography, https://dblp.org}\n",
+ "}\n",
+ "```"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "f14e9f06",
+ "metadata": {},
+ "source": [
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "> 此模型介绍及权重来源于 https://huggingface.co/bert-base-cased ,并转换为飞桨模型格式。"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3 (ipykernel)",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.7.13"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 5
+}
diff --git a/modelcenter/community/huggingface/bert-base-cased/introduction_en.ipynb b/modelcenter/community/huggingface/bert-base-cased/introduction_en.ipynb
new file mode 100644
index 0000000000000000000000000000000000000000..40c4e44fd2fb72fcbb3cc429e414bc12c8041f06
--- /dev/null
+++ b/modelcenter/community/huggingface/bert-base-cased/introduction_en.ipynb
@@ -0,0 +1,171 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "id": "58235e68",
+ "metadata": {},
+ "source": [
+ "# BERT base model (cased)\n",
+ "\n",
+ "You can get more details from [Bert in PaddleNLP](https://github.com/PaddlePaddle/PaddleNLP/blob/develop/model_zoo/bert/README.md)。"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "36c7d585",
+ "metadata": {},
+ "source": [
+ "Pretrained model on English language using a masked language modeling (MLM) objective. It was introduced in\n",
+ "[this paper](https://arxiv.org/abs/1810.04805) and first released in\n",
+ "[this repository](https://github.com/google-research/bert). This model is case-sensitive: it makes a difference between\n",
+ "english and English.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "d361a880",
+ "metadata": {},
+ "source": [
+ "Disclaimer: The team releasing BERT did not write a model card for this model so this model card has been written by\n",
+ "the Hugging Face team.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "47b0cf99",
+ "metadata": {},
+ "source": [
+ "## Model description\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "d1911491",
+ "metadata": {},
+ "source": [
+ "BERT is a transformers model pretrained on a large corpus of English data in a self-supervised fashion. This means it\n",
+ "was pretrained on the raw texts only, with no humans labelling them in any way (which is why it can use lots of\n",
+ "publicly available data) with an automatic process to generate inputs and labels from those texts. More precisely, it\n",
+ "was pretrained with two objectives:\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "94e45c66",
+ "metadata": {},
+ "source": [
+ "- Masked language modeling (MLM): taking a sentence, the model randomly masks 15% of the words in the input then run\n",
+ "the entire masked sentence through the model and has to predict the masked words. This is different from traditional\n",
+ "recurrent neural networks (RNNs) that usually see the words one after the other, or from autoregressive models like\n",
+ "GPT which internally mask the future tokens. It allows the model to learn a bidirectional representation of the\n",
+ "sentence.\n",
+ "- Next sentence prediction (NSP): the models concatenates two masked sentences as inputs during pretraining. Sometimes\n",
+ "they correspond to sentences that were next to each other in the original text, sometimes not. The model then has to\n",
+ "predict if the two sentences were following each other or not.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "9fec6197",
+ "metadata": {},
+ "source": [
+ "This way, the model learns an inner representation of the English language that can then be used to extract features\n",
+ "useful for downstream tasks: if you have a dataset of labeled sentences for instance, you can train a standard\n",
+ "classifier using the features produced by the BERT model as inputs.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "5e17ee3b",
+ "metadata": {},
+ "source": [
+ "## How to use"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "62ae31d8",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "!pip install --upgrade paddlenlp"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "3c52bdd5",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import paddle\n",
+ "from paddlenlp.transformers import AutoModel\n",
+ "\n",
+ "model = AutoModel.from_pretrained(\"bert-base-cased\")\n",
+ "input_ids = paddle.randint(100, 200, shape=[1, 20])\n",
+ "print(model(input_ids))"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "da7c4875",
+ "metadata": {},
+ "source": [
+ "```\n",
+ "@article{DBLP:journals/corr/abs-1810-04805,\n",
+ "author = {Jacob Devlin and\n",
+ "Ming{-}Wei Chang and\n",
+ "Kenton Lee and\n",
+ "Kristina Toutanova},\n",
+ "title = {{BERT:} Pre-training of Deep Bidirectional Transformers for Language\n",
+ "Understanding},\n",
+ "journal = {CoRR},\n",
+ "volume = {abs/1810.04805},\n",
+ "year = {2018},\n",
+ "url = {http://arxiv.org/abs/1810.04805},\n",
+ "archivePrefix = {arXiv},\n",
+ "eprint = {1810.04805},\n",
+ "timestamp = {Tue, 30 Oct 2018 20:39:56 +0100},\n",
+ "biburl = {https://dblp.org/rec/journals/corr/abs-1810-04805.bib},\n",
+ "bibsource = {dblp computer science bibliography, https://dblp.org}\n",
+ "}\n",
+ "```"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "86873e48",
+ "metadata": {},
+ "source": [
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "> The model introduction and model weights originate from https://huggingface.co/bert-base-cased and were converted to PaddlePaddle format for ease of use in PaddleNLP."
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3 (ipykernel)",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.7.13"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 5
+}
diff --git a/modelcenter/community/huggingface/bert-base-german-cased/info.yaml b/modelcenter/community/huggingface/bert-base-german-cased/info.yaml
index 56dceb1fbe14fe68433be6f37c209f594bc2d69d..f549130cdd7f379f86e3cb7298c9f74cad8bfef1 100644
--- a/modelcenter/community/huggingface/bert-base-german-cased/info.yaml
+++ b/modelcenter/community/huggingface/bert-base-german-cased/info.yaml
@@ -1,23 +1,19 @@
+Datasets: ''
+Example: null
+IfOnlineDemo: 0
+IfTraining: 0
+Language: German
+License: mit
Model_Info:
- name: "bert-base-german-cased"
- description: "German BERT"
- description_en: "German BERT"
- icon: ""
- from_repo: "https://huggingface.co/bert-base-german-cased"
-
+ description: German BERT
+ description_en: German BERT
+ from_repo: https://huggingface.co/bert-base-german-cased
+ icon: https://paddlenlp.bj.bcebos.com/models/community/transformer-layer.png
+ name: bert-base-german-cased
+Paper: null
+Publisher: huggingface
Task:
-- tag_en: "Natural Language Processing"
- tag: "自然语言处理"
- sub_tag_en: "Fill-Mask"
- sub_tag: "槽位填充"
-
-Example:
-
-Datasets: ""
-Publisher: "huggingface"
-License: "mit"
-Language: "German"
-Paper:
-
-IfTraining: 0
-IfOnlineDemo: 0
\ No newline at end of file
+- sub_tag: 槽位填充
+ sub_tag_en: Fill-Mask
+ tag: 自然语言处理
+ tag_en: Natural Language Processing
diff --git a/modelcenter/community/huggingface/bert-base-german-cased/introduction_cn.ipynb b/modelcenter/community/huggingface/bert-base-german-cased/introduction_cn.ipynb
new file mode 100644
index 0000000000000000000000000000000000000000..007d6df6baa08cacfc9ddceff7bc2a3e34e23ead
--- /dev/null
+++ b/modelcenter/community/huggingface/bert-base-german-cased/introduction_cn.ipynb
@@ -0,0 +1,128 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "id": "0870a629",
+ "metadata": {},
+ "source": [
+ "# German BERT\n",
+ "![bert_image](https://static.tildacdn.com/tild6438-3730-4164-b266-613634323466/german_bert.png)\n",
+ "## Overview\n",
+ "**Language model:** bert-base-cased\n",
+ "**Language:** German\n",
+ "**Training data:** Wiki, OpenLegalData, News (~ 12GB)\n",
+ "**Eval data:** Conll03 (NER), GermEval14 (NER), GermEval18 (Classification), GNAD (Classification)\n",
+ "**Infrastructure**: 1x TPU v2\n",
+ "**Published**: Jun 14th, 2019\n",
+ "\n",
+ "详细内容请看[Bert in PaddleNLP](https://github.com/PaddlePaddle/PaddleNLP/blob/develop/model_zoo/bert/README.md)。"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "b2a6c897",
+ "metadata": {},
+ "source": [
+ "## How to use\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "1790135e",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "!pip install --upgrade paddlenlp"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "99c714ac",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import paddle\n",
+ "from paddlenlp.transformers import AutoModel\n",
+ "\n",
+ "model = AutoModel.from_pretrained(\"bert-base-german-cased\")\n",
+ "input_ids = paddle.randint(100, 200, shape=[1, 20])\n",
+ "print(model(input_ids))"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "54c2f398",
+ "metadata": {},
+ "source": [
+ "## Authors\n",
+ "- Branden Chan: `branden.chan [at] deepset.ai`\n",
+ "- Timo Möller: `timo.moeller [at] deepset.ai`\n",
+ "- Malte Pietsch: `malte.pietsch [at] deepset.ai`\n",
+ "- Tanay Soni: `tanay.soni [at] deepset.ai`\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "94b669bc",
+ "metadata": {},
+ "source": [
+ "## About us\n",
+ "![deepset logo](https://raw.githubusercontent.com/deepset-ai/FARM/master/docs/img/deepset_logo.png)\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "ce90710a",
+ "metadata": {},
+ "source": [
+ "We bring NLP to the industry via open source!\n",
+ "Our focus: Industry specific language models & large scale QA systems.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "5dc8ba63",
+ "metadata": {},
+ "source": [
+ "Some of our work:\n",
+ "- [German BERT (aka \"bert-base-german-cased\")](https://deepset.ai/german-bert)\n",
+ "- [FARM](https://github.com/deepset-ai/FARM)\n",
+ "- [Haystack](https://github.com/deepset-ai/haystack/)\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "56a1a360",
+ "metadata": {},
+ "source": [
+ "Get in touch:\n",
+ "[Twitter](https://twitter.com/deepset_ai) | [LinkedIn](https://www.linkedin.com/company/deepset-ai/) | [Website](https://deepset.ai)\n",
+ "\n",
+ "> 此模型介绍及权重来源于 https://huggingface.co/bert-base-german-cased ,并转换为飞桨模型格式。"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3 (ipykernel)",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.7.13"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 5
+}
diff --git a/modelcenter/community/huggingface/bert-base-german-cased/introduction_en.ipynb b/modelcenter/community/huggingface/bert-base-german-cased/introduction_en.ipynb
new file mode 100644
index 0000000000000000000000000000000000000000..60d78c671dc55bdd3bbaae0df7935dcdbfcd030f
--- /dev/null
+++ b/modelcenter/community/huggingface/bert-base-german-cased/introduction_en.ipynb
@@ -0,0 +1,137 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "id": "7aa268f7",
+ "metadata": {},
+ "source": [
+ "# German BERT\n",
+ "![bert_image](https://static.tildacdn.com/tild6438-3730-4164-b266-613634323466/german_bert.png)\n",
+ "## Overview\n",
+ "**Language model:** bert-base-cased\n",
+ "**Language:** German\n",
+ "**Training data:** Wiki, OpenLegalData, News (~ 12GB)\n",
+ "**Eval data:** Conll03 (NER), GermEval14 (NER), GermEval18 (Classification), GNAD (Classification)\n",
+ "**Infrastructure**: 1x TPU v2\n",
+ "**Published**: Jun 14th, 2019\n",
+ "\n",
+ "You can get more details from [Bert in PaddleNLP](https://github.com/PaddlePaddle/PaddleNLP/blob/develop/model_zoo/bert/README.md)。"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "f407e80e",
+ "metadata": {},
+ "source": [
+ "**Update April 3rd, 2020**: we updated the vocabulary file on deepset's s3 to conform with the default tokenization of punctuation tokens.\n",
+ "For details see the related [FARM issue](https://github.com/deepset-ai/FARM/issues/60). If you want to use the old vocab we have also uploaded a deepset/bert-base-german-cased-oldvocab model.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "18d2ad8e",
+ "metadata": {},
+ "source": [
+ "## How to use"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "b80052bd",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "!pip install --upgrade paddlenlp"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "4ea9d4e3",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import paddle\n",
+ "from paddlenlp.transformers import AutoModel\n",
+ "\n",
+ "model = AutoModel.from_pretrained(\"bert-base-german-cased\")\n",
+ "input_ids = paddle.randint(100, 200, shape=[1, 20])\n",
+ "print(model(input_ids))"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "9d560e75",
+ "metadata": {},
+ "source": [
+ "## Authors\n",
+ "- Branden Chan: `branden.chan [at] deepset.ai`\n",
+ "- Timo Möller: `timo.moeller [at] deepset.ai`\n",
+ "- Malte Pietsch: `malte.pietsch [at] deepset.ai`\n",
+ "- Tanay Soni: `tanay.soni [at] deepset.ai`\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "a0e43273",
+ "metadata": {},
+ "source": [
+ "## About us\n",
+ "![deepset logo](https://raw.githubusercontent.com/deepset-ai/FARM/master/docs/img/deepset_logo.png)\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "c1b05e60",
+ "metadata": {},
+ "source": [
+ "We bring NLP to the industry via open source!\n",
+ "Our focus: Industry specific language models & large scale QA systems.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "5196bee9",
+ "metadata": {},
+ "source": [
+ "Some of our work:\n",
+ "- [German BERT (aka \"bert-base-german-cased\")](https://deepset.ai/german-bert)\n",
+ "- [FARM](https://github.com/deepset-ai/FARM)\n",
+ "- [Haystack](https://github.com/deepset-ai/haystack/)\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "18fe01d5",
+ "metadata": {},
+ "source": [
+ "Get in touch:\n",
+ "[Twitter](https://twitter.com/deepset_ai) | [LinkedIn](https://www.linkedin.com/company/deepset-ai/) | [Website](https://deepset.ai)\n",
+ "\n",
+ "> The model introduction and model weights originate from https://huggingface.co/bert-base-german-cased and were converted to PaddlePaddle format for ease of use in PaddleNLP."
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3 (ipykernel)",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.7.13"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 5
+}
diff --git a/modelcenter/community/huggingface/bert-base-multilingual-cased/info.yaml b/modelcenter/community/huggingface/bert-base-multilingual-cased/info.yaml
index 6f6e99962533a0b6d7ebaf20402c06fa8dc0e61a..30aa91f6e978b372f22e44d54b56b94f9d2880a9 100644
--- a/modelcenter/community/huggingface/bert-base-multilingual-cased/info.yaml
+++ b/modelcenter/community/huggingface/bert-base-multilingual-cased/info.yaml
@@ -1,24 +1,21 @@
+Datasets: wikipedia
+Example: null
+IfOnlineDemo: 0
+IfTraining: 0
+Language: ''
+License: apache-2.0
Model_Info:
- name: "bert-base-multilingual-cased"
- description: "BERT multilingual base model (cased)"
- description_en: "BERT multilingual base model (cased)"
- icon: ""
- from_repo: "https://huggingface.co/bert-base-multilingual-cased"
-
-Task:
-- tag_en: "Natural Language Processing"
- tag: "自然语言处理"
- sub_tag_en: "Fill-Mask"
- sub_tag: "槽位填充"
-
-Example:
-
-Datasets: "wikipedia"
-Publisher: "huggingface"
-License: "apache-2.0"
-Language: ""
+ description: BERT multilingual base model (cased)
+ description_en: BERT multilingual base model (cased)
+ from_repo: https://huggingface.co/bert-base-multilingual-cased
+ icon: https://paddlenlp.bj.bcebos.com/models/community/transformer-layer.png
+ name: bert-base-multilingual-cased
Paper:
- - title: 'BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding'
- url: 'http://arxiv.org/abs/1810.04805v2'
-IfTraining: 0
-IfOnlineDemo: 0
\ No newline at end of file
+- title: 'BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding'
+ url: http://arxiv.org/abs/1810.04805v2
+Publisher: huggingface
+Task:
+- sub_tag: 槽位填充
+ sub_tag_en: Fill-Mask
+ tag: 自然语言处理
+ tag_en: Natural Language Processing
diff --git a/modelcenter/community/huggingface/bert-base-multilingual-cased/introduction_cn.ipynb b/modelcenter/community/huggingface/bert-base-multilingual-cased/introduction_cn.ipynb
new file mode 100644
index 0000000000000000000000000000000000000000..6ef00469c4a7303c535bcd4e33b397a983f98a0f
--- /dev/null
+++ b/modelcenter/community/huggingface/bert-base-multilingual-cased/introduction_cn.ipynb
@@ -0,0 +1,166 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "id": "92e18984",
+ "metadata": {},
+ "source": [
+ "# BERT multilingual base model (cased)\n",
+ "\n",
+ "详细内容请看[Bert in PaddleNLP](https://github.com/PaddlePaddle/PaddleNLP/blob/develop/model_zoo/bert/README.md)。"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "cc38bad3",
+ "metadata": {},
+ "source": [
+ "Pretrained model on the top 104 languages with the largest Wikipedia using a masked language modeling (MLM) objective.\n",
+ "It was introduced in [this paper](https://arxiv.org/abs/1810.04805) and first released in\n",
+ "[this repository](https://github.com/google-research/bert). This model is case sensitive: it makes a difference\n",
+ "between english and English.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "a54cdf6e",
+ "metadata": {},
+ "source": [
+ "Disclaimer: The team releasing BERT did not write a model card for this model so this model card has been written by\n",
+ "the Hugging Face team.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "3be641ef",
+ "metadata": {},
+ "source": [
+ "## Model description\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "93fd337b",
+ "metadata": {},
+ "source": [
+ "BERT is a transformers model pretrained on a large corpus of multilingual data in a self-supervised fashion. This means\n",
+ "it was pretrained on the raw texts only, with no humans labelling them in any way (which is why it can use lots of\n",
+ "publicly available data) with an automatic process to generate inputs and labels from those texts. More precisely, it\n",
+ "was pretrained with two objectives:\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "2222d4b6",
+ "metadata": {},
+ "source": [
+ "- Masked language modeling (MLM): taking a sentence, the model randomly masks 15% of the words in the input then run\n",
+ "the entire masked sentence through the model and has to predict the masked words. This is different from traditional\n",
+ "recurrent neural networks (RNNs) that usually see the words one after the other, or from autoregressive models like\n",
+ "GPT which internally mask the future tokens. It allows the model to learn a bidirectional representation of the\n",
+ "sentence.\n",
+ "- Next sentence prediction (NSP): the models concatenates two masked sentences as inputs during pretraining. Sometimes\n",
+ "they correspond to sentences that were next to each other in the original text, sometimes not. The model then has to\n",
+ "predict if the two sentences were following each other or not.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "2f9ea64e",
+ "metadata": {},
+ "source": [
+ "This way, the model learns an inner representation of the languages in the training set that can then be used to\n",
+ "extract features useful for downstream tasks: if you have a dataset of labeled sentences for instance, you can train a\n",
+ "standard classifier using the features produced by the BERT model as inputs.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "7363abb0",
+ "metadata": {},
+ "source": [
+ "## How to use"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "780c0123",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "!pip install --upgrade paddlenlp"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "5a325830",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import paddle\n",
+ "from paddlenlp.transformers import AutoModel\n",
+ "\n",
+ "model = AutoModel.from_pretrained(\"bert-base-multilingual-cased\")\n",
+ "input_ids = paddle.randint(100, 200, shape=[1, 20])\n",
+ "print(model(input_ids))"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "81ca575a",
+ "metadata": {},
+ "source": [
+ "```\n",
+ "@article{DBLP:journals/corr/abs-1810-04805,\n",
+ "author = {Jacob Devlin and\n",
+ "Ming{-}Wei Chang and\n",
+ "Kenton Lee and\n",
+ "Kristina Toutanova},\n",
+ "title = {{BERT:} Pre-training of Deep Bidirectional Transformers for Language\n",
+ "Understanding},\n",
+ "journal = {CoRR},\n",
+ "volume = {abs/1810.04805},\n",
+ "year = {2018},\n",
+ "url = {http://arxiv.org/abs/1810.04805},\n",
+ "archivePrefix = {arXiv},\n",
+ "eprint = {1810.04805},\n",
+ "timestamp = {Tue, 30 Oct 2018 20:39:56 +0100},\n",
+ "biburl = {https://dblp.org/rec/journals/corr/abs-1810-04805.bib},\n",
+ "bibsource = {dblp computer science bibliography, https://dblp.org}\n",
+ "}\n",
+ "```"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "216555c3",
+ "metadata": {},
+ "source": [
+ "> 此模型介绍及权重来源于 https://huggingface.co/bert-base-multilingual-cased ,并转换为飞桨模型格式。"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3 (ipykernel)",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.7.13"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 5
+}
diff --git a/modelcenter/community/huggingface/bert-base-multilingual-cased/introduction_en.ipynb b/modelcenter/community/huggingface/bert-base-multilingual-cased/introduction_en.ipynb
new file mode 100644
index 0000000000000000000000000000000000000000..614f449429f54cc92707d6863964ba6c8e3ad302
--- /dev/null
+++ b/modelcenter/community/huggingface/bert-base-multilingual-cased/introduction_en.ipynb
@@ -0,0 +1,167 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "id": "19d62907",
+ "metadata": {},
+ "source": [
+ "# BERT multilingual base model (cased)\n",
+ "\n",
+ "You can get more details from [Bert in PaddleNLP](https://github.com/PaddlePaddle/PaddleNLP/blob/develop/model_zoo/bert/README.md)。"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "09809b94",
+ "metadata": {},
+ "source": [
+ "Pretrained model on the top 104 languages with the largest Wikipedia using a masked language modeling (MLM) objective.\n",
+ "It was introduced in [this paper](https://arxiv.org/abs/1810.04805) and first released in\n",
+ "[this repository](https://github.com/google-research/bert). This model is case sensitive: it makes a difference\n",
+ "between english and English.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "d3a52162",
+ "metadata": {},
+ "source": [
+ "Disclaimer: The team releasing BERT did not write a model card for this model so this model card has been written by\n",
+ "the Hugging Face team.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "f67f02dc",
+ "metadata": {},
+ "source": [
+ "## Model description\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "bf05022f",
+ "metadata": {},
+ "source": [
+ "BERT is a transformers model pretrained on a large corpus of multilingual data in a self-supervised fashion. This means\n",
+ "it was pretrained on the raw texts only, with no humans labelling them in any way (which is why it can use lots of\n",
+ "publicly available data) with an automatic process to generate inputs and labels from those texts. More precisely, it\n",
+ "was pretrained with two objectives:\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "081a7a88",
+ "metadata": {},
+ "source": [
+ "- Masked language modeling (MLM): taking a sentence, the model randomly masks 15% of the words in the input then run\n",
+ "the entire masked sentence through the model and has to predict the masked words. This is different from traditional\n",
+ "recurrent neural networks (RNNs) that usually see the words one after the other, or from autoregressive models like\n",
+ "GPT which internally mask the future tokens. It allows the model to learn a bidirectional representation of the\n",
+ "sentence.\n",
+ "- Next sentence prediction (NSP): the models concatenates two masked sentences as inputs during pretraining. Sometimes\n",
+ "they correspond to sentences that were next to each other in the original text, sometimes not. The model then has to\n",
+ "predict if the two sentences were following each other or not.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "79e6eda9",
+ "metadata": {},
+ "source": [
+ "This way, the model learns an inner representation of the languages in the training set that can then be used to\n",
+ "extract features useful for downstream tasks: if you have a dataset of labeled sentences for instance, you can train a\n",
+ "standard classifier using the features produced by the BERT model as inputs.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "1696fb24",
+ "metadata": {},
+ "source": [
+ "## How to use"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "4f7d20fd",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "!pip install --upgrade paddlenlp"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "3c369c9a",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import paddle\n",
+ "from paddlenlp.transformers import AutoModel\n",
+ "\n",
+ "model = AutoModel.from_pretrained(\"bert-base-multilingual-cased\")\n",
+ "input_ids = paddle.randint(100, 200, shape=[1, 20])\n",
+ "print(model(input_ids))"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "6338f981",
+ "metadata": {},
+ "source": [
+ "```\n",
+ "@article{DBLP:journals/corr/abs-1810-04805,\n",
+ "author = {Jacob Devlin and\n",
+ "Ming{-}Wei Chang and\n",
+ "Kenton Lee and\n",
+ "Kristina Toutanova},\n",
+ "title = {{BERT:} Pre-training of Deep Bidirectional Transformers for Language\n",
+ "Understanding},\n",
+ "journal = {CoRR},\n",
+ "volume = {abs/1810.04805},\n",
+ "year = {2018},\n",
+ "url = {http://arxiv.org/abs/1810.04805},\n",
+ "archivePrefix = {arXiv},\n",
+ "eprint = {1810.04805},\n",
+ "timestamp = {Tue, 30 Oct 2018 20:39:56 +0100},\n",
+ "biburl = {https://dblp.org/rec/journals/corr/abs-1810-04805.bib},\n",
+ "bibsource = {dblp computer science bibliography, https://dblp.org}\n",
+ "}\n",
+ "```"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "c55dc64e",
+ "metadata": {},
+ "source": [
+ "\n",
+ "> The model introduction and model weights originate from https://huggingface.co/bert-base-multilingual-cased and were converted to PaddlePaddle format for ease of use in PaddleNLP.\n"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3 (ipykernel)",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.7.13"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 5
+}
diff --git a/modelcenter/community/huggingface/bert-base-multilingual-uncased/info.yaml b/modelcenter/community/huggingface/bert-base-multilingual-uncased/info.yaml
index eea48a95605fa6eb765402f37641ccee2d2a4d73..d4008a99a41b493cec0dad2c63d12734cc5d5b3e 100644
--- a/modelcenter/community/huggingface/bert-base-multilingual-uncased/info.yaml
+++ b/modelcenter/community/huggingface/bert-base-multilingual-uncased/info.yaml
@@ -1,24 +1,21 @@
+Datasets: wikipedia
+Example: null
+IfOnlineDemo: 0
+IfTraining: 0
+Language: ''
+License: apache-2.0
Model_Info:
- name: "bert-base-multilingual-uncased"
- description: "BERT multilingual base model (uncased)"
- description_en: "BERT multilingual base model (uncased)"
- icon: ""
- from_repo: "https://huggingface.co/bert-base-multilingual-uncased"
-
-Task:
-- tag_en: "Natural Language Processing"
- tag: "自然语言处理"
- sub_tag_en: "Fill-Mask"
- sub_tag: "槽位填充"
-
-Example:
-
-Datasets: "wikipedia"
-Publisher: "huggingface"
-License: "apache-2.0"
-Language: ""
+ description: BERT multilingual base model (uncased)
+ description_en: BERT multilingual base model (uncased)
+ from_repo: https://huggingface.co/bert-base-multilingual-uncased
+ icon: https://paddlenlp.bj.bcebos.com/models/community/transformer-layer.png
+ name: bert-base-multilingual-uncased
Paper:
- - title: 'BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding'
- url: 'http://arxiv.org/abs/1810.04805v2'
-IfTraining: 0
-IfOnlineDemo: 0
\ No newline at end of file
+- title: 'BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding'
+ url: http://arxiv.org/abs/1810.04805v2
+Publisher: huggingface
+Task:
+- sub_tag: 槽位填充
+ sub_tag_en: Fill-Mask
+ tag: 自然语言处理
+ tag_en: Natural Language Processing
diff --git a/modelcenter/community/huggingface/bert-base-multilingual-uncased/introduction_cn.ipynb b/modelcenter/community/huggingface/bert-base-multilingual-uncased/introduction_cn.ipynb
new file mode 100644
index 0000000000000000000000000000000000000000..81274e373acf6527025f96beec50f056a15909fa
--- /dev/null
+++ b/modelcenter/community/huggingface/bert-base-multilingual-uncased/introduction_cn.ipynb
@@ -0,0 +1,166 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "id": "867cb6e6",
+ "metadata": {},
+ "source": [
+ "# BERT multilingual base model (uncased)\n",
+ "\n",
+ "详细内容请看[Bert in PaddleNLP](https://github.com/PaddlePaddle/PaddleNLP/blob/develop/model_zoo/bert/README.md)。"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "207ffc57",
+ "metadata": {},
+ "source": [
+ "Pretrained model on the top 102 languages with the largest Wikipedia using a masked language modeling (MLM) objective.\n",
+ "It was introduced in [this paper](https://arxiv.org/abs/1810.04805) and first released in\n",
+ "[this repository](https://github.com/google-research/bert). This model is uncased: it does not make a difference\n",
+ "between english and English.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "8b2e2c13",
+ "metadata": {},
+ "source": [
+ "Disclaimer: The team releasing BERT did not write a model card for this model so this model card has been written by\n",
+ "the Hugging Face team.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "40d071c9",
+ "metadata": {},
+ "source": [
+ "## Model description\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "af4a1260",
+ "metadata": {},
+ "source": [
+ "BERT is a transformers model pretrained on a large corpus of multilingual data in a self-supervised fashion. This means\n",
+ "it was pretrained on the raw texts only, with no humans labelling them in any way (which is why it can use lots of\n",
+ "publicly available data) with an automatic process to generate inputs and labels from those texts. More precisely, it\n",
+ "was pretrained with two objectives:\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "81abfbcb",
+ "metadata": {},
+ "source": [
+ "- Masked language modeling (MLM): taking a sentence, the model randomly masks 15% of the words in the input then run\n",
+ "the entire masked sentence through the model and has to predict the masked words. This is different from traditional\n",
+ "recurrent neural networks (RNNs) that usually see the words one after the other, or from autoregressive models like\n",
+ "GPT which internally mask the future tokens. It allows the model to learn a bidirectional representation of the\n",
+ "sentence.\n",
+ "- Next sentence prediction (NSP): the models concatenates two masked sentences as inputs during pretraining. Sometimes\n",
+ "they correspond to sentences that were next to each other in the original text, sometimes not. The model then has to\n",
+ "predict if the two sentences were following each other or not.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "64988b6b",
+ "metadata": {},
+ "source": [
+ "This way, the model learns an inner representation of the languages in the training set that can then be used to\n",
+ "extract features useful for downstream tasks: if you have a dataset of labeled sentences for instance, you can train a\n",
+ "standard classifier using the features produced by the BERT model as inputs.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "79c3e104",
+ "metadata": {},
+ "source": [
+ "## How to use"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "d7b2d0ec",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "!pip install --upgrade paddlenlp"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "52f8d16d",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import paddle\n",
+ "from paddlenlp.transformers import AutoModel\n",
+ "\n",
+ "model = AutoModel.from_pretrained(\"bert-base-multilingual-uncased\")\n",
+ "input_ids = paddle.randint(100, 200, shape=[1, 20])\n",
+ "print(model(input_ids))"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "f11b298a",
+ "metadata": {},
+ "source": [
+ "```\n",
+ "@article{DBLP:journals/corr/abs-1810-04805,\n",
+ "author = {Jacob Devlin and\n",
+ "Ming{-}Wei Chang and\n",
+ "Kenton Lee and\n",
+ "Kristina Toutanova},\n",
+ "title = {{BERT:} Pre-training of Deep Bidirectional Transformers for Language\n",
+ "Understanding},\n",
+ "journal = {CoRR},\n",
+ "volume = {abs/1810.04805},\n",
+ "year = {2018},\n",
+ "url = {http://arxiv.org/abs/1810.04805},\n",
+ "archivePrefix = {arXiv},\n",
+ "eprint = {1810.04805},\n",
+ "timestamp = {Tue, 30 Oct 2018 20:39:56 +0100},\n",
+ "biburl = {https://dblp.org/rec/journals/corr/abs-1810-04805.bib},\n",
+ "bibsource = {dblp computer science bibliography, https://dblp.org}\n",
+ "}\n",
+ "```"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "548a9d6c",
+ "metadata": {},
+ "source": [
+ "> 此模型介绍及权重来源于 https://huggingface.co/bert-base-multilingual-uncased ,并转换为飞桨模型格式。"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3 (ipykernel)",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.7.13"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 5
+}
diff --git a/modelcenter/community/huggingface/bert-base-multilingual-uncased/introduction_en.ipynb b/modelcenter/community/huggingface/bert-base-multilingual-uncased/introduction_en.ipynb
new file mode 100644
index 0000000000000000000000000000000000000000..3c6411361bcc904efe6cf2bb1336becf6a355ff3
--- /dev/null
+++ b/modelcenter/community/huggingface/bert-base-multilingual-uncased/introduction_en.ipynb
@@ -0,0 +1,166 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "id": "ff0c69a5",
+ "metadata": {},
+ "source": [
+ "# BERT multilingual base model (uncased)\n",
+ "\n",
+ "You can get more details from [Bert in PaddleNLP](https://github.com/PaddlePaddle/PaddleNLP/blob/develop/model_zoo/bert/README.md)。"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "1ad499a9",
+ "metadata": {},
+ "source": [
+ "Pretrained model on the top 102 languages with the largest Wikipedia using a masked language modeling (MLM) objective.\n",
+ "It was introduced in [this paper](https://arxiv.org/abs/1810.04805) and first released in\n",
+ "[this repository](https://github.com/google-research/bert). This model is uncased: it does not make a difference\n",
+ "between english and English.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "a8878d0c",
+ "metadata": {},
+ "source": [
+ "Disclaimer: The team releasing BERT did not write a model card for this model so this model card has been written by\n",
+ "the Hugging Face team.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "4581e670",
+ "metadata": {},
+ "source": [
+ "## Model description\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "c8d5f59f",
+ "metadata": {},
+ "source": [
+ "BERT is a transformers model pretrained on a large corpus of multilingual data in a self-supervised fashion. This means\n",
+ "it was pretrained on the raw texts only, with no humans labelling them in any way (which is why it can use lots of\n",
+ "publicly available data) with an automatic process to generate inputs and labels from those texts. More precisely, it\n",
+ "was pretrained with two objectives:\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "836834df",
+ "metadata": {},
+ "source": [
+ "- Masked language modeling (MLM): taking a sentence, the model randomly masks 15% of the words in the input then run\n",
+ "the entire masked sentence through the model and has to predict the masked words. This is different from traditional\n",
+ "recurrent neural networks (RNNs) that usually see the words one after the other, or from autoregressive models like\n",
+ "GPT which internally mask the future tokens. It allows the model to learn a bidirectional representation of the\n",
+ "sentence.\n",
+ "- Next sentence prediction (NSP): the models concatenates two masked sentences as inputs during pretraining. Sometimes\n",
+ "they correspond to sentences that were next to each other in the original text, sometimes not. The model then has to\n",
+ "predict if the two sentences were following each other or not.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "bafe70e4",
+ "metadata": {},
+ "source": [
+ "This way, the model learns an inner representation of the languages in the training set that can then be used to\n",
+ "extract features useful for downstream tasks: if you have a dataset of labeled sentences for instance, you can train a\n",
+ "standard classifier using the features produced by the BERT model as inputs.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "cf2a29e2",
+ "metadata": {},
+ "source": [
+ "## How to use"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "dc792d6e",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "!pip install --upgrade paddlenlp"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "7a6faf50",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import paddle\n",
+ "from paddlenlp.transformers import AutoModel\n",
+ "\n",
+ "model = AutoModel.from_pretrained(\"bert-base-multilingual-uncased\")\n",
+ "input_ids = paddle.randint(100, 200, shape=[1, 20])\n",
+ "print(model(input_ids))"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "5b616f23",
+ "metadata": {},
+ "source": [
+ "```\n",
+ "@article{DBLP:journals/corr/abs-1810-04805,\n",
+ "author = {Jacob Devlin and\n",
+ "Ming{-}Wei Chang and\n",
+ "Kenton Lee and\n",
+ "Kristina Toutanova},\n",
+ "title = {{BERT:} Pre-training of Deep Bidirectional Transformers for Language\n",
+ "Understanding},\n",
+ "journal = {CoRR},\n",
+ "volume = {abs/1810.04805},\n",
+ "year = {2018},\n",
+ "url = {http://arxiv.org/abs/1810.04805},\n",
+ "archivePrefix = {arXiv},\n",
+ "eprint = {1810.04805},\n",
+ "timestamp = {Tue, 30 Oct 2018 20:39:56 +0100},\n",
+ "biburl = {https://dblp.org/rec/journals/corr/abs-1810-04805.bib},\n",
+ "bibsource = {dblp computer science bibliography, https://dblp.org}\n",
+ "}\n",
+ "```"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "67e01093",
+ "metadata": {},
+ "source": [
+ "> The model introduction and model weights originate from https://huggingface.co/bert-base-multilingual-uncased and were converted to PaddlePaddle format for ease of use in PaddleNLP."
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3 (ipykernel)",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.7.13"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 5
+}
diff --git a/modelcenter/community/huggingface/bert-base-uncased/info.yaml b/modelcenter/community/huggingface/bert-base-uncased/info.yaml
index c5b7c80fb6bbf17376f459101d03e2f866776592..e60141f57ef148f3be1b32c99d8dcb1b6aac6a18 100644
--- a/modelcenter/community/huggingface/bert-base-uncased/info.yaml
+++ b/modelcenter/community/huggingface/bert-base-uncased/info.yaml
@@ -1,24 +1,21 @@
+Datasets: bookcorpus,wikipedia
+Example: null
+IfOnlineDemo: 0
+IfTraining: 0
+Language: English
+License: apache-2.0
Model_Info:
- name: "bert-base-uncased"
- description: "BERT base model (uncased)"
- description_en: "BERT base model (uncased)"
- icon: ""
- from_repo: "https://huggingface.co/bert-base-uncased"
-
-Task:
-- tag_en: "Natural Language Processing"
- tag: "自然语言处理"
- sub_tag_en: "Fill-Mask"
- sub_tag: "槽位填充"
-
-Example:
-
-Datasets: "bookcorpus,wikipedia"
-Publisher: "huggingface"
-License: "apache-2.0"
-Language: "English"
+ description: BERT base model (uncased)
+ description_en: BERT base model (uncased)
+ from_repo: https://huggingface.co/bert-base-uncased
+ icon: https://paddlenlp.bj.bcebos.com/models/community/transformer-layer.png
+ name: bert-base-uncased
Paper:
- - title: 'BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding'
- url: 'http://arxiv.org/abs/1810.04805v2'
-IfTraining: 0
-IfOnlineDemo: 0
\ No newline at end of file
+- title: 'BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding'
+ url: http://arxiv.org/abs/1810.04805v2
+Publisher: huggingface
+Task:
+- sub_tag: 槽位填充
+ sub_tag_en: Fill-Mask
+ tag: 自然语言处理
+ tag_en: Natural Language Processing
diff --git a/modelcenter/community/huggingface/bert-base-uncased/introduction_cn.ipynb b/modelcenter/community/huggingface/bert-base-uncased/introduction_cn.ipynb
new file mode 100644
index 0000000000000000000000000000000000000000..c848895ed2df847be3a375f60f607a5b4a7a9b3e
--- /dev/null
+++ b/modelcenter/community/huggingface/bert-base-uncased/introduction_cn.ipynb
@@ -0,0 +1,214 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "id": "a14866e7",
+ "metadata": {},
+ "source": [
+ "# BERT base model (uncased)\n",
+ "\n",
+ "详细内容请看[Bert in PaddleNLP](https://github.com/PaddlePaddle/PaddleNLP/blob/develop/model_zoo/bert/README.md)。"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "d348c680",
+ "metadata": {},
+ "source": [
+ "Pretrained model on English language using a masked language modeling (MLM) objective. It was introduced in\n",
+ "[this paper](https://arxiv.org/abs/1810.04805) and first released in\n",
+ "[this repository](https://github.com/google-research/bert). This model is uncased: it does not make a difference\n",
+ "between english and English.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "9a790b40",
+ "metadata": {},
+ "source": [
+ "Disclaimer: The team releasing BERT did not write a model card for this model so this model card has been written by\n",
+ "the Hugging Face team.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "985d2894",
+ "metadata": {},
+ "source": [
+ "## Model description\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "985bd7ee",
+ "metadata": {},
+ "source": [
+ "BERT is a transformers model pretrained on a large corpus of English data in a self-supervised fashion. This means it\n",
+ "was pretrained on the raw texts only, with no humans labeling them in any way (which is why it can use lots of\n",
+ "publicly available data) with an automatic process to generate inputs and labels from those texts. More precisely, it\n",
+ "was pretrained with two objectives:\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "2e1ee5f4",
+ "metadata": {},
+ "source": [
+ "- Masked language modeling (MLM): taking a sentence, the model randomly masks 15% of the words in the input then run\n",
+ "the entire masked sentence through the model and has to predict the masked words. This is different from traditional\n",
+ "recurrent neural networks (RNNs) that usually see the words one after the other, or from autoregressive models like\n",
+ "GPT which internally masks the future tokens. It allows the model to learn a bidirectional representation of the\n",
+ "sentence.\n",
+ "- Next sentence prediction (NSP): the models concatenates two masked sentences as inputs during pretraining. Sometimes\n",
+ "they correspond to sentences that were next to each other in the original text, sometimes not. The model then has to\n",
+ "predict if the two sentences were following each other or not.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "ae584a51",
+ "metadata": {},
+ "source": [
+ "This way, the model learns an inner representation of the English language that can then be used to extract features\n",
+ "useful for downstream tasks: if you have a dataset of labeled sentences, for instance, you can train a standard\n",
+ "classifier using the features produced by the BERT model as inputs.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "a4d48848",
+ "metadata": {},
+ "source": [
+ "## Model variations\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "dcb46068",
+ "metadata": {},
+ "source": [
+ "BERT has originally been released in base and large variations, for cased and uncased input text. The uncased models also strips out an accent markers.\n",
+ "Chinese and multilingual uncased and cased versions followed shortly after.\n",
+ "Modified preprocessing with whole word masking has replaced subpiece masking in a following work, with the release of two models.\n",
+ "Other 24 smaller models are released afterward.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "bdf3ec7e",
+ "metadata": {},
+ "source": [
+ "The detailed release history can be found on the [google-research/bert readme](https://github.com/google-research/bert/blob/master/README.md) on github.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "d66e6fc4",
+ "metadata": {},
+ "source": [
+ "| Model | #params | Language |\n",
+ "|------------------------|--------------------------------|-------|\n",
+ "| [`bert-base-uncased`](https://huggingface.co/bert-base-uncased) | 110M | English |\n",
+ "| [`bert-large-uncased`](https://huggingface.co/bert-large-uncased) | 340M | English | sub\n",
+ "| [`bert-base-cased`](https://huggingface.co/bert-base-cased) | 110M | English |\n",
+ "| [`bert-large-cased`](https://huggingface.co/bert-large-cased) | 340M | English |\n",
+ "| [`bert-base-chinese`](https://huggingface.co/bert-base-chinese) | 110M | Chinese |\n",
+ "| [`bert-base-multilingual-cased`](https://huggingface.co/bert-base-multilingual-cased) | 110M | Multiple |\n",
+ "| [`bert-large-uncased-whole-word-masking`](https://huggingface.co/bert-large-uncased-whole-word-masking) | 340M | English |\n",
+ "| [`bert-large-cased-whole-word-masking`](https://huggingface.co/bert-large-cased-whole-word-masking) | 340M | English |\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "93c97712",
+ "metadata": {},
+ "source": [
+ "## How to use"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "e4daab88",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "!pip install --upgrade paddlenlp"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "09dec4f3",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import paddle\n",
+ "from paddlenlp.transformers import AutoModel\n",
+ "\n",
+ "model = AutoModel.from_pretrained(\"bert-base-uncased\")\n",
+ "input_ids = paddle.randint(100, 200, shape=[1, 20])\n",
+ "print(model(input_ids))"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "85541d34",
+ "metadata": {},
+ "source": [
+ "```\n",
+ "@article{DBLP:journals/corr/abs-1810-04805,\n",
+ "author = {Jacob Devlin and\n",
+ "Ming{-}Wei Chang and\n",
+ "Kenton Lee and\n",
+ "Kristina Toutanova},\n",
+ "title = {{BERT:} Pre-training of Deep Bidirectional Transformers for Language\n",
+ "Understanding},\n",
+ "journal = {CoRR},\n",
+ "volume = {abs/1810.04805},\n",
+ "year = {2018},\n",
+ "url = {http://arxiv.org/abs/1810.04805},\n",
+ "archivePrefix = {arXiv},\n",
+ "eprint = {1810.04805},\n",
+ "timestamp = {Tue, 30 Oct 2018 20:39:56 +0100},\n",
+ "biburl = {https://dblp.org/rec/journals/corr/abs-1810-04805.bib},\n",
+ "bibsource = {dblp computer science bibliography, https://dblp.org}\n",
+ "}\n",
+ "```"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "82898490",
+ "metadata": {},
+ "source": [
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "> 此模型介绍及权重来源于 https://huggingface.co/bert-base-uncased ,并转换为飞桨模型格式。"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3 (ipykernel)",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.7.13"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 5
+}
diff --git a/modelcenter/community/huggingface/bert-base-uncased/introduction_en.ipynb b/modelcenter/community/huggingface/bert-base-uncased/introduction_en.ipynb
new file mode 100644
index 0000000000000000000000000000000000000000..ea2c73ba4463b1d6f383901a77169bf315293a39
--- /dev/null
+++ b/modelcenter/community/huggingface/bert-base-uncased/introduction_en.ipynb
@@ -0,0 +1,214 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "id": "86c2dd31",
+ "metadata": {},
+ "source": [
+ "# BERT base model (uncased)\n",
+ "\n",
+ "You can get more details from [Bert in PaddleNLP](https://github.com/PaddlePaddle/PaddleNLP/blob/develop/model_zoo/bert/README.md)。"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "e25590e2",
+ "metadata": {},
+ "source": [
+ "Pretrained model on English language using a masked language modeling (MLM) objective. It was introduced in\n",
+ "[this paper](https://arxiv.org/abs/1810.04805) and first released in\n",
+ "[this repository](https://github.com/google-research/bert). This model is uncased: it does not make a difference\n",
+ "between english and English.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "632646c9",
+ "metadata": {},
+ "source": [
+ "Disclaimer: The team releasing BERT did not write a model card for this model so this model card has been written by\n",
+ "the Hugging Face team.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "6d37733d",
+ "metadata": {},
+ "source": [
+ "## Model description\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "20eb0099",
+ "metadata": {},
+ "source": [
+ "BERT is a transformers model pretrained on a large corpus of English data in a self-supervised fashion. This means it\n",
+ "was pretrained on the raw texts only, with no humans labeling them in any way (which is why it can use lots of\n",
+ "publicly available data) with an automatic process to generate inputs and labels from those texts. More precisely, it\n",
+ "was pretrained with two objectives:\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "a43bc44c",
+ "metadata": {},
+ "source": [
+ "- Masked language modeling (MLM): taking a sentence, the model randomly masks 15% of the words in the input then run\n",
+ "the entire masked sentence through the model and has to predict the masked words. This is different from traditional\n",
+ "recurrent neural networks (RNNs) that usually see the words one after the other, or from autoregressive models like\n",
+ "GPT which internally masks the future tokens. It allows the model to learn a bidirectional representation of the\n",
+ "sentence.\n",
+ "- Next sentence prediction (NSP): the models concatenates two masked sentences as inputs during pretraining. Sometimes\n",
+ "they correspond to sentences that were next to each other in the original text, sometimes not. The model then has to\n",
+ "predict if the two sentences were following each other or not.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "3ea31760",
+ "metadata": {},
+ "source": [
+ "This way, the model learns an inner representation of the English language that can then be used to extract features\n",
+ "useful for downstream tasks: if you have a dataset of labeled sentences, for instance, you can train a standard\n",
+ "classifier using the features produced by the BERT model as inputs.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "c44e01b0",
+ "metadata": {},
+ "source": [
+ "## Model variations\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "6cb3e530",
+ "metadata": {},
+ "source": [
+ "BERT has originally been released in base and large variations, for cased and uncased input text. The uncased models also strips out an accent markers.\n",
+ "Chinese and multilingual uncased and cased versions followed shortly after.\n",
+ "Modified preprocessing with whole word masking has replaced subpiece masking in a following work, with the release of two models.\n",
+ "Other 24 smaller models are released afterward.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "557a417a",
+ "metadata": {},
+ "source": [
+ "The detailed release history can be found on the [google-research/bert readme](https://github.com/google-research/bert/blob/master/README.md) on github.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "0f4bf9e0",
+ "metadata": {},
+ "source": [
+ "| Model | #params | Language |\n",
+ "|------------------------|--------------------------------|-------|\n",
+ "| [`bert-base-uncased`](https://huggingface.co/bert-base-uncased) | 110M | English |\n",
+ "| [`bert-large-uncased`](https://huggingface.co/bert-large-uncased) | 340M | English | sub\n",
+ "| [`bert-base-cased`](https://huggingface.co/bert-base-cased) | 110M | English |\n",
+ "| [`bert-large-cased`](https://huggingface.co/bert-large-cased) | 340M | English |\n",
+ "| [`bert-base-chinese`](https://huggingface.co/bert-base-chinese) | 110M | Chinese |\n",
+ "| [`bert-base-multilingual-cased`](https://huggingface.co/bert-base-multilingual-cased) | 110M | Multiple |\n",
+ "| [`bert-large-uncased-whole-word-masking`](https://huggingface.co/bert-large-uncased-whole-word-masking) | 340M | English |\n",
+ "| [`bert-large-cased-whole-word-masking`](https://huggingface.co/bert-large-cased-whole-word-masking) | 340M | English |\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "909c1c8d",
+ "metadata": {},
+ "source": [
+ "## How to use\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "68db3da7",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "!pip install --upgrade paddlenlp"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "04d6a56d",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import paddle\n",
+ "from paddlenlp.transformers import AutoModel\n",
+ "\n",
+ "model = AutoModel.from_pretrained(\"bert-base-uncased\")\n",
+ "input_ids = paddle.randint(100, 200, shape=[1, 20])\n",
+ "print(model(input_ids))"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "76d1a4dc",
+ "metadata": {},
+ "source": [
+ "```\n",
+ "@article{DBLP:journals/corr/abs-1810-04805,\n",
+ "author = {Jacob Devlin and\n",
+ "Ming{-}Wei Chang and\n",
+ "Kenton Lee and\n",
+ "Kristina Toutanova},\n",
+ "title = {{BERT:} Pre-training of Deep Bidirectional Transformers for Language\n",
+ "Understanding},\n",
+ "journal = {CoRR},\n",
+ "volume = {abs/1810.04805},\n",
+ "year = {2018},\n",
+ "url = {http://arxiv.org/abs/1810.04805},\n",
+ "archivePrefix = {arXiv},\n",
+ "eprint = {1810.04805},\n",
+ "timestamp = {Tue, 30 Oct 2018 20:39:56 +0100},\n",
+ "biburl = {https://dblp.org/rec/journals/corr/abs-1810-04805.bib},\n",
+ "bibsource = {dblp computer science bibliography, https://dblp.org}\n",
+ "}\n",
+ "```"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "1bcee897",
+ "metadata": {},
+ "source": [
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "> The model introduction and model weights originate from https://huggingface.co/bert-base-uncased and were converted to PaddlePaddle format for ease of use in PaddleNLP."
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3 (ipykernel)",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.7.13"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 5
+}
diff --git a/modelcenter/community/huggingface/bert-large-cased-whole-word-masking-finetuned-squad/info.yaml b/modelcenter/community/huggingface/bert-large-cased-whole-word-masking-finetuned-squad/info.yaml
index f1718d55596e23bc7e7b87be75b667604b185db4..a7ac22baa8fb7ac13192b928f292b5fb01fbf982 100644
--- a/modelcenter/community/huggingface/bert-large-cased-whole-word-masking-finetuned-squad/info.yaml
+++ b/modelcenter/community/huggingface/bert-large-cased-whole-word-masking-finetuned-squad/info.yaml
@@ -1,24 +1,21 @@
+Datasets: bookcorpus,wikipedia
+Example: null
+IfOnlineDemo: 0
+IfTraining: 0
+Language: English
+License: apache-2.0
Model_Info:
- name: "bert-large-cased-whole-word-masking-finetuned-squad"
- description: "BERT large model (cased) whole word masking finetuned on SQuAD"
- description_en: "BERT large model (cased) whole word masking finetuned on SQuAD"
- icon: ""
- from_repo: "https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad"
-
-Task:
-- tag_en: "Natural Language Processing"
- tag: "自然语言处理"
- sub_tag_en: "Question Answering"
- sub_tag: "回答问题"
-
-Example:
-
-Datasets: "bookcorpus,wikipedia"
-Publisher: "huggingface"
-License: "apache-2.0"
-Language: "English"
+ description: BERT large model (cased) whole word masking finetuned on SQuAD
+ description_en: BERT large model (cased) whole word masking finetuned on SQuAD
+ from_repo: https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad
+ icon: https://paddlenlp.bj.bcebos.com/models/community/transformer-layer.png
+ name: bert-large-cased-whole-word-masking-finetuned-squad
Paper:
- - title: 'BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding'
- url: 'http://arxiv.org/abs/1810.04805v2'
-IfTraining: 0
-IfOnlineDemo: 0
\ No newline at end of file
+- title: 'BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding'
+ url: http://arxiv.org/abs/1810.04805v2
+Publisher: huggingface
+Task:
+- sub_tag: 回答问题
+ sub_tag_en: Question Answering
+ tag: 自然语言处理
+ tag_en: Natural Language Processing
diff --git a/modelcenter/community/huggingface/bert-large-cased-whole-word-masking-finetuned-squad/introduction_cn.ipynb b/modelcenter/community/huggingface/bert-large-cased-whole-word-masking-finetuned-squad/introduction_cn.ipynb
new file mode 100644
index 0000000000000000000000000000000000000000..d291733e170b825570899526281988dce6ded372
--- /dev/null
+++ b/modelcenter/community/huggingface/bert-large-cased-whole-word-masking-finetuned-squad/introduction_cn.ipynb
@@ -0,0 +1,208 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "id": "7b02f8e4",
+ "metadata": {},
+ "source": [
+ "# BERT large model (cased) whole word masking finetuned on SQuAD\n",
+ "\n",
+ "详细内容请看[Bert in PaddleNLP](https://github.com/PaddlePaddle/PaddleNLP/blob/develop/model_zoo/bert/README.md)。"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "7804aeec",
+ "metadata": {},
+ "source": [
+ "Pretrained model on English language using a masked language modeling (MLM) objective. It was introduced in\n",
+ "[this paper](https://arxiv.org/abs/1810.04805) and first released in\n",
+ "[this repository](https://github.com/google-research/bert). This model is cased: it makes a difference between english and English.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "9ee7c4ee",
+ "metadata": {},
+ "source": [
+ "Differently to other BERT models, this model was trained with a new technique: Whole Word Masking. In this case, all of the tokens corresponding to a word are masked at once. The overall masking rate remains the same.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "2198ff25",
+ "metadata": {},
+ "source": [
+ "The training is identical -- each masked WordPiece token is predicted independently.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "159c04c3",
+ "metadata": {},
+ "source": [
+ "After pre-training, this model was fine-tuned on the SQuAD dataset with one of our fine-tuning scripts. See below for more information regarding this fine-tuning.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "cec53443",
+ "metadata": {},
+ "source": [
+ "Disclaimer: The team releasing BERT did not write a model card for this model so this model card has been written by\n",
+ "the Hugging Face team.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "0a6d113e",
+ "metadata": {},
+ "source": [
+ "## Model description\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "3776a729",
+ "metadata": {},
+ "source": [
+ "BERT is a transformers model pretrained on a large corpus of English data in a self-supervised fashion. This means it\n",
+ "was pretrained on the raw texts only, with no humans labelling them in any way (which is why it can use lots of\n",
+ "publicly available data) with an automatic process to generate inputs and labels from those texts. More precisely, it\n",
+ "was pretrained with two objectives:\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "8ef5e147",
+ "metadata": {},
+ "source": [
+ "- Masked language modeling (MLM): taking a sentence, the model randomly masks 15% of the words in the input then run\n",
+ "the entire masked sentence through the model and has to predict the masked words. This is different from traditional\n",
+ "recurrent neural networks (RNNs) that usually see the words one after the other, or from autoregressive models like\n",
+ "GPT which internally mask the future tokens. It allows the model to learn a bidirectional representation of the\n",
+ "sentence.\n",
+ "- Next sentence prediction (NSP): the models concatenates two masked sentences as inputs during pretraining. Sometimes\n",
+ "they correspond to sentences that were next to each other in the original text, sometimes not. The model then has to\n",
+ "predict if the two sentences were following each other or not.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "f494c97f",
+ "metadata": {},
+ "source": [
+ "This way, the model learns an inner representation of the English language that can then be used to extract features\n",
+ "useful for downstream tasks: if you have a dataset of labeled sentences for instance, you can train a standard\n",
+ "classifier using the features produced by the BERT model as inputs.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "eeffccad",
+ "metadata": {},
+ "source": [
+ "This model has the following configuration:\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "7754e7ed",
+ "metadata": {},
+ "source": [
+ "- 24-layer\n",
+ "- 1024 hidden dimension\n",
+ "- 16 attention heads\n",
+ "- 336M parameters.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "dc30e3d4",
+ "metadata": {},
+ "source": [
+ "## How to use\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "6c0a8e7e",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "!pip install --upgrade paddlenlp"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "3eb39f84",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import paddle\n",
+ "from paddlenlp.transformers import AutoModel\n",
+ "\n",
+ "model = AutoModel.from_pretrained(\"bert-large-cased-whole-word-masking-finetuned-squad\")\n",
+ "input_ids = paddle.randint(100, 200, shape=[1, 20])\n",
+ "print(model(input_ids))"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "82b3ff37",
+ "metadata": {},
+ "source": [
+ "```\n",
+ "@article{DBLP:journals/corr/abs-1810-04805,\n",
+ "author = {Jacob Devlin and\n",
+ "Ming{-}Wei Chang and\n",
+ "Kenton Lee and\n",
+ "Kristina Toutanova},\n",
+ "title = {{BERT:} Pre-training of Deep Bidirectional Transformers for Language\n",
+ "Understanding},\n",
+ "journal = {CoRR},\n",
+ "volume = {abs/1810.04805},\n",
+ "year = {2018},\n",
+ "url = {http://arxiv.org/abs/1810.04805},\n",
+ "archivePrefix = {arXiv},\n",
+ "eprint = {1810.04805},\n",
+ "timestamp = {Tue, 30 Oct 2018 20:39:56 +0100},\n",
+ "biburl = {https://dblp.org/rec/journals/corr/abs-1810-04805.bib},\n",
+ "bibsource = {dblp computer science bibliography, https://dblp.org}\n",
+ "}\n",
+ "```"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "cb789a5a",
+ "metadata": {},
+ "source": [
+ "> 此模型介绍及权重来源于 https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad ,并转换为飞桨模型格式。\n"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3 (ipykernel)",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.7.13"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 5
+}
diff --git a/modelcenter/community/huggingface/bert-large-cased-whole-word-masking-finetuned-squad/introduction_en.ipynb b/modelcenter/community/huggingface/bert-large-cased-whole-word-masking-finetuned-squad/introduction_en.ipynb
new file mode 100644
index 0000000000000000000000000000000000000000..022a59dcefc4633a33da9bff319e7858318ed87b
--- /dev/null
+++ b/modelcenter/community/huggingface/bert-large-cased-whole-word-masking-finetuned-squad/introduction_en.ipynb
@@ -0,0 +1,208 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "id": "1dfd11c1",
+ "metadata": {},
+ "source": [
+ "# BERT large model (cased) whole word masking finetuned on SQuAD\n",
+ "\n",
+ "You can get more details from [Bert in PaddleNLP](https://github.com/PaddlePaddle/PaddleNLP/blob/develop/model_zoo/bert/README.md)。"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "7105fb8c",
+ "metadata": {},
+ "source": [
+ "Pretrained model on English language using a masked language modeling (MLM) objective. It was introduced in\n",
+ "[this paper](https://arxiv.org/abs/1810.04805) and first released in\n",
+ "[this repository](https://github.com/google-research/bert). This model is cased: it makes a difference between english and English.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "e3d8b394",
+ "metadata": {},
+ "source": [
+ "Differently to other BERT models, this model was trained with a new technique: Whole Word Masking. In this case, all of the tokens corresponding to a word are masked at once. The overall masking rate remains the same.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "be078628",
+ "metadata": {},
+ "source": [
+ "The training is identical -- each masked WordPiece token is predicted independently.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "278aee7f",
+ "metadata": {},
+ "source": [
+ "After pre-training, this model was fine-tuned on the SQuAD dataset with one of our fine-tuning scripts. See below for more information regarding this fine-tuning.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "ce69aca2",
+ "metadata": {},
+ "source": [
+ "Disclaimer: The team releasing BERT did not write a model card for this model so this model card has been written by\n",
+ "the Hugging Face team.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "89b52c17",
+ "metadata": {},
+ "source": [
+ "## Model description\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "2ebe9e94",
+ "metadata": {},
+ "source": [
+ "BERT is a transformers model pretrained on a large corpus of English data in a self-supervised fashion. This means it\n",
+ "was pretrained on the raw texts only, with no humans labelling them in any way (which is why it can use lots of\n",
+ "publicly available data) with an automatic process to generate inputs and labels from those texts. More precisely, it\n",
+ "was pretrained with two objectives:\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "7131c024",
+ "metadata": {},
+ "source": [
+ "- Masked language modeling (MLM): taking a sentence, the model randomly masks 15% of the words in the input then run\n",
+ "the entire masked sentence through the model and has to predict the masked words. This is different from traditional\n",
+ "recurrent neural networks (RNNs) that usually see the words one after the other, or from autoregressive models like\n",
+ "GPT which internally mask the future tokens. It allows the model to learn a bidirectional representation of the\n",
+ "sentence.\n",
+ "- Next sentence prediction (NSP): the models concatenates two masked sentences as inputs during pretraining. Sometimes\n",
+ "they correspond to sentences that were next to each other in the original text, sometimes not. The model then has to\n",
+ "predict if the two sentences were following each other or not.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "4a8e4aea",
+ "metadata": {},
+ "source": [
+ "This way, the model learns an inner representation of the English language that can then be used to extract features\n",
+ "useful for downstream tasks: if you have a dataset of labeled sentences for instance, you can train a standard\n",
+ "classifier using the features produced by the BERT model as inputs.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "717dd1f6",
+ "metadata": {},
+ "source": [
+ "This model has the following configuration:\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "6778930f",
+ "metadata": {},
+ "source": [
+ "- 24-layer\n",
+ "- 1024 hidden dimension\n",
+ "- 16 attention heads\n",
+ "- 336M parameters.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "1ffc0609",
+ "metadata": {},
+ "source": [
+ "## How to use"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "678acd58",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "!pip install --upgrade paddlenlp"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "c5318a0c",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import paddle\n",
+ "from paddlenlp.transformers import AutoModel\n",
+ "\n",
+ "model = AutoModel.from_pretrained(\"bert-large-cased-whole-word-masking-finetuned-squad\")\n",
+ "input_ids = paddle.randint(100, 200, shape=[1, 20])\n",
+ "print(model(input_ids))"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "f930fd97",
+ "metadata": {},
+ "source": [
+ "```\n",
+ "@article{DBLP:journals/corr/abs-1810-04805,\n",
+ "author = {Jacob Devlin and\n",
+ "Ming{-}Wei Chang and\n",
+ "Kenton Lee and\n",
+ "Kristina Toutanova},\n",
+ "title = {{BERT:} Pre-training of Deep Bidirectional Transformers for Language\n",
+ "Understanding},\n",
+ "journal = {CoRR},\n",
+ "volume = {abs/1810.04805},\n",
+ "year = {2018},\n",
+ "url = {http://arxiv.org/abs/1810.04805},\n",
+ "archivePrefix = {arXiv},\n",
+ "eprint = {1810.04805},\n",
+ "timestamp = {Tue, 30 Oct 2018 20:39:56 +0100},\n",
+ "biburl = {https://dblp.org/rec/journals/corr/abs-1810-04805.bib},\n",
+ "bibsource = {dblp computer science bibliography, https://dblp.org}\n",
+ "}\n",
+ "```"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "b3240bd3",
+ "metadata": {},
+ "source": [
+ "> The model introduction and model weights originate from https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad and were converted to PaddlePaddle format for ease of use in PaddleNLP.\n"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3 (ipykernel)",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.7.13"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 5
+}
diff --git a/modelcenter/community/huggingface/bert-large-cased-whole-word-masking/info.yaml b/modelcenter/community/huggingface/bert-large-cased-whole-word-masking/info.yaml
index b7bf0bdeeb448aec0d8c1b6829fdd1ce6b6e7ca7..cbf482fb81d7929dd18b217e335d006196073fa5 100644
--- a/modelcenter/community/huggingface/bert-large-cased-whole-word-masking/info.yaml
+++ b/modelcenter/community/huggingface/bert-large-cased-whole-word-masking/info.yaml
@@ -1,24 +1,21 @@
+Datasets: bookcorpus,wikipedia
+Example: null
+IfOnlineDemo: 0
+IfTraining: 0
+Language: English
+License: apache-2.0
Model_Info:
- name: "bert-large-cased-whole-word-masking"
- description: "BERT large model (cased) whole word masking"
- description_en: "BERT large model (cased) whole word masking"
- icon: ""
- from_repo: "https://huggingface.co/bert-large-cased-whole-word-masking"
-
-Task:
-- tag_en: "Natural Language Processing"
- tag: "自然语言处理"
- sub_tag_en: "Fill-Mask"
- sub_tag: "槽位填充"
-
-Example:
-
-Datasets: "bookcorpus,wikipedia"
-Publisher: "huggingface"
-License: "apache-2.0"
-Language: "English"
+ description: BERT large model (cased) whole word masking
+ description_en: BERT large model (cased) whole word masking
+ from_repo: https://huggingface.co/bert-large-cased-whole-word-masking
+ icon: https://paddlenlp.bj.bcebos.com/models/community/transformer-layer.png
+ name: bert-large-cased-whole-word-masking
Paper:
- - title: 'BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding'
- url: 'http://arxiv.org/abs/1810.04805v2'
-IfTraining: 0
-IfOnlineDemo: 0
\ No newline at end of file
+- title: 'BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding'
+ url: http://arxiv.org/abs/1810.04805v2
+Publisher: huggingface
+Task:
+- sub_tag: 槽位填充
+ sub_tag_en: Fill-Mask
+ tag: 自然语言处理
+ tag_en: Natural Language Processing
diff --git a/modelcenter/community/huggingface/bert-large-cased-whole-word-masking/introduction_cn.ipynb b/modelcenter/community/huggingface/bert-large-cased-whole-word-masking/introduction_cn.ipynb
new file mode 100644
index 0000000000000000000000000000000000000000..e9d6ca523003a99022d01673cea34b06bccd1cf0
--- /dev/null
+++ b/modelcenter/community/huggingface/bert-large-cased-whole-word-masking/introduction_cn.ipynb
@@ -0,0 +1,201 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "id": "1d5ffd6a",
+ "metadata": {},
+ "source": [
+ "# BERT large model (cased) whole word masking\n",
+ "\n",
+ "详细内容请看[Bert in PaddleNLP](https://github.com/PaddlePaddle/PaddleNLP/blob/develop/model_zoo/bert/README.md)。"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "9e7590bd",
+ "metadata": {},
+ "source": [
+ "Pretrained model on English language using a masked language modeling (MLM) objective. It was introduced in\n",
+ "[this paper](https://arxiv.org/abs/1810.04805) and first released in\n",
+ "[this repository](https://github.com/google-research/bert). This model is cased: it makes a difference between english and English.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "2456751c",
+ "metadata": {},
+ "source": [
+ "Differently to other BERT models, this model was trained with a new technique: Whole Word Masking. In this case, all of the tokens corresponding to a word are masked at once. The overall masking rate remains the same.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "204d6ee6",
+ "metadata": {},
+ "source": [
+ "The training is identical -- each masked WordPiece token is predicted independently.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "743ff269",
+ "metadata": {},
+ "source": [
+ "Disclaimer: The team releasing BERT did not write a model card for this model so this model card has been written by\n",
+ "the Hugging Face team.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "bce1ffcc",
+ "metadata": {},
+ "source": [
+ "## Model description\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "d5d83b7c",
+ "metadata": {},
+ "source": [
+ "BERT is a transformers model pretrained on a large corpus of English data in a self-supervised fashion. This means it\n",
+ "was pretrained on the raw texts only, with no humans labelling them in any way (which is why it can use lots of\n",
+ "publicly available data) with an automatic process to generate inputs and labels from those texts. More precisely, it\n",
+ "was pretrained with two objectives:\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "38a98598",
+ "metadata": {},
+ "source": [
+ "- Masked language modeling (MLM): taking a sentence, the model randomly masks 15% of the words in the input then run\n",
+ "the entire masked sentence through the model and has to predict the masked words. This is different from traditional\n",
+ "recurrent neural networks (RNNs) that usually see the words one after the other, or from autoregressive models like\n",
+ "GPT which internally mask the future tokens. It allows the model to learn a bidirectional representation of the\n",
+ "sentence.\n",
+ "- Next sentence prediction (NSP): the models concatenates two masked sentences as inputs during pretraining. Sometimes\n",
+ "they correspond to sentences that were next to each other in the original text, sometimes not. The model then has to\n",
+ "predict if the two sentences were following each other or not.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "89b5e554",
+ "metadata": {},
+ "source": [
+ "This way, the model learns an inner representation of the English language that can then be used to extract features\n",
+ "useful for downstream tasks: if you have a dataset of labeled sentences for instance, you can train a standard\n",
+ "classifier using the features produced by the BERT model as inputs.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "3f205174",
+ "metadata": {},
+ "source": [
+ "This model has the following configuration:\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "6b9cf751",
+ "metadata": {},
+ "source": [
+ "- 24-layer\n",
+ "- 1024 hidden dimension\n",
+ "- 16 attention heads\n",
+ "- 336M parameters.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "74a0400e",
+ "metadata": {},
+ "source": [
+ "## How to use\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "d8952fcc",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "!pip install --upgrade paddlenlp"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "365e04c2",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import paddle\n",
+ "from paddlenlp.transformers import AutoModel\n",
+ "\n",
+ "model = AutoModel.from_pretrained(\"bert-large-cased-whole-word-masking\")\n",
+ "input_ids = paddle.randint(100, 200, shape=[1, 20])\n",
+ "print(model(input_ids))"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "1cef8f18",
+ "metadata": {},
+ "source": [
+ "```\n",
+ "@article{DBLP:journals/corr/abs-1810-04805,\n",
+ "author = {Jacob Devlin and\n",
+ "Ming{-}Wei Chang and\n",
+ "Kenton Lee and\n",
+ "Kristina Toutanova},\n",
+ "title = {{BERT:} Pre-training of Deep Bidirectional Transformers for Language\n",
+ "Understanding},\n",
+ "journal = {CoRR},\n",
+ "volume = {abs/1810.04805},\n",
+ "year = {2018},\n",
+ "url = {http://arxiv.org/abs/1810.04805},\n",
+ "archivePrefix = {arXiv},\n",
+ "eprint = {1810.04805},\n",
+ "timestamp = {Tue, 30 Oct 2018 20:39:56 +0100},\n",
+ "biburl = {https://dblp.org/rec/journals/corr/abs-1810-04805.bib},\n",
+ "bibsource = {dblp computer science bibliography, https://dblp.org}\n",
+ "}\n",
+ "```"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "0d54ff2d",
+ "metadata": {},
+ "source": [
+ "\n",
+ "> 此模型介绍及权重来源于 https://huggingface.co/bert-large-cased-whole-word-masking ,并转换为飞桨模型格式。"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3 (ipykernel)",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.7.13"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 5
+}
diff --git a/modelcenter/community/huggingface/bert-large-cased-whole-word-masking/introduction_en.ipynb b/modelcenter/community/huggingface/bert-large-cased-whole-word-masking/introduction_en.ipynb
new file mode 100644
index 0000000000000000000000000000000000000000..9617a15c8909ceb2ec07e84ec681c2385a354e5d
--- /dev/null
+++ b/modelcenter/community/huggingface/bert-large-cased-whole-word-masking/introduction_en.ipynb
@@ -0,0 +1,237 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "id": "58f64e54",
+ "metadata": {},
+ "source": [
+ "# BERT large model (cased) whole word masking\n",
+ "\n",
+ "You can get more details from [Bert in PaddleNLP](https://github.com/PaddlePaddle/PaddleNLP/blob/develop/model_zoo/bert/README.md)。"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "6814fe73",
+ "metadata": {},
+ "source": [
+ "Pretrained model on English language using a masked language modeling (MLM) objective. It was introduced in\n",
+ "[this paper](https://arxiv.org/abs/1810.04805) and first released in\n",
+ "[this repository](https://github.com/google-research/bert). This model is cased: it makes a difference between english and English.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "7a6b1b28",
+ "metadata": {},
+ "source": [
+ "Differently to other BERT models, this model was trained with a new technique: Whole Word Masking. In this case, all of the tokens corresponding to a word are masked at once. The overall masking rate remains the same.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "e6c8ddc5",
+ "metadata": {},
+ "source": [
+ "The training is identical -- each masked WordPiece token is predicted independently.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "dfcd9c6b",
+ "metadata": {},
+ "source": [
+ "Disclaimer: The team releasing BERT did not write a model card for this model so this model card has been written by\n",
+ "the Hugging Face team.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "d758dbd9",
+ "metadata": {},
+ "source": [
+ "## Model description\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "c4e44287",
+ "metadata": {},
+ "source": [
+ "BERT is a transformers model pretrained on a large corpus of English data in a self-supervised fashion. This means it\n",
+ "was pretrained on the raw texts only, with no humans labelling them in any way (which is why it can use lots of\n",
+ "publicly available data) with an automatic process to generate inputs and labels from those texts. More precisely, it\n",
+ "was pretrained with two objectives:\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "d07abc2a",
+ "metadata": {},
+ "source": [
+ "- Masked language modeling (MLM): taking a sentence, the model randomly masks 15% of the words in the input then run\n",
+ "the entire masked sentence through the model and has to predict the masked words. This is different from traditional\n",
+ "recurrent neural networks (RNNs) that usually see the words one after the other, or from autoregressive models like\n",
+ "GPT which internally mask the future tokens. It allows the model to learn a bidirectional representation of the\n",
+ "sentence.\n",
+ "- Next sentence prediction (NSP): the models concatenates two masked sentences as inputs during pretraining. Sometimes\n",
+ "they correspond to sentences that were next to each other in the original text, sometimes not. The model then has to\n",
+ "predict if the two sentences were following each other or not.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "5fcb83d6",
+ "metadata": {},
+ "source": [
+ "This way, the model learns an inner representation of the English language that can then be used to extract features\n",
+ "useful for downstream tasks: if you have a dataset of labeled sentences for instance, you can train a standard\n",
+ "classifier using the features produced by the BERT model as inputs.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "1be2f6a5",
+ "metadata": {},
+ "source": [
+ "This model has the following configuration:\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "cd047a65",
+ "metadata": {},
+ "source": [
+ "- 24-layer\n",
+ "- 1024 hidden dimension\n",
+ "- 16 attention heads\n",
+ "- 336M parameters.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "93925c79",
+ "metadata": {},
+ "source": [
+ "## Intended uses & limitations\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "f6c1f9b9",
+ "metadata": {},
+ "source": [
+ "You can use the raw model for either masked language modeling or next sentence prediction, but it's mostly intended to\n",
+ "be fine-tuned on a downstream task. See the [model hub](https://huggingface.co/models?filter=bert) to look for\n",
+ "fine-tuned versions on a task that interests you.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "a682ee5c",
+ "metadata": {},
+ "source": [
+ "Note that this model is primarily aimed at being fine-tuned on tasks that use the whole sentence (potentially masked)\n",
+ "to make decisions, such as sequence classification, token classification or question answering. For tasks such as text\n",
+ "generation you should look at model like GPT2.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "394e6456",
+ "metadata": {},
+ "source": [
+ "### How to use\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "9e5fdb9a",
+ "metadata": {},
+ "source": [
+ "You can use this model directly with a pipeline for masked language modeling:\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "77af91fe",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "!pip install --upgrade paddlenlp"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "ae5caf8d",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import paddle\n",
+ "from paddlenlp.transformers import AutoModel\n",
+ "\n",
+ "model = AutoModel.from_pretrained(\"bert-large-cased-whole-word-masking\")\n",
+ "input_ids = paddle.randint(100, 200, shape=[1, 20])\n",
+ "print(model(input_ids))"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "0f43705d",
+ "metadata": {},
+ "source": [
+ "```\n",
+ "@article{DBLP:journals/corr/abs-1810-04805,\n",
+ "author = {Jacob Devlin and\n",
+ "Ming{-}Wei Chang and\n",
+ "Kenton Lee and\n",
+ "Kristina Toutanova},\n",
+ "title = {{BERT:} Pre-training of Deep Bidirectional Transformers for Language\n",
+ "Understanding},\n",
+ "journal = {CoRR},\n",
+ "volume = {abs/1810.04805},\n",
+ "year = {2018},\n",
+ "url = {http://arxiv.org/abs/1810.04805},\n",
+ "archivePrefix = {arXiv},\n",
+ "eprint = {1810.04805},\n",
+ "timestamp = {Tue, 30 Oct 2018 20:39:56 +0100},\n",
+ "biburl = {https://dblp.org/rec/journals/corr/abs-1810-04805.bib},\n",
+ "bibsource = {dblp computer science bibliography, https://dblp.org}\n",
+ "}\n",
+ "```"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "54ae4165",
+ "metadata": {},
+ "source": [
+ "\n",
+ "> The model introduction and model weights originate from https://huggingface.co/bert-large-cased-whole-word-masking and were converted to PaddlePaddle format for ease of use in PaddleNLP."
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3 (ipykernel)",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.7.13"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 5
+}
diff --git a/modelcenter/community/huggingface/bert-large-cased/info.yaml b/modelcenter/community/huggingface/bert-large-cased/info.yaml
index ae878bc6aa580fc51a714ae995d84b97652fd796..89d74497831dbfc03222e47c8bc86603bdf4a155 100644
--- a/modelcenter/community/huggingface/bert-large-cased/info.yaml
+++ b/modelcenter/community/huggingface/bert-large-cased/info.yaml
@@ -1,24 +1,21 @@
+Datasets: bookcorpus,wikipedia
+Example: null
+IfOnlineDemo: 0
+IfTraining: 0
+Language: English
+License: apache-2.0
Model_Info:
- name: "bert-large-cased"
- description: "BERT large model (cased)"
- description_en: "BERT large model (cased)"
- icon: ""
- from_repo: "https://huggingface.co/bert-large-cased"
-
-Task:
-- tag_en: "Natural Language Processing"
- tag: "自然语言处理"
- sub_tag_en: "Fill-Mask"
- sub_tag: "槽位填充"
-
-Example:
-
-Datasets: "bookcorpus,wikipedia"
-Publisher: "huggingface"
-License: "apache-2.0"
-Language: "English"
+ description: BERT large model (cased)
+ description_en: BERT large model (cased)
+ from_repo: https://huggingface.co/bert-large-cased
+ icon: https://paddlenlp.bj.bcebos.com/models/community/transformer-layer.png
+ name: bert-large-cased
Paper:
- - title: 'BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding'
- url: 'http://arxiv.org/abs/1810.04805v2'
-IfTraining: 0
-IfOnlineDemo: 0
\ No newline at end of file
+- title: 'BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding'
+ url: http://arxiv.org/abs/1810.04805v2
+Publisher: huggingface
+Task:
+- sub_tag: 槽位填充
+ sub_tag_en: Fill-Mask
+ tag: 自然语言处理
+ tag_en: Natural Language Processing
diff --git a/modelcenter/community/huggingface/bert-large-cased/introduction_cn.ipynb b/modelcenter/community/huggingface/bert-large-cased/introduction_cn.ipynb
new file mode 100644
index 0000000000000000000000000000000000000000..6a92402ed97386bfea322335b29ad11a05bfcf84
--- /dev/null
+++ b/modelcenter/community/huggingface/bert-large-cased/introduction_cn.ipynb
@@ -0,0 +1,213 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "id": "360e146a",
+ "metadata": {},
+ "source": [
+ "# BERT large model (cased)\n",
+ "\n",
+ "详细内容请看[Bert in PaddleNLP](https://github.com/PaddlePaddle/PaddleNLP/blob/develop/model_zoo/bert/README.md)。"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "bb3eb868",
+ "metadata": {},
+ "source": [
+ "Pretrained model on English language using a masked language modeling (MLM) objective. It was introduced in\n",
+ "[this paper](https://arxiv.org/abs/1810.04805) and first released in\n",
+ "[this repository](https://github.com/google-research/bert). This model is cased: it makes a difference\n",
+ "between english and English.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "0f512012",
+ "metadata": {},
+ "source": [
+ "Disclaimer: The team releasing BERT did not write a model card for this model so this model card has been written by\n",
+ "the Hugging Face team.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "8dfae0e4",
+ "metadata": {},
+ "source": [
+ "## Model description\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "29d97a32",
+ "metadata": {},
+ "source": [
+ "BERT is a transformers model pretrained on a large corpus of English data in a self-supervised fashion. This means it\n",
+ "was pretrained on the raw texts only, with no humans labelling them in any way (which is why it can use lots of\n",
+ "publicly available data) with an automatic process to generate inputs and labels from those texts. More precisely, it\n",
+ "was pretrained with two objectives:\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "84dd3c36",
+ "metadata": {},
+ "source": [
+ "- Masked language modeling (MLM): taking a sentence, the model randomly masks 15% of the words in the input then run\n",
+ "the entire masked sentence through the model and has to predict the masked words. This is different from traditional\n",
+ "recurrent neural networks (RNNs) that usually see the words one after the other, or from autoregressive models like\n",
+ "GPT which internally mask the future tokens. It allows the model to learn a bidirectional representation of the\n",
+ "sentence.\n",
+ "- Next sentence prediction (NSP): the models concatenates two masked sentences as inputs during pretraining. Sometimes\n",
+ "they correspond to sentences that were next to each other in the original text, sometimes not. The model then has to\n",
+ "predict if the two sentences were following each other or not.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "dbb66981",
+ "metadata": {},
+ "source": [
+ "This way, the model learns an inner representation of the English language that can then be used to extract features\n",
+ "useful for downstream tasks: if you have a dataset of labeled sentences for instance, you can train a standard\n",
+ "classifier using the features produced by the BERT model as inputs.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "4a3d9a5c",
+ "metadata": {},
+ "source": [
+ "This model has the following configuration:\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "85a286cd",
+ "metadata": {},
+ "source": [
+ "- 24-layer\n",
+ "- 1024 hidden dimension\n",
+ "- 16 attention heads\n",
+ "- 336M parameters.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "e9f5c5f1",
+ "metadata": {},
+ "source": [
+ "## Intended uses & limitations\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "d3ae1617",
+ "metadata": {},
+ "source": [
+ "You can use the raw model for either masked language modeling or next sentence prediction, but it's mostly intended to\n",
+ "be fine-tuned on a downstream task. See the [model hub](https://huggingface.co/models?filter=bert) to look for\n",
+ "fine-tuned versions on a task that interests you.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "1d814aa3",
+ "metadata": {},
+ "source": [
+ "Note that this model is primarily aimed at being fine-tuned on tasks that use the whole sentence (potentially masked)\n",
+ "to make decisions, such as sequence classification, token classification or question answering. For tasks such as text\n",
+ "generation you should look at model like GPT2.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "7c9cb698",
+ "metadata": {},
+ "source": [
+ "### How to use\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "266349de",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "!pip install --upgrade paddlenlp"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "e0d0fb84",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import paddle\n",
+ "from paddlenlp.transformers import AutoModel\n",
+ "\n",
+ "model = AutoModel.from_pretrained(\"bert-large-cased\")\n",
+ "input_ids = paddle.randint(100, 200, shape=[1, 20])\n",
+ "print(model(input_ids))"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "d58fffcd",
+ "metadata": {},
+ "source": [
+ "```\n",
+ "@article{DBLP:journals/corr/abs-1810-04805,\n",
+ "author = {Jacob Devlin and\n",
+ "Ming{-}Wei Chang and\n",
+ "Kenton Lee and\n",
+ "Kristina Toutanova},\n",
+ "title = {{BERT:} Pre-training of Deep Bidirectional Transformers for Language\n",
+ "Understanding},\n",
+ "journal = {CoRR},\n",
+ "volume = {abs/1810.04805},\n",
+ "year = {2018},\n",
+ "url = {http://arxiv.org/abs/1810.04805},\n",
+ "archivePrefix = {arXiv},\n",
+ "eprint = {1810.04805},\n",
+ "timestamp = {Tue, 30 Oct 2018 20:39:56 +0100},\n",
+ "biburl = {https://dblp.org/rec/journals/corr/abs-1810-04805.bib},\n",
+ "bibsource = {dblp computer science bibliography, https://dblp.org}\n",
+ "}\n",
+ "```"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "8591ee7f",
+ "metadata": {},
+ "source": [
+ "> 此模型介绍及权重来源于 https://huggingface.co/bert-large-cased ,并转换为飞桨模型格式。"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3 (ipykernel)",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.7.13"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 5
+}
diff --git a/modelcenter/community/huggingface/bert-large-cased/introduction_en.ipynb b/modelcenter/community/huggingface/bert-large-cased/introduction_en.ipynb
new file mode 100644
index 0000000000000000000000000000000000000000..e4795deb48d985e3b7bcf1bf10b3ff9d7813cab5
--- /dev/null
+++ b/modelcenter/community/huggingface/bert-large-cased/introduction_en.ipynb
@@ -0,0 +1,185 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "id": "2460ffb6",
+ "metadata": {},
+ "source": [
+ "# BERT large model (cased)\n",
+ "\n",
+ "You can get more details from [Bert in PaddleNLP](https://github.com/PaddlePaddle/PaddleNLP/blob/develop/model_zoo/bert/README.md)。"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "07c2aecf",
+ "metadata": {},
+ "source": [
+ "Pretrained model on English language using a masked language modeling (MLM) objective. It was introduced in\n",
+ "[this paper](https://arxiv.org/abs/1810.04805) and first released in\n",
+ "[this repository](https://github.com/google-research/bert). This model is cased: it makes a difference\n",
+ "between english and English.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "fb6201f0",
+ "metadata": {},
+ "source": [
+ "Disclaimer: The team releasing BERT did not write a model card for this model so this model card has been written by\n",
+ "the Hugging Face team.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "ffd4c0b9",
+ "metadata": {},
+ "source": [
+ "## Model description\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "0b465123",
+ "metadata": {},
+ "source": [
+ "BERT is a transformers model pretrained on a large corpus of English data in a self-supervised fashion. This means it\n",
+ "was pretrained on the raw texts only, with no humans labelling them in any way (which is why it can use lots of\n",
+ "publicly available data) with an automatic process to generate inputs and labels from those texts. More precisely, it\n",
+ "was pretrained with two objectives:\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "7a5eb557",
+ "metadata": {},
+ "source": [
+ "- Masked language modeling (MLM): taking a sentence, the model randomly masks 15% of the words in the input then run\n",
+ "the entire masked sentence through the model and has to predict the masked words. This is different from traditional\n",
+ "recurrent neural networks (RNNs) that usually see the words one after the other, or from autoregressive models like\n",
+ "GPT which internally mask the future tokens. It allows the model to learn a bidirectional representation of the\n",
+ "sentence.\n",
+ "- Next sentence prediction (NSP): the models concatenates two masked sentences as inputs during pretraining. Sometimes\n",
+ "they correspond to sentences that were next to each other in the original text, sometimes not. The model then has to\n",
+ "predict if the two sentences were following each other or not.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "d40678bb",
+ "metadata": {},
+ "source": [
+ "This way, the model learns an inner representation of the English language that can then be used to extract features\n",
+ "useful for downstream tasks: if you have a dataset of labeled sentences for instance, you can train a standard\n",
+ "classifier using the features produced by the BERT model as inputs.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "8fc24335",
+ "metadata": {},
+ "source": [
+ "This model has the following configuration:\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "355e9553",
+ "metadata": {},
+ "source": [
+ "- 24-layer\n",
+ "- 1024 hidden dimension\n",
+ "- 16 attention heads\n",
+ "- 336M parameters.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "47e2e497",
+ "metadata": {},
+ "source": [
+ "## How to use"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "c4d80b50",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "!pip install --upgrade paddlenlp"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "f73f3925",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import paddle\n",
+ "from paddlenlp.transformers import AutoModel\n",
+ "\n",
+ "model = AutoModel.from_pretrained(\"bert-large-cased\")\n",
+ "input_ids = paddle.randint(100, 200, shape=[1, 20])\n",
+ "print(model(input_ids))"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "2873617b",
+ "metadata": {},
+ "source": [
+ "```\n",
+ "@article{DBLP:journals/corr/abs-1810-04805,\n",
+ "author = {Jacob Devlin and\n",
+ "Ming{-}Wei Chang and\n",
+ "Kenton Lee and\n",
+ "Kristina Toutanova},\n",
+ "title = {{BERT:} Pre-training of Deep Bidirectional Transformers for Language\n",
+ "Understanding},\n",
+ "journal = {CoRR},\n",
+ "volume = {abs/1810.04805},\n",
+ "year = {2018},\n",
+ "url = {http://arxiv.org/abs/1810.04805},\n",
+ "archivePrefix = {arXiv},\n",
+ "eprint = {1810.04805},\n",
+ "timestamp = {Tue, 30 Oct 2018 20:39:56 +0100},\n",
+ "biburl = {https://dblp.org/rec/journals/corr/abs-1810-04805.bib},\n",
+ "bibsource = {dblp computer science bibliography, https://dblp.org}\n",
+ "}\n",
+ "```"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "bc4aea4d",
+ "metadata": {},
+ "source": [
+ "> The model introduction and model weights originate from https://huggingface.co/bert-large-cased and were converted to PaddlePaddle format for ease of use in PaddleNLP."
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3 (ipykernel)",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.7.13"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 5
+}
diff --git a/modelcenter/community/huggingface/bert-large-uncased-whole-word-masking-finetuned-squad/info.yaml b/modelcenter/community/huggingface/bert-large-uncased-whole-word-masking-finetuned-squad/info.yaml
index 0a4f922ce0c6eaf7c85e482b4e24052453782806..a7510ff89948ad0e522ca44fc6ab4881605c3e34 100644
--- a/modelcenter/community/huggingface/bert-large-uncased-whole-word-masking-finetuned-squad/info.yaml
+++ b/modelcenter/community/huggingface/bert-large-uncased-whole-word-masking-finetuned-squad/info.yaml
@@ -1,24 +1,21 @@
+Datasets: bookcorpus,wikipedia
+Example: null
+IfOnlineDemo: 0
+IfTraining: 0
+Language: English
+License: apache-2.0
Model_Info:
- name: "bert-large-uncased-whole-word-masking-finetuned-squad"
- description: "BERT large model (uncased) whole word masking finetuned on SQuAD"
- description_en: "BERT large model (uncased) whole word masking finetuned on SQuAD"
- icon: ""
- from_repo: "https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad"
-
-Task:
-- tag_en: "Natural Language Processing"
- tag: "自然语言处理"
- sub_tag_en: "Question Answering"
- sub_tag: "回答问题"
-
-Example:
-
-Datasets: "bookcorpus,wikipedia"
-Publisher: "huggingface"
-License: "apache-2.0"
-Language: "English"
+ description: BERT large model (uncased) whole word masking finetuned on SQuAD
+ description_en: BERT large model (uncased) whole word masking finetuned on SQuAD
+ from_repo: https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad
+ icon: https://paddlenlp.bj.bcebos.com/models/community/transformer-layer.png
+ name: bert-large-uncased-whole-word-masking-finetuned-squad
Paper:
- - title: 'BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding'
- url: 'http://arxiv.org/abs/1810.04805v2'
-IfTraining: 0
-IfOnlineDemo: 0
\ No newline at end of file
+- title: 'BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding'
+ url: http://arxiv.org/abs/1810.04805v2
+Publisher: huggingface
+Task:
+- sub_tag: 回答问题
+ sub_tag_en: Question Answering
+ tag: 自然语言处理
+ tag_en: Natural Language Processing
diff --git a/modelcenter/community/huggingface/bert-large-uncased-whole-word-masking-finetuned-squad/introduction_cn.ipynb b/modelcenter/community/huggingface/bert-large-uncased-whole-word-masking-finetuned-squad/introduction_cn.ipynb
new file mode 100644
index 0000000000000000000000000000000000000000..93f59ac901661ad2b3b257d91132f020bfd51694
--- /dev/null
+++ b/modelcenter/community/huggingface/bert-large-uncased-whole-word-masking-finetuned-squad/introduction_cn.ipynb
@@ -0,0 +1,207 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "id": "aad9532a",
+ "metadata": {},
+ "source": [
+ "# BERT large model (uncased) whole word masking finetuned on SQuAD\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "724df271",
+ "metadata": {},
+ "source": [
+ "Pretrained model on English language using a masked language modeling (MLM) objective. It was introduced in\n",
+ "[this paper](https://arxiv.org/abs/1810.04805) and first released in\n",
+ "[this repository](https://github.com/google-research/bert). This model is uncased: it does not make a difference\n",
+ "between english and English.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "f2b9e3bf",
+ "metadata": {},
+ "source": [
+ "Differently to other BERT models, this model was trained with a new technique: Whole Word Masking. In this case, all of the tokens corresponding to a word are masked at once. The overall masking rate remains the same.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "6566eb12",
+ "metadata": {},
+ "source": [
+ "The training is identical -- each masked WordPiece token is predicted independently.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "7b45422b",
+ "metadata": {},
+ "source": [
+ "After pre-training, this model was fine-tuned on the SQuAD dataset with one of our fine-tuning scripts. See below for more information regarding this fine-tuning.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "c9957f91",
+ "metadata": {},
+ "source": [
+ "Disclaimer: The team releasing BERT did not write a model card for this model so this model card has been written by\n",
+ "the Hugging Face team.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "43cba468",
+ "metadata": {},
+ "source": [
+ "## Model description\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "457bfeee",
+ "metadata": {},
+ "source": [
+ "BERT is a transformers model pretrained on a large corpus of English data in a self-supervised fashion. This means it\n",
+ "was pretrained on the raw texts only, with no humans labelling them in any way (which is why it can use lots of\n",
+ "publicly available data) with an automatic process to generate inputs and labels from those texts. More precisely, it\n",
+ "was pretrained with two objectives:\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "77c83270",
+ "metadata": {},
+ "source": [
+ "- Masked language modeling (MLM): taking a sentence, the model randomly masks 15% of the words in the input then run\n",
+ "the entire masked sentence through the model and has to predict the masked words. This is different from traditional\n",
+ "recurrent neural networks (RNNs) that usually see the words one after the other, or from autoregressive models like\n",
+ "GPT which internally mask the future tokens. It allows the model to learn a bidirectional representation of the\n",
+ "sentence.\n",
+ "- Next sentence prediction (NSP): the models concatenates two masked sentences as inputs during pretraining. Sometimes\n",
+ "they correspond to sentences that were next to each other in the original text, sometimes not. The model then has to\n",
+ "predict if the two sentences were following each other or not.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "0ba87de6",
+ "metadata": {},
+ "source": [
+ "This way, the model learns an inner representation of the English language that can then be used to extract features\n",
+ "useful for downstream tasks: if you have a dataset of labeled sentences for instance, you can train a standard\n",
+ "classifier using the features produced by the BERT model as inputs.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "f363132f",
+ "metadata": {},
+ "source": [
+ "This model has the following configuration:\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "83a4e49f",
+ "metadata": {},
+ "source": [
+ "- 24-layer\n",
+ "- 1024 hidden dimension\n",
+ "- 16 attention heads\n",
+ "- 336M parameters.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "68565c6d",
+ "metadata": {},
+ "source": [
+ "## How to use"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "457a1c54",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "!pip install --upgrade paddlenlp"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "a9369c0d",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import paddle\n",
+ "from paddlenlp.transformers import AutoModel\n",
+ "\n",
+ "model = AutoModel.from_pretrained(\"bert-large-uncased-whole-word-masking-finetuned-squad\")\n",
+ "input_ids = paddle.randint(100, 200, shape=[1, 20])\n",
+ "print(model(input_ids))"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "c5fefb8f",
+ "metadata": {},
+ "source": [
+ "```\n",
+ "@article{DBLP:journals/corr/abs-1810-04805,\n",
+ "author = {Jacob Devlin and\n",
+ "Ming{-}Wei Chang and\n",
+ "Kenton Lee and\n",
+ "Kristina Toutanova},\n",
+ "title = {{BERT:} Pre-training of Deep Bidirectional Transformers for Language\n",
+ "Understanding},\n",
+ "journal = {CoRR},\n",
+ "volume = {abs/1810.04805},\n",
+ "year = {2018},\n",
+ "url = {http://arxiv.org/abs/1810.04805},\n",
+ "archivePrefix = {arXiv},\n",
+ "eprint = {1810.04805},\n",
+ "timestamp = {Tue, 30 Oct 2018 20:39:56 +0100},\n",
+ "biburl = {https://dblp.org/rec/journals/corr/abs-1810-04805.bib},\n",
+ "bibsource = {dblp computer science bibliography, https://dblp.org}\n",
+ "}\n",
+ "```"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "654c0920",
+ "metadata": {},
+ "source": [
+ "> 此模型介绍及权重来源于 https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad ,并转换为飞桨模型格式。\n"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3 (ipykernel)",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.7.13"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 5
+}
diff --git a/modelcenter/community/huggingface/bert-large-uncased-whole-word-masking-finetuned-squad/introduction_en.ipynb b/modelcenter/community/huggingface/bert-large-uncased-whole-word-masking-finetuned-squad/introduction_en.ipynb
new file mode 100644
index 0000000000000000000000000000000000000000..f940e0507bd429a93b177b3db9bbf91575fb540f
--- /dev/null
+++ b/modelcenter/community/huggingface/bert-large-uncased-whole-word-masking-finetuned-squad/introduction_en.ipynb
@@ -0,0 +1,209 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "id": "2d4f4368",
+ "metadata": {},
+ "source": [
+ "# BERT large model (uncased) whole word masking finetuned on SQuAD\n",
+ "\n",
+ "You can get more details from [Bert in PaddleNLP](https://github.com/PaddlePaddle/PaddleNLP/blob/develop/model_zoo/bert/README.md)。"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "afef45e0",
+ "metadata": {},
+ "source": [
+ "Pretrained model on English language using a masked language modeling (MLM) objective. It was introduced in\n",
+ "[this paper](https://arxiv.org/abs/1810.04805) and first released in\n",
+ "[this repository](https://github.com/google-research/bert). This model is uncased: it does not make a difference\n",
+ "between english and English.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "c94536b9",
+ "metadata": {},
+ "source": [
+ "Differently to other BERT models, this model was trained with a new technique: Whole Word Masking. In this case, all of the tokens corresponding to a word are masked at once. The overall masking rate remains the same.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "50254dea",
+ "metadata": {},
+ "source": [
+ "The training is identical -- each masked WordPiece token is predicted independently.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "4b482be9",
+ "metadata": {},
+ "source": [
+ "After pre-training, this model was fine-tuned on the SQuAD dataset with one of our fine-tuning scripts. See below for more information regarding this fine-tuning.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "adfc36af",
+ "metadata": {},
+ "source": [
+ "Disclaimer: The team releasing BERT did not write a model card for this model so this model card has been written by\n",
+ "the Hugging Face team.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "22f554a7",
+ "metadata": {},
+ "source": [
+ "## Model description\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "eccd3048",
+ "metadata": {},
+ "source": [
+ "BERT is a transformers model pretrained on a large corpus of English data in a self-supervised fashion. This means it\n",
+ "was pretrained on the raw texts only, with no humans labelling them in any way (which is why it can use lots of\n",
+ "publicly available data) with an automatic process to generate inputs and labels from those texts. More precisely, it\n",
+ "was pretrained with two objectives:\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "3d4098e8",
+ "metadata": {},
+ "source": [
+ "- Masked language modeling (MLM): taking a sentence, the model randomly masks 15% of the words in the input then run\n",
+ "the entire masked sentence through the model and has to predict the masked words. This is different from traditional\n",
+ "recurrent neural networks (RNNs) that usually see the words one after the other, or from autoregressive models like\n",
+ "GPT which internally mask the future tokens. It allows the model to learn a bidirectional representation of the\n",
+ "sentence.\n",
+ "- Next sentence prediction (NSP): the models concatenates two masked sentences as inputs during pretraining. Sometimes\n",
+ "they correspond to sentences that were next to each other in the original text, sometimes not. The model then has to\n",
+ "predict if the two sentences were following each other or not.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "1047d1ad",
+ "metadata": {},
+ "source": [
+ "This way, the model learns an inner representation of the English language that can then be used to extract features\n",
+ "useful for downstream tasks: if you have a dataset of labeled sentences for instance, you can train a standard\n",
+ "classifier using the features produced by the BERT model as inputs.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "7046db0c",
+ "metadata": {},
+ "source": [
+ "This model has the following configuration:\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "09659088",
+ "metadata": {},
+ "source": [
+ "- 24-layer\n",
+ "- 1024 hidden dimension\n",
+ "- 16 attention heads\n",
+ "- 336M parameters.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "65769919",
+ "metadata": {},
+ "source": [
+ "## How to use\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "4449cfac",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "!pip install --upgrade paddlenlp"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "1e8dcf70",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import paddle\n",
+ "from paddlenlp.transformers import AutoModel\n",
+ "\n",
+ "model = AutoModel.from_pretrained(\"bert-large-uncased-whole-word-masking-finetuned-squad\")\n",
+ "input_ids = paddle.randint(100, 200, shape=[1, 20])\n",
+ "print(model(input_ids))"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "49471f4b",
+ "metadata": {},
+ "source": [
+ "```\n",
+ "@article{DBLP:journals/corr/abs-1810-04805,\n",
+ "author = {Jacob Devlin and\n",
+ "Ming{-}Wei Chang and\n",
+ "Kenton Lee and\n",
+ "Kristina Toutanova},\n",
+ "title = {{BERT:} Pre-training of Deep Bidirectional Transformers for Language\n",
+ "Understanding},\n",
+ "journal = {CoRR},\n",
+ "volume = {abs/1810.04805},\n",
+ "year = {2018},\n",
+ "url = {http://arxiv.org/abs/1810.04805},\n",
+ "archivePrefix = {arXiv},\n",
+ "eprint = {1810.04805},\n",
+ "timestamp = {Tue, 30 Oct 2018 20:39:56 +0100},\n",
+ "biburl = {https://dblp.org/rec/journals/corr/abs-1810-04805.bib},\n",
+ "bibsource = {dblp computer science bibliography, https://dblp.org}\n",
+ "}\n",
+ "```"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "d783c8fc",
+ "metadata": {},
+ "source": [
+ "> The model introduction and model weights originate from https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad and were converted to PaddlePaddle format for ease of use in PaddleNLP.\n"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3 (ipykernel)",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.7.13"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 5
+}
diff --git a/modelcenter/community/huggingface/bert-large-uncased-whole-word-masking/info.yaml b/modelcenter/community/huggingface/bert-large-uncased-whole-word-masking/info.yaml
index 82a56eb146ec48c7e16e2e11395c6e47c3153c1e..8629aba00fdf3defb1d617d8d1c0fb01ad2fb277 100644
--- a/modelcenter/community/huggingface/bert-large-uncased-whole-word-masking/info.yaml
+++ b/modelcenter/community/huggingface/bert-large-uncased-whole-word-masking/info.yaml
@@ -1,24 +1,21 @@
+Datasets: bookcorpus,wikipedia
+Example: null
+IfOnlineDemo: 0
+IfTraining: 0
+Language: English
+License: apache-2.0
Model_Info:
- name: "bert-large-uncased-whole-word-masking"
- description: "BERT large model (uncased) whole word masking"
- description_en: "BERT large model (uncased) whole word masking"
- icon: ""
- from_repo: "https://huggingface.co/bert-large-uncased-whole-word-masking"
-
-Task:
-- tag_en: "Natural Language Processing"
- tag: "自然语言处理"
- sub_tag_en: "Fill-Mask"
- sub_tag: "槽位填充"
-
-Example:
-
-Datasets: "bookcorpus,wikipedia"
-Publisher: "huggingface"
-License: "apache-2.0"
-Language: "English"
+ description: BERT large model (uncased) whole word masking
+ description_en: BERT large model (uncased) whole word masking
+ from_repo: https://huggingface.co/bert-large-uncased-whole-word-masking
+ icon: https://paddlenlp.bj.bcebos.com/models/community/transformer-layer.png
+ name: bert-large-uncased-whole-word-masking
Paper:
- - title: 'BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding'
- url: 'http://arxiv.org/abs/1810.04805v2'
-IfTraining: 0
-IfOnlineDemo: 0
\ No newline at end of file
+- title: 'BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding'
+ url: http://arxiv.org/abs/1810.04805v2
+Publisher: huggingface
+Task:
+- sub_tag: 槽位填充
+ sub_tag_en: Fill-Mask
+ tag: 自然语言处理
+ tag_en: Natural Language Processing
diff --git a/modelcenter/community/huggingface/bert-large-uncased-whole-word-masking/introduction_cn.ipynb b/modelcenter/community/huggingface/bert-large-uncased-whole-word-masking/introduction_cn.ipynb
new file mode 100644
index 0000000000000000000000000000000000000000..a686b3e044f116a0e97110f531216d95db0a8ade
--- /dev/null
+++ b/modelcenter/community/huggingface/bert-large-uncased-whole-word-masking/introduction_cn.ipynb
@@ -0,0 +1,201 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "id": "cf43e770",
+ "metadata": {},
+ "source": [
+ "# BERT large model (uncased) whole word masking\n",
+ "\n",
+ "详细内容请看[Bert in PaddleNLP](https://github.com/PaddlePaddle/PaddleNLP/blob/develop/model_zoo/bert/README.md)。"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "af8c3816",
+ "metadata": {},
+ "source": [
+ "Pretrained model on English language using a masked language modeling (MLM) objective. It was introduced in\n",
+ "[this paper](https://arxiv.org/abs/1810.04805) and first released in\n",
+ "[this repository](https://github.com/google-research/bert). This model is uncased: it does not make a difference\n",
+ "between english and English.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "c103e84b",
+ "metadata": {},
+ "source": [
+ "Differently to other BERT models, this model was trained with a new technique: Whole Word Masking. In this case, all of the tokens corresponding to a word are masked at once. The overall masking rate remains the same.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "19a76368",
+ "metadata": {},
+ "source": [
+ "The training is identical -- each masked WordPiece token is predicted independently.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "67f11a2c",
+ "metadata": {},
+ "source": [
+ "Disclaimer: The team releasing BERT did not write a model card for this model so this model card has been written by\n",
+ "the Hugging Face team.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "778cf97d",
+ "metadata": {},
+ "source": [
+ "## Model description\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "dddbb307",
+ "metadata": {},
+ "source": [
+ "BERT is a transformers model pretrained on a large corpus of English data in a self-supervised fashion. This means it\n",
+ "was pretrained on the raw texts only, with no humans labelling them in any way (which is why it can use lots of\n",
+ "publicly available data) with an automatic process to generate inputs and labels from those texts. More precisely, it\n",
+ "was pretrained with two objectives:\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "40becad1",
+ "metadata": {},
+ "source": [
+ "- Masked language modeling (MLM): taking a sentence, the model randomly masks 15% of the words in the input then run\n",
+ "the entire masked sentence through the model and has to predict the masked words. This is different from traditional\n",
+ "recurrent neural networks (RNNs) that usually see the words one after the other, or from autoregressive models like\n",
+ "GPT which internally mask the future tokens. It allows the model to learn a bidirectional representation of the\n",
+ "sentence.\n",
+ "- Next sentence prediction (NSP): the models concatenates two masked sentences as inputs during pretraining. Sometimes\n",
+ "they correspond to sentences that were next to each other in the original text, sometimes not. The model then has to\n",
+ "predict if the two sentences were following each other or not.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "3fc265b6",
+ "metadata": {},
+ "source": [
+ "This way, the model learns an inner representation of the English language that can then be used to extract features\n",
+ "useful for downstream tasks: if you have a dataset of labeled sentences for instance, you can train a standard\n",
+ "classifier using the features produced by the BERT model as inputs.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "65e4a308",
+ "metadata": {},
+ "source": [
+ "This model has the following configuration:\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "6d0b86c1",
+ "metadata": {},
+ "source": [
+ "- 24-layer\n",
+ "- 1024 hidden dimension\n",
+ "- 16 attention heads\n",
+ "- 336M parameters.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "dd94b8be",
+ "metadata": {},
+ "source": [
+ "## How to use\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "bc669f99",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "!pip install --upgrade paddlenlp"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "4580650d",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import paddle\n",
+ "from paddlenlp.transformers import AutoModel\n",
+ "\n",
+ "model = AutoModel.from_pretrained(\"bert-large-uncased-whole-word-masking\")\n",
+ "input_ids = paddle.randint(100, 200, shape=[1, 20])\n",
+ "print(model(input_ids))"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "475fd35d",
+ "metadata": {},
+ "source": [
+ "```\n",
+ "@article{DBLP:journals/corr/abs-1810-04805,\n",
+ "author = {Jacob Devlin and\n",
+ "Ming{-}Wei Chang and\n",
+ "Kenton Lee and\n",
+ "Kristina Toutanova},\n",
+ "title = {{BERT:} Pre-training of Deep Bidirectional Transformers for Language\n",
+ "Understanding},\n",
+ "journal = {CoRR},\n",
+ "volume = {abs/1810.04805},\n",
+ "year = {2018},\n",
+ "url = {http://arxiv.org/abs/1810.04805},\n",
+ "archivePrefix = {arXiv},\n",
+ "eprint = {1810.04805},\n",
+ "timestamp = {Tue, 30 Oct 2018 20:39:56 +0100},\n",
+ "biburl = {https://dblp.org/rec/journals/corr/abs-1810-04805.bib},\n",
+ "bibsource = {dblp computer science bibliography, https://dblp.org}\n",
+ "}\n",
+ "```"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "f09b9b09",
+ "metadata": {},
+ "source": [
+ "> 此模型介绍及权重来源于 https://huggingface.co/bert-large-uncased-whole-word-masking ,并转换为飞桨模型格式。\n"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3 (ipykernel)",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.7.13"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 5
+}
diff --git a/modelcenter/community/huggingface/bert-large-uncased-whole-word-masking/introduction_en.ipynb b/modelcenter/community/huggingface/bert-large-uncased-whole-word-masking/introduction_en.ipynb
new file mode 100644
index 0000000000000000000000000000000000000000..2557af1b7380a8c89ec582d5db454cf9f85308c8
--- /dev/null
+++ b/modelcenter/community/huggingface/bert-large-uncased-whole-word-masking/introduction_en.ipynb
@@ -0,0 +1,237 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "id": "ceefe52d",
+ "metadata": {},
+ "source": [
+ "# BERT large model (uncased) whole word masking\n",
+ "\n",
+ "You can get more details from [Bert in PaddleNLP](https://github.com/PaddlePaddle/PaddleNLP/blob/develop/model_zoo/bert/README.md)。"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "14552c09",
+ "metadata": {},
+ "source": [
+ "Pretrained model on English language using a masked language modeling (MLM) objective. It was introduced in\n",
+ "[this paper](https://arxiv.org/abs/1810.04805) and first released in\n",
+ "[this repository](https://github.com/google-research/bert). This model is uncased: it does not make a difference\n",
+ "between english and English.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "78d1e4a0",
+ "metadata": {},
+ "source": [
+ "Differently to other BERT models, this model was trained with a new technique: Whole Word Masking. In this case, all of the tokens corresponding to a word are masked at once. The overall masking rate remains the same.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "cdbe484a",
+ "metadata": {},
+ "source": [
+ "The training is identical -- each masked WordPiece token is predicted independently.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "fdbba80d",
+ "metadata": {},
+ "source": [
+ "Disclaimer: The team releasing BERT did not write a model card for this model so this model card has been written by\n",
+ "the Hugging Face team.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "aba33624",
+ "metadata": {},
+ "source": [
+ "## Model description\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "459ca6e6",
+ "metadata": {},
+ "source": [
+ "BERT is a transformers model pretrained on a large corpus of English data in a self-supervised fashion. This means it\n",
+ "was pretrained on the raw texts only, with no humans labelling them in any way (which is why it can use lots of\n",
+ "publicly available data) with an automatic process to generate inputs and labels from those texts. More precisely, it\n",
+ "was pretrained with two objectives:\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "65f2ae1a",
+ "metadata": {},
+ "source": [
+ "- Masked language modeling (MLM): taking a sentence, the model randomly masks 15% of the words in the input then run\n",
+ "the entire masked sentence through the model and has to predict the masked words. This is different from traditional\n",
+ "recurrent neural networks (RNNs) that usually see the words one after the other, or from autoregressive models like\n",
+ "GPT which internally mask the future tokens. It allows the model to learn a bidirectional representation of the\n",
+ "sentence.\n",
+ "- Next sentence prediction (NSP): the models concatenates two masked sentences as inputs during pretraining. Sometimes\n",
+ "they correspond to sentences that were next to each other in the original text, sometimes not. The model then has to\n",
+ "predict if the two sentences were following each other or not.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "86e8d7eb",
+ "metadata": {},
+ "source": [
+ "This way, the model learns an inner representation of the English language that can then be used to extract features\n",
+ "useful for downstream tasks: if you have a dataset of labeled sentences for instance, you can train a standard\n",
+ "classifier using the features produced by the BERT model as inputs.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "b81821d8",
+ "metadata": {},
+ "source": [
+ "This model has the following configuration:\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "3a576172",
+ "metadata": {},
+ "source": [
+ "- 24-layer\n",
+ "- 1024 hidden dimension\n",
+ "- 16 attention heads\n",
+ "- 336M parameters.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "0038f06c",
+ "metadata": {},
+ "source": [
+ "## Intended uses & limitations\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "ba8c18de",
+ "metadata": {},
+ "source": [
+ "You can use the raw model for either masked language modeling or next sentence prediction, but it's mostly intended to\n",
+ "be fine-tuned on a downstream task. See the [model hub](https://huggingface.co/models?filter=bert) to look for\n",
+ "fine-tuned versions on a task that interests you.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "bb72ad39",
+ "metadata": {},
+ "source": [
+ "Note that this model is primarily aimed at being fine-tuned on tasks that use the whole sentence (potentially masked)\n",
+ "to make decisions, such as sequence classification, token classification or question answering. For tasks such as text\n",
+ "generation you should look at model like GPT2.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "54b59ca8",
+ "metadata": {},
+ "source": [
+ "### How to use\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "a0ff2a80",
+ "metadata": {},
+ "source": [
+ "You can use this model directly with a pipeline for masked language modeling:\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "990ce14a",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "!pip install --upgrade paddlenlp"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "7d468ffb",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import paddle\n",
+ "from paddlenlp.transformers import AutoModel\n",
+ "\n",
+ "model = AutoModel.from_pretrained(\"bert-large-uncased-whole-word-masking\")\n",
+ "input_ids = paddle.randint(100, 200, shape=[1, 20])\n",
+ "print(model(input_ids))"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "93d6e9e4",
+ "metadata": {},
+ "source": [
+ "```\n",
+ "@article{DBLP:journals/corr/abs-1810-04805,\n",
+ "author = {Jacob Devlin and\n",
+ "Ming{-}Wei Chang and\n",
+ "Kenton Lee and\n",
+ "Kristina Toutanova},\n",
+ "title = {{BERT:} Pre-training of Deep Bidirectional Transformers for Language\n",
+ "Understanding},\n",
+ "journal = {CoRR},\n",
+ "volume = {abs/1810.04805},\n",
+ "year = {2018},\n",
+ "url = {http://arxiv.org/abs/1810.04805},\n",
+ "archivePrefix = {arXiv},\n",
+ "eprint = {1810.04805},\n",
+ "timestamp = {Tue, 30 Oct 2018 20:39:56 +0100},\n",
+ "biburl = {https://dblp.org/rec/journals/corr/abs-1810-04805.bib},\n",
+ "bibsource = {dblp computer science bibliography, https://dblp.org}\n",
+ "}\n",
+ "```"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "c9d05272",
+ "metadata": {},
+ "source": [
+ "> The model introduction and model weights originate from https://huggingface.co/bert-large-uncased-whole-word-masking and were converted to PaddlePaddle format for ease of use in PaddleNLP.\n"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3 (ipykernel)",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.7.13"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 5
+}
diff --git a/modelcenter/community/huggingface/bert-large-uncased/info.yaml b/modelcenter/community/huggingface/bert-large-uncased/info.yaml
index 41677ffce758b0633b47856575eb021bd5c447c9..cf05a3fbf7b8dcd1bdfefbbc7153f62634384a76 100644
--- a/modelcenter/community/huggingface/bert-large-uncased/info.yaml
+++ b/modelcenter/community/huggingface/bert-large-uncased/info.yaml
@@ -1,24 +1,21 @@
+Datasets: bookcorpus,wikipedia
+Example: null
+IfOnlineDemo: 0
+IfTraining: 0
+Language: English
+License: apache-2.0
Model_Info:
- name: "bert-large-uncased"
- description: "BERT large model (uncased)"
- description_en: "BERT large model (uncased)"
- icon: ""
- from_repo: "https://huggingface.co/bert-large-uncased"
-
-Task:
-- tag_en: "Natural Language Processing"
- tag: "自然语言处理"
- sub_tag_en: "Fill-Mask"
- sub_tag: "槽位填充"
-
-Example:
-
-Datasets: "bookcorpus,wikipedia"
-Publisher: "huggingface"
-License: "apache-2.0"
-Language: "English"
+ description: BERT large model (uncased)
+ description_en: BERT large model (uncased)
+ from_repo: https://huggingface.co/bert-large-uncased
+ icon: https://paddlenlp.bj.bcebos.com/models/community/transformer-layer.png
+ name: bert-large-uncased
Paper:
- - title: 'BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding'
- url: 'http://arxiv.org/abs/1810.04805v2'
-IfTraining: 0
-IfOnlineDemo: 0
\ No newline at end of file
+- title: 'BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding'
+ url: http://arxiv.org/abs/1810.04805v2
+Publisher: huggingface
+Task:
+- sub_tag: 槽位填充
+ sub_tag_en: Fill-Mask
+ tag: 自然语言处理
+ tag_en: Natural Language Processing
diff --git a/modelcenter/community/huggingface/bert-large-uncased/introduction_cn.ipynb b/modelcenter/community/huggingface/bert-large-uncased/introduction_cn.ipynb
new file mode 100644
index 0000000000000000000000000000000000000000..dabec910400bdd371124930fa38dc05f9b0aef9e
--- /dev/null
+++ b/modelcenter/community/huggingface/bert-large-uncased/introduction_cn.ipynb
@@ -0,0 +1,185 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "id": "c000df74",
+ "metadata": {},
+ "source": [
+ "# BERT large model (uncased)\n",
+ "\n",
+ "详细内容请看[Bert in PaddleNLP](https://github.com/PaddlePaddle/PaddleNLP/blob/develop/model_zoo/bert/README.md)。"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "bd7436a9",
+ "metadata": {},
+ "source": [
+ "Pretrained model on English language using a masked language modeling (MLM) objective. It was introduced in\n",
+ "[this paper](https://arxiv.org/abs/1810.04805) and first released in\n",
+ "[this repository](https://github.com/google-research/bert). This model is uncased: it does not make a difference\n",
+ "between english and English.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "87c430c2",
+ "metadata": {},
+ "source": [
+ "Disclaimer: The team releasing BERT did not write a model card for this model so this model card has been written by\n",
+ "the Hugging Face team.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "e2004f07",
+ "metadata": {},
+ "source": [
+ "## Model description\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "ad86c301",
+ "metadata": {},
+ "source": [
+ "BERT is a transformers model pretrained on a large corpus of English data in a self-supervised fashion. This means it\n",
+ "was pretrained on the raw texts only, with no humans labelling them in any way (which is why it can use lots of\n",
+ "publicly available data) with an automatic process to generate inputs and labels from those texts. More precisely, it\n",
+ "was pretrained with two objectives:\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "8f12ab3c",
+ "metadata": {},
+ "source": [
+ "- Masked language modeling (MLM): taking a sentence, the model randomly masks 15% of the words in the input then run\n",
+ "the entire masked sentence through the model and has to predict the masked words. This is different from traditional\n",
+ "recurrent neural networks (RNNs) that usually see the words one after the other, or from autoregressive models like\n",
+ "GPT which internally mask the future tokens. It allows the model to learn a bidirectional representation of the\n",
+ "sentence.\n",
+ "- Next sentence prediction (NSP): the models concatenates two masked sentences as inputs during pretraining. Sometimes\n",
+ "they correspond to sentences that were next to each other in the original text, sometimes not. The model then has to\n",
+ "predict if the two sentences were following each other or not.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "3fc80525",
+ "metadata": {},
+ "source": [
+ "This way, the model learns an inner representation of the English language that can then be used to extract features\n",
+ "useful for downstream tasks: if you have a dataset of labeled sentences for instance, you can train a standard\n",
+ "classifier using the features produced by the BERT model as inputs.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "c31d15b4",
+ "metadata": {},
+ "source": [
+ "This model has the following configuration:\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "822f7f40",
+ "metadata": {},
+ "source": [
+ "- 24-layer\n",
+ "- 1024 hidden dimension\n",
+ "- 16 attention heads\n",
+ "- 336M parameters.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "7fcdeb04",
+ "metadata": {},
+ "source": [
+ "## How to use\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "db4ceaa3",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "!pip install --upgrade paddlenlp"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "dc6a0473",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import paddle\n",
+ "from paddlenlp.transformers import AutoModel\n",
+ "\n",
+ "model = AutoModel.from_pretrained(\"bert-large-uncased\")\n",
+ "input_ids = paddle.randint(100, 200, shape=[1, 20])\n",
+ "print(model(input_ids))"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "1156d387",
+ "metadata": {},
+ "source": [
+ "```\n",
+ "@article{DBLP:journals/corr/abs-1810-04805,\n",
+ "author = {Jacob Devlin and\n",
+ "Ming{-}Wei Chang and\n",
+ "Kenton Lee and\n",
+ "Kristina Toutanova},\n",
+ "title = {{BERT:} Pre-training of Deep Bidirectional Transformers for Language\n",
+ "Understanding},\n",
+ "journal = {CoRR},\n",
+ "volume = {abs/1810.04805},\n",
+ "year = {2018},\n",
+ "url = {http://arxiv.org/abs/1810.04805},\n",
+ "archivePrefix = {arXiv},\n",
+ "eprint = {1810.04805},\n",
+ "timestamp = {Tue, 30 Oct 2018 20:39:56 +0100},\n",
+ "biburl = {https://dblp.org/rec/journals/corr/abs-1810-04805.bib},\n",
+ "bibsource = {dblp computer science bibliography, https://dblp.org}\n",
+ "}\n",
+ "```"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "9d07ca08",
+ "metadata": {},
+ "source": [
+ "> 此模型介绍及权重来源于 https://huggingface.co/bert-large-uncased ,并转换为飞桨模型格式。"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3 (ipykernel)",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.7.13"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 5
+}
diff --git a/modelcenter/community/huggingface/bert-large-uncased/introduction_en.ipynb b/modelcenter/community/huggingface/bert-large-uncased/introduction_en.ipynb
new file mode 100644
index 0000000000000000000000000000000000000000..e73afd86ee3beb204455b3bea22d66b68ea2c529
--- /dev/null
+++ b/modelcenter/community/huggingface/bert-large-uncased/introduction_en.ipynb
@@ -0,0 +1,185 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "id": "a4fae520",
+ "metadata": {},
+ "source": [
+ "# BERT large model (uncased)\n",
+ "\n",
+ "You can get more details from [Bert in PaddleNLP](https://github.com/PaddlePaddle/PaddleNLP/blob/develop/model_zoo/bert/README.md)。"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "c410d1ae",
+ "metadata": {},
+ "source": [
+ "Pretrained model on English language using a masked language modeling (MLM) objective. It was introduced in\n",
+ "[this paper](https://arxiv.org/abs/1810.04805) and first released in\n",
+ "[this repository](https://github.com/google-research/bert). This model is uncased: it does not make a difference\n",
+ "between english and English.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "40166ab8",
+ "metadata": {},
+ "source": [
+ "Disclaimer: The team releasing BERT did not write a model card for this model so this model card has been written by\n",
+ "the Hugging Face team.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "dacb968e",
+ "metadata": {},
+ "source": [
+ "## Model description\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "c519206d",
+ "metadata": {},
+ "source": [
+ "BERT is a transformers model pretrained on a large corpus of English data in a self-supervised fashion. This means it\n",
+ "was pretrained on the raw texts only, with no humans labelling them in any way (which is why it can use lots of\n",
+ "publicly available data) with an automatic process to generate inputs and labels from those texts. More precisely, it\n",
+ "was pretrained with two objectives:\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "2dd87a78",
+ "metadata": {},
+ "source": [
+ "- Masked language modeling (MLM): taking a sentence, the model randomly masks 15% of the words in the input then run\n",
+ "the entire masked sentence through the model and has to predict the masked words. This is different from traditional\n",
+ "recurrent neural networks (RNNs) that usually see the words one after the other, or from autoregressive models like\n",
+ "GPT which internally mask the future tokens. It allows the model to learn a bidirectional representation of the\n",
+ "sentence.\n",
+ "- Next sentence prediction (NSP): the models concatenates two masked sentences as inputs during pretraining. Sometimes\n",
+ "they correspond to sentences that were next to each other in the original text, sometimes not. The model then has to\n",
+ "predict if the two sentences were following each other or not.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "507ce60a",
+ "metadata": {},
+ "source": [
+ "This way, the model learns an inner representation of the English language that can then be used to extract features\n",
+ "useful for downstream tasks: if you have a dataset of labeled sentences for instance, you can train a standard\n",
+ "classifier using the features produced by the BERT model as inputs.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "7fb7a8a0",
+ "metadata": {},
+ "source": [
+ "This model has the following configuration:\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "ebe2c593",
+ "metadata": {},
+ "source": [
+ "- 24-layer\n",
+ "- 1024 hidden dimension\n",
+ "- 16 attention heads\n",
+ "- 336M parameters.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "547e3cc8",
+ "metadata": {},
+ "source": [
+ "## How to use\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "669cb05f",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "!pip install --upgrade paddlenlp"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "09a4bc02",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import paddle\n",
+ "from paddlenlp.transformers import AutoModel\n",
+ "\n",
+ "model = AutoModel.from_pretrained(\"bert-large-uncased\")\n",
+ "input_ids = paddle.randint(100, 200, shape=[1, 20])\n",
+ "print(model(input_ids))"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "3ae36313",
+ "metadata": {},
+ "source": [
+ "```\n",
+ "@article{DBLP:journals/corr/abs-1810-04805,\n",
+ "author = {Jacob Devlin and\n",
+ "Ming{-}Wei Chang and\n",
+ "Kenton Lee and\n",
+ "Kristina Toutanova},\n",
+ "title = {{BERT:} Pre-training of Deep Bidirectional Transformers for Language\n",
+ "Understanding},\n",
+ "journal = {CoRR},\n",
+ "volume = {abs/1810.04805},\n",
+ "year = {2018},\n",
+ "url = {http://arxiv.org/abs/1810.04805},\n",
+ "archivePrefix = {arXiv},\n",
+ "eprint = {1810.04805},\n",
+ "timestamp = {Tue, 30 Oct 2018 20:39:56 +0100},\n",
+ "biburl = {https://dblp.org/rec/journals/corr/abs-1810-04805.bib},\n",
+ "bibsource = {dblp computer science bibliography, https://dblp.org}\n",
+ "}\n",
+ "```"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "bed31ba3",
+ "metadata": {},
+ "source": [
+ "> The model introduction and model weights originate from https://huggingface.co/bert-large-uncased and were converted to PaddlePaddle format for ease of use in PaddleNLP."
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3 (ipykernel)",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.7.13"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 5
+}
diff --git a/modelcenter/community/huggingface/distilbert-base-multilingual-cased/info.yaml b/modelcenter/community/huggingface/distilbert-base-multilingual-cased/info.yaml
index 24ef1d56d6959a6bcf5c07844534bf8e8523863d..3e9ab3a60afed047db68b8ea0db89ae309fa1ef9 100644
--- a/modelcenter/community/huggingface/distilbert-base-multilingual-cased/info.yaml
+++ b/modelcenter/community/huggingface/distilbert-base-multilingual-cased/info.yaml
@@ -1,26 +1,23 @@
+Datasets: wikipedia
+Example: null
+IfOnlineDemo: 0
+IfTraining: 0
+Language: ''
+License: apache-2.0
Model_Info:
- name: "distilbert-base-multilingual-cased"
- description: "Model Card for DistilBERT base multilingual (cased)"
- description_en: "Model Card for DistilBERT base multilingual (cased)"
- icon: ""
- from_repo: "https://huggingface.co/distilbert-base-multilingual-cased"
-
-Task:
-- tag_en: "Natural Language Processing"
- tag: "自然语言处理"
- sub_tag_en: "Fill-Mask"
- sub_tag: "槽位填充"
-
-Example:
-
-Datasets: "wikipedia"
-Publisher: "huggingface"
-License: "apache-2.0"
-Language: ""
+ description: Model Card for DistilBERT base multilingual (cased)
+ description_en: Model Card for DistilBERT base multilingual (cased)
+ from_repo: https://huggingface.co/distilbert-base-multilingual-cased
+ icon: https://paddlenlp.bj.bcebos.com/models/community/transformer-layer.png
+ name: distilbert-base-multilingual-cased
Paper:
- - title: 'DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter'
- url: 'http://arxiv.org/abs/1910.01108v4'
- - title: 'Quantifying the Carbon Emissions of Machine Learning'
- url: 'http://arxiv.org/abs/1910.09700v2'
-IfTraining: 0
-IfOnlineDemo: 0
\ No newline at end of file
+- title: 'DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter'
+ url: http://arxiv.org/abs/1910.01108v4
+- title: Quantifying the Carbon Emissions of Machine Learning
+ url: http://arxiv.org/abs/1910.09700v2
+Publisher: huggingface
+Task:
+- sub_tag: 槽位填充
+ sub_tag_en: Fill-Mask
+ tag: 自然语言处理
+ tag_en: Natural Language Processing
diff --git a/modelcenter/community/huggingface/distilbert-base-multilingual-cased/introduction_cn.ipynb b/modelcenter/community/huggingface/distilbert-base-multilingual-cased/introduction_cn.ipynb
new file mode 100644
index 0000000000000000000000000000000000000000..32ecf21ba60b43142a2d4e7b0daf019ce91d489b
--- /dev/null
+++ b/modelcenter/community/huggingface/distilbert-base-multilingual-cased/introduction_cn.ipynb
@@ -0,0 +1,143 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "id": "922fd8e5",
+ "metadata": {},
+ "source": [
+ "# Model Card for DistilBERT base multilingual (cased)\n",
+ "\n",
+ "详细内容请看[Bert in PaddleNLP](https://github.com/PaddlePaddle/PaddleNLP/blob/develop/model_zoo/bert/README.md)。\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "a1024bec",
+ "metadata": {},
+ "source": [
+ "## Model Description\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "bcdfe024",
+ "metadata": {},
+ "source": [
+ "This model is a distilled version of the [BERT base multilingual model](https://huggingface.co/bert-base-multilingual-cased/). The code for the distillation process can be found [here](https://github.com/huggingface/transformers/tree/main/examples/research_projects/distillation). This model is cased: it does make a difference between english and English.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "5051aaa6",
+ "metadata": {},
+ "source": [
+ "The model is trained on the concatenation of Wikipedia in 104 different languages listed [here](https://github.com/google-research/bert/blob/master/multilingual.md#list-of-languages).\n",
+ "The model has 6 layers, 768 dimension and 12 heads, totalizing 134M parameters (compared to 177M parameters for mBERT-base).\n",
+ "On average, this model, referred to as DistilmBERT, is twice as fast as mBERT-base.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "cdddc273",
+ "metadata": {},
+ "source": [
+ "We encourage potential users of this model to check out the [BERT base multilingual model card](https://huggingface.co/bert-base-multilingual-cased) to learn more about usage, limitations and potential biases.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "8eebedbf",
+ "metadata": {},
+ "source": [
+ "- **Developed by:** Victor Sanh, Lysandre Debut, Julien Chaumond, Thomas Wolf (Hugging Face)\n",
+ "- **Model type:** Transformer-based language model\n",
+ "- **Language(s) (NLP):** 104 languages; see full list [here](https://github.com/google-research/bert/blob/master/multilingual.md#list-of-languages)\n",
+ "- **License:** Apache 2.0\n",
+ "- **Related Models:** [BERT base multilingual model](https://huggingface.co/bert-base-multilingual-cased)\n",
+ "- **Resources for more information:**\n",
+ "- [GitHub Repository](https://github.com/huggingface/transformers/blob/main/examples/research_projects/distillation/README.md)\n",
+ "- [Associated Paper](https://arxiv.org/abs/1910.01108)\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "e9f48c0b",
+ "metadata": {},
+ "source": [
+ "## How to use"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "f4dde273",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "!pip install --upgrade paddlenlp"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "b940cddf",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import paddle\n",
+ "from paddlenlp.transformers import AutoModel\n",
+ "\n",
+ "model = AutoModel.from_pretrained(\"distilbert-base-multilingual-cased\")\n",
+ "input_ids = paddle.randint(100, 200, shape=[1, 20])\n",
+ "print(model(input_ids))"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "7ab62874",
+ "metadata": {},
+ "source": [
+ "# Citation\n",
+ "\n",
+ "```\n",
+ "@article{Sanh2019DistilBERTAD,\n",
+ " title={DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter},\n",
+ " author={Victor Sanh and Lysandre Debut and Julien Chaumond and Thomas Wolf},\n",
+ " journal={ArXiv},\n",
+ " year={2019},\n",
+ " volume={abs/1910.01108}\n",
+ "}\n",
+ "```"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "8bdb4ee1",
+ "metadata": {},
+ "source": [
+ "> 此模型介绍及权重来源于 https://huggingface.co/distilbert-base-multilingual-cased ,并转换为飞桨模型格式。\n"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3 (ipykernel)",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.7.13"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 5
+}
diff --git a/modelcenter/community/huggingface/distilbert-base-multilingual-cased/introduction_en.ipynb b/modelcenter/community/huggingface/distilbert-base-multilingual-cased/introduction_en.ipynb
new file mode 100644
index 0000000000000000000000000000000000000000..5fbfcda3645cdd95892818bf2ae7ec5f6c06ba74
--- /dev/null
+++ b/modelcenter/community/huggingface/distilbert-base-multilingual-cased/introduction_en.ipynb
@@ -0,0 +1,121 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "id": "4260a150",
+ "metadata": {},
+ "source": [
+ "# Model Card for DistilBERT base multilingual (cased)\n",
+ "\n",
+ "You can get more details from [Bert in PaddleNLP](https://github.com/PaddlePaddle/PaddleNLP/blob/develop/model_zoo/bert/README.md)。"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "53f1b1c2",
+ "metadata": {},
+ "source": [
+ "This model is a distilled version of the [BERT base multilingual model](https://huggingface.co/bert-base-multilingual-cased/). The code for the distillation process can be found [here](https://github.com/huggingface/transformers/tree/main/examples/research_projects/distillation). This model is cased: it does make a difference between english and English.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "f417583b",
+ "metadata": {},
+ "source": [
+ "The model is trained on the concatenation of Wikipedia in 104 different languages listed [here](https://github.com/google-research/bert/blob/master/multilingual.md#list-of-languages).\n",
+ "The model has 6 layers, 768 dimension and 12 heads, totalizing 134M parameters (compared to 177M parameters for mBERT-base).\n",
+ "On average, this model, referred to as DistilmBERT, is twice as fast as mBERT-base.\n",
+ "\n",
+ "- **Developed by:** Victor Sanh, Lysandre Debut, Julien Chaumond, Thomas Wolf (Hugging Face)\n",
+ "- **Model type:** Transformer-based language model\n",
+ "- **Language(s) (NLP):** 104 languages; see full list [here](https://github.com/google-research/bert/blob/master/multilingual.md#list-of-languages)\n",
+ "- **License:** Apache 2.0\n",
+ "- **Related Models:** [BERT base multilingual model](https://huggingface.co/bert-base-multilingual-cased)\n",
+ "- **Resources for more information:**\n",
+ "- [GitHub Repository](https://github.com/huggingface/transformers/blob/main/examples/research_projects/distillation/README.md)\n",
+ "- [Associated Paper](https://arxiv.org/abs/1910.01108)\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "f47ce9b7",
+ "metadata": {},
+ "source": [
+ "## How to use"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "a1353b5f",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "!pip install --upgrade paddlenlp"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "e23a860f",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import paddle\n",
+ "from paddlenlp.transformers import AutoModel\n",
+ "\n",
+ "model = AutoModel.from_pretrained(\"distilbert-base-multilingual-cased\")\n",
+ "input_ids = paddle.randint(100, 200, shape=[1, 20])\n",
+ "print(model(input_ids))"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "38c30ea4",
+ "metadata": {},
+ "source": [
+ "# Citation\n",
+ "\n",
+ "```\n",
+ "@article{Sanh2019DistilBERTAD,\n",
+ " title={DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter},\n",
+ " author={Victor Sanh and Lysandre Debut and Julien Chaumond and Thomas Wolf},\n",
+ " journal={ArXiv},\n",
+ " year={2019},\n",
+ " volume={abs/1910.01108}\n",
+ "}\n",
+ "```\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "0ee03d6a",
+ "metadata": {},
+ "source": [
+ "> The model introduction and model weights originate from https://huggingface.co/distilbert-base-multilingual-cased and were converted to PaddlePaddle format for ease of use in PaddleNLP.\n"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3 (ipykernel)",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.7.13"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 5
+}
diff --git a/modelcenter/community/huggingface/distilgpt2/info.yaml b/modelcenter/community/huggingface/distilgpt2/info.yaml
index dcaa018efe05d4f7727c71e81d3c0d7a33194b2d..070a0794d7e468856d5a6e14854e38576f2e5128 100644
--- a/modelcenter/community/huggingface/distilgpt2/info.yaml
+++ b/modelcenter/community/huggingface/distilgpt2/info.yaml
@@ -1,32 +1,30 @@
+Datasets: openwebtext
+Example: null
+IfOnlineDemo: 0
+IfTraining: 0
+Language: English
+License: apache-2.0
Model_Info:
- name: "distilgpt2"
- description: "DistilGPT2"
- description_en: "DistilGPT2"
- icon: ""
- from_repo: "https://huggingface.co/distilgpt2"
-
-Task:
-- tag_en: "Natural Language Processing"
- tag: "自然语言处理"
- sub_tag_en: "Text Generation"
- sub_tag: "文本生成"
-
-Example:
-
-Datasets: "openwebtext"
-Publisher: "huggingface"
-License: "apache-2.0"
-Language: "English"
+ description: DistilGPT2
+ description_en: DistilGPT2
+ from_repo: https://huggingface.co/distilgpt2
+ icon: https://paddlenlp.bj.bcebos.com/models/community/transformer-layer.png
+ name: distilgpt2
Paper:
- - title: 'DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter'
- url: 'http://arxiv.org/abs/1910.01108v4'
- - title: 'Can Model Compression Improve NLP Fairness'
- url: 'http://arxiv.org/abs/2201.08542v1'
- - title: 'Mitigating Gender Bias in Distilled Language Models via Counterfactual Role Reversal'
- url: 'http://arxiv.org/abs/2203.12574v1'
- - title: 'Quantifying the Carbon Emissions of Machine Learning'
- url: 'http://arxiv.org/abs/1910.09700v2'
- - title: 'Distilling the Knowledge in a Neural Network'
- url: 'http://arxiv.org/abs/1503.02531v1'
-IfTraining: 0
-IfOnlineDemo: 0
\ No newline at end of file
+- title: 'DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter'
+ url: http://arxiv.org/abs/1910.01108v4
+- title: Can Model Compression Improve NLP Fairness
+ url: http://arxiv.org/abs/2201.08542v1
+- title: Mitigating Gender Bias in Distilled Language Models via Counterfactual Role
+ Reversal
+ url: http://arxiv.org/abs/2203.12574v1
+- title: Quantifying the Carbon Emissions of Machine Learning
+ url: http://arxiv.org/abs/1910.09700v2
+- title: Distilling the Knowledge in a Neural Network
+ url: http://arxiv.org/abs/1503.02531v1
+Publisher: huggingface
+Task:
+- sub_tag: 文本生成
+ sub_tag_en: Text Generation
+ tag: 自然语言处理
+ tag_en: Natural Language Processing
diff --git a/modelcenter/community/huggingface/distilgpt2/introduction_cn.ipynb b/modelcenter/community/huggingface/distilgpt2/introduction_cn.ipynb
new file mode 100644
index 0000000000000000000000000000000000000000..082df8e1455cbf27c99ec3367e9d3da99eecd325
--- /dev/null
+++ b/modelcenter/community/huggingface/distilgpt2/introduction_cn.ipynb
@@ -0,0 +1,142 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "id": "72047643",
+ "metadata": {},
+ "source": [
+ "# DistilGPT2\n",
+ "\n",
+ "详细内容请看[GPT2 in PaddleNLP](https://github.com/PaddlePaddle/PaddleNLP/blob/develop/model_zoo/gpt/README.md)。"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "20c299c9",
+ "metadata": {},
+ "source": [
+ "DistilGPT2 (short for Distilled-GPT2) is an English-language model pre-trained with the supervision of the smallest version of Generative Pre-trained Transformer 2 (GPT-2). Like GPT-2, DistilGPT2 can be used to generate text. Users of this model card should also consider information about the design, training, and limitations of GPT-2.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "c624b3d1",
+ "metadata": {},
+ "source": [
+ "## Model Details\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "92002396",
+ "metadata": {},
+ "source": [
+ "- **Developed by:** Hugging Face\n",
+ "- **Model type:** Transformer-based Language Model\n",
+ "- **Language:** English\n",
+ "- **License:** Apache 2.0\n",
+ "- **Model Description:** DistilGPT2 is an English-language model pre-trained with the supervision of the 124 million parameter version of GPT-2. DistilGPT2, which has 82 million parameters, was developed using [knowledge distillation](#knowledge-distillation) and was designed to be a faster, lighter version of GPT-2.\n",
+ "- **Resources for more information:** See this repository for more about Distil\\* (a class of compressed models including Distilled-GPT2), [Sanh et al. (2019)](https://arxiv.org/abs/1910.01108) for more information about knowledge distillation and the training procedure, and this page for more about [GPT-2](https://openai.com/blog/better-language-models/).\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "a1a84778",
+ "metadata": {},
+ "source": [
+ "## How to use"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "f9c6043d",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "!pip install --upgrade paddlenlp"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "a9f0754d",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import paddle\n",
+ "from paddlenlp.transformers import AutoModel\n",
+ "\n",
+ "model = AutoModel.from_pretrained(\"distilgpt2\")\n",
+ "input_ids = paddle.randint(100, 200, shape=[1, 20])\n",
+ "print(model(input_ids))"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "03d3d465",
+ "metadata": {},
+ "source": [
+ "## Citation\n",
+ "\n",
+ "```\n",
+ "@inproceedings{sanh2019distilbert,\n",
+ "title={DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter},\n",
+ "author={Sanh, Victor and Debut, Lysandre and Chaumond, Julien and Wolf, Thomas},\n",
+ "booktitle={NeurIPS EMC^2 Workshop},\n",
+ "year={2019}\n",
+ "}\n",
+ "```"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "7966636a",
+ "metadata": {},
+ "source": [
+ "## Glossary\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "533038ef",
+ "metadata": {},
+ "source": [
+ "-\t**Knowledge Distillation**: As described in [Sanh et al. (2019)](https://arxiv.org/pdf/1910.01108.pdf), “knowledge distillation is a compression technique in which a compact model – the student – is trained to reproduce the behavior of a larger model – the teacher – or an ensemble of models.” Also see [Bucila et al. (2006)](https://www.cs.cornell.edu/~caruana/compression.kdd06.pdf) and [Hinton et al. (2015)](https://arxiv.org/abs/1503.02531).\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "a7ff7cc1",
+ "metadata": {},
+ "source": [
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "> 此模型介绍及权重来源于[https://huggingface.co/distilgpt2](https://huggingface.co/distilgpt2),并转换为飞桨模型格式。\n"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3 (ipykernel)",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.7.13"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 5
+}
diff --git a/modelcenter/community/huggingface/distilgpt2/introduction_en.ipynb b/modelcenter/community/huggingface/distilgpt2/introduction_en.ipynb
new file mode 100644
index 0000000000000000000000000000000000000000..d30a33f98bfba59963c9c0f6064a47604310f761
--- /dev/null
+++ b/modelcenter/community/huggingface/distilgpt2/introduction_en.ipynb
@@ -0,0 +1,134 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "id": "1b34fb8a",
+ "metadata": {},
+ "source": [
+ "# DistilGPT2\n",
+ "\n",
+ "You can get more details from [GPT2 in PaddleNLP](https://github.com/PaddlePaddle/PaddleNLP/blob/develop/model_zoo/gpt/README.md)."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "f3ab8949",
+ "metadata": {},
+ "source": [
+ "DistilGPT2 (short for Distilled-GPT2) is an English-language model pre-trained with the supervision of the smallest version of Generative Pre-trained Transformer 2 (GPT-2). Like GPT-2, DistilGPT2 can be used to generate text. Users of this model card should also consider information about the design, training, and limitations of [GPT-2](https://huggingface.co/gpt2).\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "c6fbc1da",
+ "metadata": {},
+ "source": [
+ "## Model Details\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "e2929e2f",
+ "metadata": {},
+ "source": [
+ "- **Developed by:** Hugging Face\n",
+ "- **Model type:** Transformer-based Language Model\n",
+ "- **Language:** English\n",
+ "- **License:** Apache 2.0\n",
+ "- **Model Description:** DistilGPT2 is an English-language model pre-trained with the supervision of the 124 million parameter version of GPT-2. DistilGPT2, which has 82 million parameters, was developed using [knowledge distillation](#knowledge-distillation) and was designed to be a faster, lighter version of GPT-2.\n",
+ "- **Resources for more information:** See [this repository](https://github.com/huggingface/transformers/tree/main/examples/research_projects/distillation) for more about Distil\\* (a class of compressed models including Distilled-GPT2), [Sanh et al. (2019)](https://arxiv.org/abs/1910.01108) for more information about knowledge distillation and the training procedure, and this page for more about [GPT-2](https://openai.com/blog/better-language-models/).\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "5e226406",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "!pip install --upgrade paddlenlp"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "51f32d75",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import paddle\n",
+ "from paddlenlp.transformers import AutoModel\n",
+ "\n",
+ "model = AutoModel.from_pretrained(\"distilgpt2\")\n",
+ "input_ids = paddle.randint(100, 200, shape=[1, 20])\n",
+ "print(model(input_ids))"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "adb84dc8",
+ "metadata": {},
+ "source": [
+ "## Citation\n",
+ "\n",
+ "```\n",
+ "@inproceedings{sanh2019distilbert,\n",
+ "title={DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter},\n",
+ "author={Sanh, Victor and Debut, Lysandre and Chaumond, Julien and Wolf, Thomas},\n",
+ "booktitle={NeurIPS EMC^2 Workshop},\n",
+ "year={2019}\n",
+ "}\n",
+ "```"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "7d2aaec2",
+ "metadata": {},
+ "source": [
+ "## Glossary\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "004026dd",
+ "metadata": {},
+ "source": [
+ "-\t**Knowledge Distillation**: As described in [Sanh et al. (2019)](https://arxiv.org/pdf/1910.01108.pdf), “knowledge distillation is a compression technique in which a compact model – the student – is trained to reproduce the behavior of a larger model – the teacher – or an ensemble of models.” Also see [Bucila et al. (2006)](https://www.cs.cornell.edu/~caruana/compression.kdd06.pdf) and [Hinton et al. (2015)](https://arxiv.org/abs/1503.02531).\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "f8d12799",
+ "metadata": {},
+ "source": [
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "> The model introduction and model weights originate from [https://huggingface.co/distilgpt2](https://huggingface.co/distilgpt2) and were converted to PaddlePaddle format for ease of use in PaddleNLP.\n"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3 (ipykernel)",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.7.13"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 5
+}
diff --git a/modelcenter/community/huggingface/distilroberta-base/info.yaml b/modelcenter/community/huggingface/distilroberta-base/info.yaml
index eceb32f20bb90e25e20224dfec78d49ec9788d95..dd53f5e49ce132520508d485856cf001db3e821b 100644
--- a/modelcenter/community/huggingface/distilroberta-base/info.yaml
+++ b/modelcenter/community/huggingface/distilroberta-base/info.yaml
@@ -1,26 +1,23 @@
+Datasets: openwebtext
+Example: null
+IfOnlineDemo: 0
+IfTraining: 0
+Language: English
+License: apache-2.0
Model_Info:
- name: "distilroberta-base"
- description: "Model Card for DistilRoBERTa base"
- description_en: "Model Card for DistilRoBERTa base"
- icon: ""
- from_repo: "https://huggingface.co/distilroberta-base"
-
-Task:
-- tag_en: "Natural Language Processing"
- tag: "自然语言处理"
- sub_tag_en: "Fill-Mask"
- sub_tag: "槽位填充"
-
-Example:
-
-Datasets: "openwebtext"
-Publisher: "huggingface"
-License: "apache-2.0"
-Language: "English"
+ description: Model Card for DistilRoBERTa base
+ description_en: Model Card for DistilRoBERTa base
+ from_repo: https://huggingface.co/distilroberta-base
+ icon: https://paddlenlp.bj.bcebos.com/models/community/transformer-layer.png
+ name: distilroberta-base
Paper:
- - title: 'DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter'
- url: 'http://arxiv.org/abs/1910.01108v4'
- - title: 'Quantifying the Carbon Emissions of Machine Learning'
- url: 'http://arxiv.org/abs/1910.09700v2'
-IfTraining: 0
-IfOnlineDemo: 0
\ No newline at end of file
+- title: 'DistilBERT, a distilled version of BERT: smaller, faster, cheaper and lighter'
+ url: http://arxiv.org/abs/1910.01108v4
+- title: Quantifying the Carbon Emissions of Machine Learning
+ url: http://arxiv.org/abs/1910.09700v2
+Publisher: huggingface
+Task:
+- sub_tag: 槽位填充
+ sub_tag_en: Fill-Mask
+ tag: 自然语言处理
+ tag_en: Natural Language Processing
diff --git a/modelcenter/community/huggingface/distilroberta-base/introduction_cn.ipynb b/modelcenter/community/huggingface/distilroberta-base/introduction_cn.ipynb
new file mode 100644
index 0000000000000000000000000000000000000000..db6d2867f872fd561a2cf9a9214b670ffcb95907
--- /dev/null
+++ b/modelcenter/community/huggingface/distilroberta-base/introduction_cn.ipynb
@@ -0,0 +1,126 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "id": "7f49bb4b",
+ "metadata": {},
+ "source": [
+ "# Model Card for DistilRoBERTa base\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "88c832ab",
+ "metadata": {},
+ "source": [
+ "## Model Description\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "3a2333a1",
+ "metadata": {},
+ "source": [
+ "This model is a distilled version of the RoBERTa-base model. It follows the same training procedure as DistilBERT.\n",
+ "The code for the distillation process can be found [here](https://github.com/huggingface/transformers/tree/master/examples/distillation).\n",
+ "This model is case-sensitive: it makes a difference between english and English.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "9ac70255",
+ "metadata": {},
+ "source": [
+ "The model has 6 layers, 768 dimension and 12 heads, totalizing 82M parameters (compared to 125M parameters for RoBERTa-base).\n",
+ "On average DistilRoBERTa is twice as fast as Roberta-base.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "a0757c23",
+ "metadata": {},
+ "source": [
+ "We encourage users of this model card to check out the RoBERTa-base model card to learn more about usage, limitations and potential biases.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "2865466d",
+ "metadata": {},
+ "source": [
+ "- **Developed by:** Victor Sanh, Lysandre Debut, Julien Chaumond, Thomas Wolf (Hugging Face)\n",
+ "- **Model type:** Transformer-based language model\n",
+ "- **Language(s) (NLP):** English\n",
+ "- **License:** Apache 2.0\n",
+ "- **Related Models:** RoBERTa-base model card\n",
+ "- [Associated Paper](https://arxiv.org/abs/1910.01108)\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "a204fad3",
+ "metadata": {},
+ "source": [
+ "## How to use"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "b2e488ed",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "!pip install --upgrade paddlenlp"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "43d7726b",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import paddle\n",
+ "from paddlenlp.transformers import AutoModel\n",
+ "\n",
+ "model = AutoModel.from_pretrained(\"distilroberta-base\")\n",
+ "input_ids = paddle.randint(100, 200, shape=[1, 20])\n",
+ "print(model(input_ids))"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "e30fb0eb",
+ "metadata": {},
+ "source": [
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "> 此模型介绍及权重来源于[https://huggingface.co/distilroberta-base](https://huggingface.co/distilroberta-base),并转换为飞桨模型格式。\n"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3 (ipykernel)",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.7.13"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 5
+}
diff --git a/modelcenter/community/huggingface/distilroberta-base/introduction_en.ipynb b/modelcenter/community/huggingface/distilroberta-base/introduction_en.ipynb
new file mode 100644
index 0000000000000000000000000000000000000000..588b1d0b4d57a2f675df3597c925e7ec7e3c22af
--- /dev/null
+++ b/modelcenter/community/huggingface/distilroberta-base/introduction_en.ipynb
@@ -0,0 +1,128 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "id": "4bd898ca",
+ "metadata": {},
+ "source": [
+ "# Model Card for DistilRoBERTa base\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "7d39a086",
+ "metadata": {},
+ "source": [
+ "## Model Description\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "e2043d14",
+ "metadata": {},
+ "source": [
+ "This model is a distilled version of the [RoBERTa-base model](https://huggingface.co/roberta-base). It follows the same training procedure as [DistilBERT](https://huggingface.co/distilbert-base-uncased).\n",
+ "The code for the distillation process can be found [here](https://github.com/huggingface/transformers/tree/master/examples/distillation).\n",
+ "This model is case-sensitive: it makes a difference between english and English.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "10aefe84",
+ "metadata": {},
+ "source": [
+ "The model has 6 layers, 768 dimension and 12 heads, totalizing 82M parameters (compared to 125M parameters for RoBERTa-base).\n",
+ "On average DistilRoBERTa is twice as fast as Roberta-base.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "d7ebd775",
+ "metadata": {},
+ "source": [
+ "We encourage users of this model card to check out the [RoBERTa-base model card](https://huggingface.co/roberta-base) to learn more about usage, limitations and potential biases.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "423d28b1",
+ "metadata": {},
+ "source": [
+ "- **Developed by:** Victor Sanh, Lysandre Debut, Julien Chaumond, Thomas Wolf (Hugging Face)\n",
+ "- **Model type:** Transformer-based language model\n",
+ "- **Language(s) (NLP):** English\n",
+ "- **License:** Apache 2.0\n",
+ "- **Related Models:** [RoBERTa-base model card](https://huggingface.co/roberta-base)\n",
+ "- **Resources for more information:**\n",
+ "- [GitHub Repository](https://github.com/huggingface/transformers/blob/main/examples/research_projects/distillation/README.md)\n",
+ "- [Associated Paper](https://arxiv.org/abs/1910.01108)\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "715b4360",
+ "metadata": {},
+ "source": [
+ "## How to use"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "9ad9b1a9",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "!pip install --upgrade paddlenlp"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "94e4d093",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import paddle\n",
+ "from paddlenlp.transformers import AutoModel\n",
+ "\n",
+ "model = AutoModel.from_pretrained(\"distilroberta-base\")\n",
+ "input_ids = paddle.randint(100, 200, shape=[1, 20])\n",
+ "print(model(input_ids))"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "e258a20c",
+ "metadata": {},
+ "source": [
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "> The model introduction and model weights originate from [https://huggingface.co/distilroberta-base](https://huggingface.co/distilroberta-base) and were converted to PaddlePaddle format for ease of use in PaddleNLP.\n"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3 (ipykernel)",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.7.13"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 5
+}
diff --git a/modelcenter/community/huggingface/gpt2-large/info.yaml b/modelcenter/community/huggingface/gpt2-large/info.yaml
index 5877d17dbe18cec42babfc4e04f8d7301117c5fa..b158fe17633b323d19c7632851709f40a6e2df8c 100644
--- a/modelcenter/community/huggingface/gpt2-large/info.yaml
+++ b/modelcenter/community/huggingface/gpt2-large/info.yaml
@@ -1,24 +1,21 @@
+Datasets: ''
+Example: null
+IfOnlineDemo: 0
+IfTraining: 0
+Language: English
+License: mit
Model_Info:
- name: "gpt2-large"
- description: "GPT-2 Large"
- description_en: "GPT-2 Large"
- icon: ""
- from_repo: "https://huggingface.co/gpt2-large"
-
-Task:
-- tag_en: "Natural Language Processing"
- tag: "自然语言处理"
- sub_tag_en: "Text Generation"
- sub_tag: "文本生成"
-
-Example:
-
-Datasets: ""
-Publisher: "huggingface"
-License: "mit"
-Language: "English"
+ description: GPT-2 Large
+ description_en: GPT-2 Large
+ from_repo: https://huggingface.co/gpt2-large
+ icon: https://paddlenlp.bj.bcebos.com/models/community/transformer-layer.png
+ name: gpt2-large
Paper:
- - title: 'Quantifying the Carbon Emissions of Machine Learning'
- url: 'http://arxiv.org/abs/1910.09700v2'
-IfTraining: 0
-IfOnlineDemo: 0
\ No newline at end of file
+- title: Quantifying the Carbon Emissions of Machine Learning
+ url: http://arxiv.org/abs/1910.09700v2
+Publisher: huggingface
+Task:
+- sub_tag: 文本生成
+ sub_tag_en: Text Generation
+ tag: 自然语言处理
+ tag_en: Natural Language Processing
diff --git a/modelcenter/community/huggingface/gpt2-large/introduction_cn.ipynb b/modelcenter/community/huggingface/gpt2-large/introduction_cn.ipynb
new file mode 100644
index 0000000000000000000000000000000000000000..0a394483916fd6e82621ac7bde9c979077d93bae
--- /dev/null
+++ b/modelcenter/community/huggingface/gpt2-large/introduction_cn.ipynb
@@ -0,0 +1,158 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "id": "32b8730a",
+ "metadata": {},
+ "source": [
+ "# GPT-2 Large\n",
+ "\n",
+ "详细内容请看[GPT2 in PaddleNLP](https://github.com/PaddlePaddle/PaddleNLP/blob/develop/model_zoo/gpt/README.md)。"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "de66cac3",
+ "metadata": {},
+ "source": [
+ "## Table of Contents\n",
+ "- [Model Details](#model-details)\n",
+ "- [How To Get Started With the Model](#how-to-get-started-with-the-model)\n",
+ "- [Uses](#uses)\n",
+ "- [Risks, Limitations and Biases](#risks-limitations-and-biases)\n",
+ "- [Training](#training)\n",
+ "- [Evaluation](#evaluation)\n",
+ "- [Environmental Impact](#environmental-impact)\n",
+ "- [Technical Specifications](#technical-specifications)\n",
+ "- [Citation Information](#citation-information)\n",
+ "- [Model Card Authors](#model-card-author)\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "8afa58ef",
+ "metadata": {},
+ "source": [
+ "## Model Details\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "e4e46496",
+ "metadata": {},
+ "source": [
+ "**Model Description:** GPT-2 Large is the **774M parameter** version of GPT-2, a transformer-based language model created and released by OpenAI. The model is a pretrained model on English language using a causal language modeling (CLM) objective.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "15b8f634",
+ "metadata": {},
+ "source": [
+ "- **Developed by:** OpenAI, see [associated research paper](https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf) and [GitHub repo](https://github.com/openai/gpt-2) for model developers.\n",
+ "- **Model Type:** Transformer-based language model\n",
+ "- **Language(s):** English\n",
+ "- **License:** [Modified MIT License](https://github.com/openai/gpt-2/blob/master/LICENSE)\n",
+ "- **Related Models:** [GPT-2](https://huggingface.co/gpt2), [GPT-Medium](https://huggingface.co/gpt2-medium) and [GPT-XL](https://huggingface.co/gpt2-xl)\n",
+ "- **Resources for more information:**\n",
+ "- [Research Paper](https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf)\n",
+ "- [OpenAI Blog Post](https://openai.com/blog/better-language-models/)\n",
+ "- [GitHub Repo](https://github.com/openai/gpt-2)\n",
+ "- [OpenAI Model Card for GPT-2](https://github.com/openai/gpt-2/blob/master/model_card.md)\n",
+ "- Test the full generation capabilities here: https://transformer.huggingface.co/doc/gpt2-large\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "6c2023d9",
+ "metadata": {},
+ "source": [
+ "## How to use"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "b17e6efb",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "!pip install --upgrade paddlenlp"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "33c1f565",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import paddle\n",
+ "from paddlenlp.transformers import AutoModel\n",
+ "\n",
+ "model = AutoModel.from_pretrained(\"gpt2-large\")\n",
+ "input_ids = paddle.randint(100, 200, shape=[1, 20])\n",
+ "print(model(input_ids))"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "8060d283",
+ "metadata": {},
+ "source": [
+ "## Citatioin\n",
+ "\n",
+ "```\n",
+ "@article{radford2019language,\n",
+ "title={Language models are unsupervised multitask learners},\n",
+ "author={Radford, Alec and Wu, Jeffrey and Child, Rewon and Luan, David and Amodei, Dario and Sutskever, Ilya and others},\n",
+ "journal={OpenAI blog},\n",
+ "volume={1},\n",
+ "number={8},\n",
+ "pages={9},\n",
+ "year={2019}\n",
+ "}\n",
+ "```"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "083f0d9c",
+ "metadata": {},
+ "source": [
+ "## Model Card Authors\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "f9e4bb43",
+ "metadata": {},
+ "source": [
+ "This model card was written by the Hugging Face team.\n",
+ "\n",
+ "> 此模型介绍及权重来源于[https://huggingface.co/gpt2-large](https://huggingface.co/gpt2-large),并转换为飞桨模型格式。\n"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3 (ipykernel)",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.7.13"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 5
+}
diff --git a/modelcenter/community/huggingface/gpt2-large/introduction_en.ipynb b/modelcenter/community/huggingface/gpt2-large/introduction_en.ipynb
new file mode 100644
index 0000000000000000000000000000000000000000..e3dce42d674f8a22441374995f0b1829b557c8d2
--- /dev/null
+++ b/modelcenter/community/huggingface/gpt2-large/introduction_en.ipynb
@@ -0,0 +1,157 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "id": "dc26013b",
+ "metadata": {},
+ "source": [
+ "# GPT-2 Large\n",
+ "\n",
+ "You can get more details from [GPT2 in PaddleNLP](https://github.com/PaddlePaddle/PaddleNLP/blob/develop/model_zoo/gpt/README.md)."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "38e29e37",
+ "metadata": {},
+ "source": [
+ "## Table of Contents\n",
+ "- [Model Details](#model-details)\n",
+ "- [How To Get Started With the Model](#how-to-get-started-with-the-model)\n",
+ "- [Uses](#uses)\n",
+ "- [Risks, Limitations and Biases](#risks-limitations-and-biases)\n",
+ "- [Training](#training)\n",
+ "- [Evaluation](#evaluation)\n",
+ "- [Environmental Impact](#environmental-impact)\n",
+ "- [Technical Specifications](#technical-specifications)\n",
+ "- [Citation Information](#citation-information)\n",
+ "- [Model Card Authors](#model-card-author)\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "590c3fbd",
+ "metadata": {},
+ "source": [
+ "## Model Details\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "1a2cd621",
+ "metadata": {},
+ "source": [
+ "**Model Description:** GPT-2 Large is the **774M parameter** version of GPT-2, a transformer-based language model created and released by OpenAI. The model is a pretrained model on English language using a causal language modeling (CLM) objective.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "0155f43f",
+ "metadata": {},
+ "source": [
+ "- **Developed by:** OpenAI, see [associated research paper](https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf) and [GitHub repo](https://github.com/openai/gpt-2) for model developers.\n",
+ "- **Model Type:** Transformer-based language model\n",
+ "- **Language(s):** English\n",
+ "- **License:** [Modified MIT License](https://github.com/openai/gpt-2/blob/master/LICENSE)\n",
+ "- **Related Models:** https://huggingface.co/gpt2, GPT-Medium and GPT-XL\n",
+ "- **Resources for more information:**\n",
+ "- [Research Paper](https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf)\n",
+ "- [OpenAI Blog Post](https://openai.com/blog/better-language-models/)\n",
+ "- [GitHub Repo](https://github.com/openai/gpt-2)\n",
+ "- [OpenAI Model Card for GPT-2](https://github.com/openai/gpt-2/blob/master/model_card.md)\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "18e2772d",
+ "metadata": {},
+ "source": [
+ "## How to use"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "30207821",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "!pip install --upgrade paddlenlp"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "2ae65fe6",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import paddle\n",
+ "from paddlenlp.transformers import AutoModel\n",
+ "\n",
+ "model = AutoModel.from_pretrained(\"gpt2-large\")\n",
+ "input_ids = paddle.randint(100, 200, shape=[1, 20])\n",
+ "print(model(input_ids))"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "e8b7c92b",
+ "metadata": {},
+ "source": [
+ "## Citation\n",
+ "\n",
+ "```\n",
+ "@article{radford2019language,\n",
+ "title={Language models are unsupervised multitask learners},\n",
+ "author={Radford, Alec and Wu, Jeffrey and Child, Rewon and Luan, David and Amodei, Dario and Sutskever, Ilya and others},\n",
+ "journal={OpenAI blog},\n",
+ "volume={1},\n",
+ "number={8},\n",
+ "pages={9},\n",
+ "year={2019}\n",
+ "}\n",
+ "```"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "7cded70d",
+ "metadata": {},
+ "source": [
+ "## Model Card Authors\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "ff9ab2d4",
+ "metadata": {},
+ "source": [
+ "This model card was written by the Hugging Face team.\n",
+ "\n",
+ "> The model introduction and model weights originate from [https://huggingface.co/gpt2-large](https://huggingface.co/gpt2-large) and were converted to PaddlePaddle format for ease of use in PaddleNLP."
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3 (ipykernel)",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.7.13"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 5
+}
diff --git a/modelcenter/community/huggingface/gpt2-medium/info.yaml b/modelcenter/community/huggingface/gpt2-medium/info.yaml
index 2b8d53c8f1c561033b151f1db7952714b87c2a3b..3e03ccdfaa3d853f3a1a105b4c87a75364a90d32 100644
--- a/modelcenter/community/huggingface/gpt2-medium/info.yaml
+++ b/modelcenter/community/huggingface/gpt2-medium/info.yaml
@@ -1,24 +1,21 @@
+Datasets: ''
+Example: null
+IfOnlineDemo: 0
+IfTraining: 0
+Language: English
+License: mit
Model_Info:
- name: "gpt2-medium"
- description: "GPT-2 Medium"
- description_en: "GPT-2 Medium"
- icon: ""
- from_repo: "https://huggingface.co/gpt2-medium"
-
-Task:
-- tag_en: "Natural Language Processing"
- tag: "自然语言处理"
- sub_tag_en: "Text Generation"
- sub_tag: "文本生成"
-
-Example:
-
-Datasets: ""
-Publisher: "huggingface"
-License: "mit"
-Language: "English"
+ description: GPT-2 Medium
+ description_en: GPT-2 Medium
+ from_repo: https://huggingface.co/gpt2-medium
+ icon: https://paddlenlp.bj.bcebos.com/models/community/transformer-layer.png
+ name: gpt2-medium
Paper:
- - title: 'Quantifying the Carbon Emissions of Machine Learning'
- url: 'http://arxiv.org/abs/1910.09700v2'
-IfTraining: 0
-IfOnlineDemo: 0
\ No newline at end of file
+- title: Quantifying the Carbon Emissions of Machine Learning
+ url: http://arxiv.org/abs/1910.09700v2
+Publisher: huggingface
+Task:
+- sub_tag: 文本生成
+ sub_tag_en: Text Generation
+ tag: 自然语言处理
+ tag_en: Natural Language Processing
diff --git a/modelcenter/community/huggingface/gpt2-medium/introduction_cn.ipynb b/modelcenter/community/huggingface/gpt2-medium/introduction_cn.ipynb
new file mode 100644
index 0000000000000000000000000000000000000000..cfd546c3fd22c765bb9859f1558b6dc36244c14a
--- /dev/null
+++ b/modelcenter/community/huggingface/gpt2-medium/introduction_cn.ipynb
@@ -0,0 +1,140 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "id": "25324e9c",
+ "metadata": {},
+ "source": [
+ "# GPT-2 Medium\n",
+ "\n",
+ "详细内容请看[GPT2 in PaddleNLP](https://github.com/PaddlePaddle/PaddleNLP/blob/develop/model_zoo/gpt/README.md)。"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "806177e3",
+ "metadata": {},
+ "source": [
+ "## Model Details\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "dbcaecb0",
+ "metadata": {},
+ "source": [
+ "**Model Description:** GPT-2 Medium is the **355M parameter** version of GPT-2, a transformer-based language model created and released by OpenAI. The model is a pretrained model on English language using a causal language modeling (CLM) objective.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "ab73e9f0",
+ "metadata": {},
+ "source": [
+ "- **Developed by:** OpenAI, see [associated research paper](https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf) and [GitHub repo](https://github.com/openai/gpt-2) for model developers.\n",
+ "- **Model Type:** Transformer-based language model\n",
+ "- **Language(s):** English\n",
+ "- **License:** [Modified MIT License](https://github.com/openai/gpt-2/blob/master/LICENSE)\n",
+ "- **Related Models:** [GPT2](https://huggingface.co/gpt2), [GPT2-Large](https://huggingface.co/gpt2-large) and [GPT2-XL](https://huggingface.co/gpt2-xl)\n",
+ "- **Resources for more information:**\n",
+ "- [Research Paper](https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf)\n",
+ "- [OpenAI Blog Post](https://openai.com/blog/better-language-models/)\n",
+ "- [GitHub Repo](https://github.com/openai/gpt-2)\n",
+ "- [OpenAI Model Card for GPT-2](https://github.com/openai/gpt-2/blob/master/model_card.md)\n",
+ "- Test the full generation capabilities here: https://transformer.huggingface.co/doc/gpt2-large\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "70c3fd36",
+ "metadata": {},
+ "source": [
+ "## How to use"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "1bae5ee0",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "!pip install --upgrade paddlenlp"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "11b32577",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import paddle\n",
+ "from paddlenlp.transformers import AutoModel\n",
+ "\n",
+ "model = AutoModel.from_pretrained(\"gpt2-medium\")\n",
+ "input_ids = paddle.randint(100, 200, shape=[1, 20])\n",
+ "print(model(input_ids))"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "08f90ea0",
+ "metadata": {},
+ "source": [
+ "## Citation\n",
+ "\n",
+ "```\n",
+ "@article{radford2019language,\n",
+ "title={Language models are unsupervised multitask learners},\n",
+ "author={Radford, Alec and Wu, Jeffrey and Child, Rewon and Luan, David and Amodei, Dario and Sutskever, Ilya and others},\n",
+ "journal={OpenAI blog},\n",
+ "volume={1},\n",
+ "number={8},\n",
+ "pages={9},\n",
+ "year={2019}\n",
+ "}\n",
+ "```"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "64d79312",
+ "metadata": {},
+ "source": [
+ "## Model Card Authors\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "d14dd2ac",
+ "metadata": {},
+ "source": [
+ "This model card was written by the Hugging Face team.\n",
+ "\n",
+ "> 此模型介绍及权重来源于 https://huggingface.co/gpt2-medium ,并转换为飞桨模型格式。"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3 (ipykernel)",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.7.13"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 5
+}
diff --git a/modelcenter/community/huggingface/gpt2-medium/introduction_en.ipynb b/modelcenter/community/huggingface/gpt2-medium/introduction_en.ipynb
new file mode 100644
index 0000000000000000000000000000000000000000..a324c5b99fbd68795118c6bb0a1ef47bd710cfad
--- /dev/null
+++ b/modelcenter/community/huggingface/gpt2-medium/introduction_en.ipynb
@@ -0,0 +1,146 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "id": "46995787",
+ "metadata": {},
+ "source": [
+ "# GPT-2 Medium\n",
+ "\n",
+ "You can get more details from [GPT2 in PaddleNLP](https://github.com/PaddlePaddle/PaddleNLP/blob/develop/model_zoo/gpt/README.md)."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "f695ad73",
+ "metadata": {},
+ "source": [
+ "## Model Details\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "5a8170d9",
+ "metadata": {},
+ "source": [
+ "**Model Description:** GPT-2 Medium is the **355M parameter** version of GPT-2, a transformer-based language model created and released by OpenAI. The model is a pretrained model on English language using a causal language modeling (CLM) objective.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "1d0dc244",
+ "metadata": {},
+ "source": [
+ "- **Developed by:** OpenAI, see [associated research paper](https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf) and [GitHub repo](https://github.com/openai/gpt-2) for model developers.\n",
+ "- **Model Type:** Transformer-based language model\n",
+ "- **Language(s):** English\n",
+ "- **License:** [Modified MIT License](https://github.com/openai/gpt-2/blob/master/LICENSE)\n",
+ "- **Related Models:** [GPT2](https://huggingface.co/gpt2), [GPT2-Large](https://huggingface.co/gpt2-large) and [GPT2-XL](https://huggingface.co/gpt2-xl)\n",
+ "- **Resources for more information:**\n",
+ "- [Research Paper](https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf)\n",
+ "- [OpenAI Blog Post](https://openai.com/blog/better-language-models/)\n",
+ "- [GitHub Repo](https://github.com/openai/gpt-2)\n",
+ "- [OpenAI Model Card for GPT-2](https://github.com/openai/gpt-2/blob/master/model_card.md)\n",
+ "- Test the full generation capabilities here: https://transformer.huggingface.co/doc/gpt2-large\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "adc5a3f9",
+ "metadata": {},
+ "source": [
+ "## How to Get Started with the Model\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "7566eafd",
+ "metadata": {},
+ "source": [
+ "Use the code below to get started with the model. \n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "ab4c71ee",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "!pip install --upgrade paddlenlp"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "b0167528",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import paddle\n",
+ "from paddlenlp.transformers import AutoModel\n",
+ "\n",
+ "model = AutoModel.from_pretrained(\"gpt2-medium\")\n",
+ "input_ids = paddle.randint(100, 200, shape=[1, 20])\n",
+ "print(model(input_ids))"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "52cdcf9e",
+ "metadata": {},
+ "source": [
+ "## Citation\n",
+ "\n",
+ "```\n",
+ "@article{radford2019language,\n",
+ "title={Language models are unsupervised multitask learners},\n",
+ "author={Radford, Alec and Wu, Jeffrey and Child, Rewon and Luan, David and Amodei, Dario and Sutskever, Ilya and others},\n",
+ "journal={OpenAI blog},\n",
+ "volume={1},\n",
+ "number={8},\n",
+ "pages={9},\n",
+ "year={2019}\n",
+ "}\n",
+ "```"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "eb327c10",
+ "metadata": {},
+ "source": [
+ "## Model Card Authors\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "50fb7de8",
+ "metadata": {},
+ "source": [
+ "> The model introduction and model weights originate from https://huggingface.co/gpt2-medium and were converted to PaddlePaddle format for ease of use in PaddleNLP."
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3 (ipykernel)",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.7.13"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 5
+}
diff --git a/modelcenter/community/huggingface/gpt2/info.yaml b/modelcenter/community/huggingface/gpt2/info.yaml
index 6663ffdf613fdbd2b2ff142fd02bdc37040926a4..ce027f72352227f8f10cae7382c95a2f8c46b66e 100644
--- a/modelcenter/community/huggingface/gpt2/info.yaml
+++ b/modelcenter/community/huggingface/gpt2/info.yaml
@@ -1,23 +1,19 @@
+Datasets: ''
+Example: null
+IfOnlineDemo: 0
+IfTraining: 0
+Language: English
+License: mit
Model_Info:
- name: "gpt2"
- description: "GPT-2"
- description_en: "GPT-2"
- icon: ""
- from_repo: "https://huggingface.co/gpt2"
-
+ description: GPT-2
+ description_en: GPT-2
+ from_repo: https://huggingface.co/gpt2
+ icon: https://paddlenlp.bj.bcebos.com/models/community/transformer-layer.png
+ name: gpt2
+Paper: null
+Publisher: huggingface
Task:
-- tag_en: "Natural Language Processing"
- tag: "自然语言处理"
- sub_tag_en: "Text Generation"
- sub_tag: "文本生成"
-
-Example:
-
-Datasets: ""
-Publisher: "huggingface"
-License: "mit"
-Language: "English"
-Paper:
-
-IfTraining: 0
-IfOnlineDemo: 0
\ No newline at end of file
+- sub_tag: 文本生成
+ sub_tag_en: Text Generation
+ tag: 自然语言处理
+ tag_en: Natural Language Processing
diff --git a/modelcenter/community/huggingface/gpt2/introduction_cn.ipynb b/modelcenter/community/huggingface/gpt2/introduction_cn.ipynb
new file mode 100644
index 0000000000000000000000000000000000000000..a7849400e0f849fd784d2c35b76d5018269a3745
--- /dev/null
+++ b/modelcenter/community/huggingface/gpt2/introduction_cn.ipynb
@@ -0,0 +1,160 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "id": "a4cd103f",
+ "metadata": {},
+ "source": [
+ "# GPT-2\n",
+ "\n",
+ "详细内容请看[GPT2 in PaddleNLP](https://github.com/PaddlePaddle/PaddleNLP/blob/develop/model_zoo/gpt/README.md)。"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "e10dfe6d",
+ "metadata": {},
+ "source": [
+ "Pretrained model on English language using a causal language modeling (CLM) objective. It was introduced in\n",
+ "[this paper](https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf)\n",
+ "and first released at [this page](https://openai.com/blog/better-language-models/).\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "d1b13043",
+ "metadata": {},
+ "source": [
+ "Disclaimer: The team releasing GPT-2 also wrote a\n",
+ "[model card](https://github.com/openai/gpt-2/blob/master/model_card.md) for their model. Content from this model card\n",
+ "has been written by the Hugging Face team to complete the information they provided and give specific examples of bias.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "016271a5",
+ "metadata": {},
+ "source": [
+ "## Model description\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "e3a53155",
+ "metadata": {},
+ "source": [
+ "GPT-2 is a transformers model pretrained on a very large corpus of English data in a self-supervised fashion. This\n",
+ "means it was pretrained on the raw texts only, with no humans labelling them in any way (which is why it can use lots\n",
+ "of publicly available data) with an automatic process to generate inputs and labels from those texts. More precisely,\n",
+ "it was trained to guess the next word in sentences.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "6836ad17",
+ "metadata": {},
+ "source": [
+ "More precisely, inputs are sequences of continuous text of a certain length and the targets are the same sequence,\n",
+ "shifted one token (word or piece of word) to the right. The model uses internally a mask-mechanism to make sure the\n",
+ "predictions for the token `i` only uses the inputs from `1` to `i` but not the future tokens.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "26946ce6",
+ "metadata": {},
+ "source": [
+ "This way, the model learns an inner representation of the English language that can then be used to extract features\n",
+ "useful for downstream tasks. The model is best at what it was pretrained for however, which is generating texts from a\n",
+ "prompt.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "571b41cf",
+ "metadata": {},
+ "source": [
+ "## How to use"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "a6233e8e",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "!pip install --upgrade paddlenlp"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "2e906136",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import paddle\n",
+ "from paddlenlp.transformers import AutoModel\n",
+ "\n",
+ "model = AutoModel.from_pretrained(\"gpt2\")\n",
+ "input_ids = paddle.randint(100, 200, shape=[1, 20])\n",
+ "print(model(input_ids))"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "78f26b7f",
+ "metadata": {},
+ "source": [
+ "## Citation\n",
+ "\n",
+ "```\n",
+ "@article{radford2019language,\n",
+ "title={Language Models are Unsupervised Multitask Learners},\n",
+ "author={Radford, Alec and Wu, Jeff and Child, Rewon and Luan, David and Amodei, Dario and Sutskever, Ilya},\n",
+ "year={2019}\n",
+ "}\n",
+ "```"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "2f646c57",
+ "metadata": {},
+ "source": [
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "> 此模型介绍及权重来源于[https://huggingface.co/gpt2](https://huggingface.co/gpt2),并转换为飞桨模型格式。\n"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3 (ipykernel)",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.7.13"
+ },
+ "vscode": {
+ "interpreter": {
+ "hash": "606ea184b8fed3419d714b545dc1784fad6c99d0cc940b6b9d787dccf225faa5"
+ }
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 5
+}
diff --git a/modelcenter/community/huggingface/gpt2/introduction_en.ipynb b/modelcenter/community/huggingface/gpt2/introduction_en.ipynb
new file mode 100644
index 0000000000000000000000000000000000000000..fe5a7baa774ebf7410f52919235da2b61a6d78b8
--- /dev/null
+++ b/modelcenter/community/huggingface/gpt2/introduction_en.ipynb
@@ -0,0 +1,164 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "id": "2d373572",
+ "metadata": {},
+ "source": [
+ "# GPT-2\n",
+ "\n",
+ "You can get more details from [GPT2 in PaddleNLP](https://github.com/PaddlePaddle/PaddleNLP/blob/develop/model_zoo/gpt/README.md)."
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "00be5831",
+ "metadata": {},
+ "source": [
+ "Test the whole generation capabilities here: https://transformer.huggingface.co/doc/gpt2-large\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "b5857cc2",
+ "metadata": {},
+ "source": [
+ "Pretrained model on English language using a causal language modeling (CLM) objective. It was introduced in\n",
+ "[this paper](https://d4mucfpksywv.cloudfront.net/better-language-models/language_models_are_unsupervised_multitask_learners.pdf)\n",
+ "and first released at [this page](https://openai.com/blog/better-language-models/).\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "b0abac76",
+ "metadata": {},
+ "source": [
+ "Disclaimer: The team releasing GPT-2 also wrote a\n",
+ "[model card](https://github.com/openai/gpt-2/blob/master/model_card.md) for their model. Content from this model card\n",
+ "has been written by the Hugging Face team to complete the information they provided and give specific examples of bias.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "fa2c7f4b",
+ "metadata": {},
+ "source": [
+ "## Model description\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "294521bd",
+ "metadata": {},
+ "source": [
+ "GPT-2 is a transformers model pretrained on a very large corpus of English data in a self-supervised fashion. This\n",
+ "means it was pretrained on the raw texts only, with no humans labelling them in any way (which is why it can use lots\n",
+ "of publicly available data) with an automatic process to generate inputs and labels from those texts. More precisely,\n",
+ "it was trained to guess the next word in sentences.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "b1204c32",
+ "metadata": {},
+ "source": [
+ "More precisely, inputs are sequences of continuous text of a certain length and the targets are the same sequence,\n",
+ "shifted one token (word or piece of word) to the right. The model uses internally a mask-mechanism to make sure the\n",
+ "predictions for the token `i` only uses the inputs from `1` to `i` but not the future tokens.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "a019cc9e",
+ "metadata": {},
+ "source": [
+ "This way, the model learns an inner representation of the English language that can then be used to extract features\n",
+ "useful for downstream tasks. The model is best at what it was pretrained for however, which is generating texts from a\n",
+ "prompt.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "54ae8500",
+ "metadata": {},
+ "source": [
+ "## How to use"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "d33fddda",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "!pip install --upgrade paddlenlp"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "d0e160c6",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import paddle\n",
+ "from paddlenlp.transformers import AutoModel\n",
+ "\n",
+ "model = AutoModel.from_pretrained(\"gpt2\")\n",
+ "input_ids = paddle.randint(100, 200, shape=[1, 20])\n",
+ "print(model(input_ids))"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "fcb8a843",
+ "metadata": {},
+ "source": [
+ "## Citation\n",
+ "\n",
+ "```\n",
+ "@article{radford2019language,\n",
+ "title={Language Models are Unsupervised Multitask Learners},\n",
+ "author={Radford, Alec and Wu, Jeff and Child, Rewon and Luan, David and Amodei, Dario and Sutskever, Ilya},\n",
+ "year={2019}\n",
+ "}\n",
+ "```"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "513848f8",
+ "metadata": {},
+ "source": [
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "\n",
+ "> The model introduction and model weights originate from [https://huggingface.co/gpt2](https://huggingface.co/gpt2) and were converted to PaddlePaddle format for ease of use in PaddleNLP.\n"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3 (ipykernel)",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.7.13"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 5
+}
diff --git a/modelcenter/community/indobenchmark/indobert-base-p1/info.yaml b/modelcenter/community/indobenchmark/indobert-base-p1/info.yaml
index a27d7a18a17f9f8b9dc3279e374080c3e975199d..4bf70a48f44f1e9b8cc532f0d7a220c0df026af3 100644
--- a/modelcenter/community/indobenchmark/indobert-base-p1/info.yaml
+++ b/modelcenter/community/indobenchmark/indobert-base-p1/info.yaml
@@ -1,24 +1,22 @@
+Datasets: indonlu
+Example: null
+IfOnlineDemo: 0
+IfTraining: 0
+Language: Indonesian
+License: mit
Model_Info:
- name: "indobenchmark/indobert-base-p1"
- description: "IndoBERT Base Model (phase1 - uncased)"
- description_en: "IndoBERT Base Model (phase1 - uncased)"
- icon: ""
- from_repo: "https://huggingface.co/indobenchmark/indobert-base-p1"
-
-Task:
-- tag_en: "Natural Language Processing"
- tag: "自然语言处理"
- sub_tag_en: "Feature Extraction"
- sub_tag: "特征抽取"
-
-Example:
-
-Datasets: "indonlu"
-Publisher: "indobenchmark"
-License: "mit"
-Language: "Indonesian"
+ description: IndoBERT Base Model (phase1 - uncased)
+ description_en: IndoBERT Base Model (phase1 - uncased)
+ from_repo: https://huggingface.co/indobenchmark/indobert-base-p1
+ icon: https://paddlenlp.bj.bcebos.com/models/community/transformer-layer.png
+ name: indobenchmark/indobert-base-p1
Paper:
- - title: 'IndoNLU: Benchmark and Resources for Evaluating Indonesian Natural Language Understanding'
- url: 'http://arxiv.org/abs/2009.05387v3'
-IfTraining: 0
-IfOnlineDemo: 0
\ No newline at end of file
+- title: 'IndoNLU: Benchmark and Resources for Evaluating Indonesian Natural Language
+ Understanding'
+ url: http://arxiv.org/abs/2009.05387v3
+Publisher: indobenchmark
+Task:
+- sub_tag: 特征抽取
+ sub_tag_en: Feature Extraction
+ tag: 自然语言处理
+ tag_en: Natural Language Processing
diff --git a/modelcenter/community/indobenchmark/indobert-base-p1/introduction_cn.ipynb b/modelcenter/community/indobenchmark/indobert-base-p1/introduction_cn.ipynb
new file mode 100644
index 0000000000000000000000000000000000000000..cc12f5618c3f8699ca5ffb00a9ddef1109896661
--- /dev/null
+++ b/modelcenter/community/indobenchmark/indobert-base-p1/introduction_cn.ipynb
@@ -0,0 +1,124 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "id": "3f5a12e4",
+ "metadata": {},
+ "source": [
+ "# IndoBERT Base Model (phase1 - uncased)\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "e2fcac01",
+ "metadata": {},
+ "source": [
+ "[IndoBERT](https://arxiv.org/abs/2009.05387) is a state-of-the-art language model for Indonesian based on the BERT model. The pretrained model is trained using a masked language modeling (MLM) objective and next sentence prediction (NSP) objective.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "6a9d6a02",
+ "metadata": {},
+ "source": [
+ "## All Pre-trained Models\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "3020975b",
+ "metadata": {},
+ "source": [
+ "| Model | #params | Arch. | Training data |\n",
+ "|--------------------------------|--------------------------------|-------|-----------------------------------|\n",
+ "| `indobenchmark/indobert-base-p1` | 124.5M | Base | Indo4B (23.43 GB of text) |\n",
+ "| `indobenchmark/indobert-base-p2` | 124.5M | Base | Indo4B (23.43 GB of text) |\n",
+ "| `indobenchmark/indobert-large-p1` | 335.2M | Large | Indo4B (23.43 GB of text) |\n",
+ "| `indobenchmark/indobert-large-p2` | 335.2M | Large | Indo4B (23.43 GB of text) |\n",
+ "| `indobenchmark/indobert-lite-base-p1` | 11.7M | Base | Indo4B (23.43 GB of text) |\n",
+ "| `indobenchmark/indobert-lite-base-p2` | 11.7M | Base | Indo4B (23.43 GB of text) |\n",
+ "| `indobenchmark/indobert-lite-large-p1` | 17.7M | Large | Indo4B (23.43 GB of text) |\n",
+ "| `indobenchmark/indobert-lite-large-p2` | 17.7M | Large | Indo4B (23.43 GB of text) |\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "d0e3771a",
+ "metadata": {},
+ "source": [
+ "## How to use\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "f1f38760",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "!pip install --upgrade paddlenlp"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "a11bc38f",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import paddle\n",
+ "from paddlenlp.transformers import AutoModel\n",
+ "\n",
+ "model = AutoModel.from_pretrained(\"indobenchmark/indobert-base-p1\")\n",
+ "input_ids = paddle.randint(100, 200, shape=[1, 20])\n",
+ "print(model(input_ids))"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "d1fe4366",
+ "metadata": {},
+ "source": [
+ "## Citation\n",
+ "\n",
+ "```\n",
+ "@inproceedings{wilie2020indonlu,\n",
+ "title={IndoNLU: Benchmark and Resources for Evaluating Indonesian Natural Language Understanding},\n",
+ "author={Bryan Wilie and Karissa Vincentio and Genta Indra Winata and Samuel Cahyawijaya and X. Li and Zhi Yuan Lim and S. Soleman and R. Mahendra and Pascale Fung and Syafri Bahar and A. Purwarianti},\n",
+ "booktitle={Proceedings of the 1st Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the 10th International Joint Conference on Natural Language Processing},\n",
+ "year={2020}\n",
+ "}\n",
+ "```"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "95f83dc9",
+ "metadata": {},
+ "source": [
+ "> 此模型介绍及权重来源于[https://huggingface.co/indobenchmark/indobert-base-p1](https://huggingface.co/indobenchmark/indobert-base-p1),并转换为飞桨模型格式。\n"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3 (ipykernel)",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.7.13"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 5
+}
diff --git a/modelcenter/community/indobenchmark/indobert-base-p1/introduction_en.ipynb b/modelcenter/community/indobenchmark/indobert-base-p1/introduction_en.ipynb
new file mode 100644
index 0000000000000000000000000000000000000000..ec38f774dc314e6a43a5ec7b72f4419c4ffed65b
--- /dev/null
+++ b/modelcenter/community/indobenchmark/indobert-base-p1/introduction_en.ipynb
@@ -0,0 +1,124 @@
+{
+ "cells": [
+ {
+ "cell_type": "markdown",
+ "id": "d6793868",
+ "metadata": {},
+ "source": [
+ "# IndoBERT Base Model (phase1 - uncased)\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "48b35590",
+ "metadata": {},
+ "source": [
+ "[IndoBERT](https://arxiv.org/abs/2009.05387) is a state-of-the-art language model for Indonesian based on the BERT model. The pretrained model is trained using a masked language modeling (MLM) objective and next sentence prediction (NSP) objective.\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "e5dc323c",
+ "metadata": {},
+ "source": [
+ "## All Pre-trained Models\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "7db5d6e5",
+ "metadata": {},
+ "source": [
+ "| Model | #params | Arch. | Training data |\n",
+ "|--------------------------------|--------------------------------|-------|-----------------------------------|\n",
+ "| `indobenchmark/indobert-base-p1` | 124.5M | Base | Indo4B (23.43 GB of text) |\n",
+ "| `indobenchmark/indobert-base-p2` | 124.5M | Base | Indo4B (23.43 GB of text) |\n",
+ "| `indobenchmark/indobert-large-p1` | 335.2M | Large | Indo4B (23.43 GB of text) |\n",
+ "| `indobenchmark/indobert-large-p2` | 335.2M | Large | Indo4B (23.43 GB of text) |\n",
+ "| `indobenchmark/indobert-lite-base-p1` | 11.7M | Base | Indo4B (23.43 GB of text) |\n",
+ "| `indobenchmark/indobert-lite-base-p2` | 11.7M | Base | Indo4B (23.43 GB of text) |\n",
+ "| `indobenchmark/indobert-lite-large-p1` | 17.7M | Large | Indo4B (23.43 GB of text) |\n",
+ "| `indobenchmark/indobert-lite-large-p2` | 17.7M | Large | Indo4B (23.43 GB of text) |\n"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "fc8827fd",
+ "metadata": {},
+ "source": [
+ "## How to use\n"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "e5b6e205",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "!pip install --upgrade paddlenlp"
+ ]
+ },
+ {
+ "cell_type": "code",
+ "execution_count": null,
+ "id": "6701163d",
+ "metadata": {},
+ "outputs": [],
+ "source": [
+ "import paddle\n",
+ "from paddlenlp.transformers import AutoModel\n",
+ "\n",
+ "model = AutoModel.from_pretrained(\"indobenchmark/indobert-base-p1\")\n",
+ "input_ids = paddle.randint(100, 200, shape=[1, 20])\n",
+ "print(model(input_ids))"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "fb28cf5b",
+ "metadata": {},
+ "source": [
+ "## Citation\n",
+ "\n",
+ "```\n",
+ "@inproceedings{wilie2020indonlu,\n",
+ "title={IndoNLU: Benchmark and Resources for Evaluating Indonesian Natural Language Understanding},\n",
+ "author={Bryan Wilie and Karissa Vincentio and Genta Indra Winata and Samuel Cahyawijaya and X. Li and Zhi Yuan Lim and S. Soleman and R. Mahendra and Pascale Fung and Syafri Bahar and A. Purwarianti},\n",
+ "booktitle={Proceedings of the 1st Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the 10th International Joint Conference on Natural Language Processing},\n",
+ "year={2020}\n",
+ "}\n",
+ "```"
+ ]
+ },
+ {
+ "cell_type": "markdown",
+ "id": "e155d1ce",
+ "metadata": {},
+ "source": [
+ "> The model introduction and model weights originate from [https://huggingface.co/indobenchmark/indobert-base-p1](https://huggingface.co/indobenchmark/indobert-base-p1) and were converted to PaddlePaddle format for ease of use in PaddleNLP.\n"
+ ]
+ }
+ ],
+ "metadata": {
+ "kernelspec": {
+ "display_name": "Python 3 (ipykernel)",
+ "language": "python",
+ "name": "python3"
+ },
+ "language_info": {
+ "codemirror_mode": {
+ "name": "ipython",
+ "version": 3
+ },
+ "file_extension": ".py",
+ "mimetype": "text/x-python",
+ "name": "python",
+ "nbconvert_exporter": "python",
+ "pygments_lexer": "ipython3",
+ "version": "3.7.13"
+ }
+ },
+ "nbformat": 4,
+ "nbformat_minor": 5
+}
diff --git a/modelcenter/community/johngiorgi/declutr-base/download_cn.md b/modelcenter/community/johngiorgi/declutr-base/download_cn.md
deleted file mode 100644
index 90761ce377dcfc6b0c3cf3a63576eaa42ed0dc14..0000000000000000000000000000000000000000
--- a/modelcenter/community/johngiorgi/declutr-base/download_cn.md
+++ /dev/null
@@ -1,23 +0,0 @@
-# 模型列表
-
-## johngiorgi/declutr-base
-
-| 模型名称 | 模型介绍 | 模型大小 | 模型下载 |
-| --- | --- | --- | --- |
-|johngiorgi/declutr-base| | 625.22MB | [merges.txt](https://bj.bcebos.com/paddlenlp/models/community/johngiorgi/declutr-base/merges.txt)
[model_config.json](https://bj.bcebos.com/paddlenlp/models/community/johngiorgi/declutr-base/model_config.json)
[model_state.pdparams](https://bj.bcebos.com/paddlenlp/models/community/johngiorgi/declutr-base/model_state.pdparams)
[tokenizer_config.json](https://bj.bcebos.com/paddlenlp/models/community/johngiorgi/declutr-base/tokenizer_config.json)
[vocab.json](https://bj.bcebos.com/paddlenlp/models/community/johngiorgi/declutr-base/vocab.json)
[vocab.txt](https://bj.bcebos.com/paddlenlp/models/community/johngiorgi/declutr-base/vocab.txt) |
-
-也可以通过`paddlenlp` cli 工具来下载对应的模型权重,使用步骤如下所示:
-
-* 安装paddlenlp
-
-```shell
-pip install --upgrade paddlenlp
-```
-
-* 下载命令行
-
-```shell
-paddlenlp download --cache-dir ./pretrained_models johngiorgi/declutr-base
-```
-
-有任何下载的问题都可以到[PaddleNLP](https://github.com/PaddlePaddle/PaddleNLP)中发Issue提问。
\ No newline at end of file
diff --git a/modelcenter/community/johngiorgi/declutr-base/download_en.md b/modelcenter/community/johngiorgi/declutr-base/download_en.md
deleted file mode 100644
index f25c8efd028cdb5c0d2386f0d6f173fa31eebd39..0000000000000000000000000000000000000000
--- a/modelcenter/community/johngiorgi/declutr-base/download_en.md
+++ /dev/null
@@ -1,23 +0,0 @@
-# model list
-
-##
-
-| model | description | model_size | download |
-| --- | --- | --- | --- |
-|johngiorgi/declutr-base| | 625.22MB | [merges.txt](https://bj.bcebos.com/paddlenlp/models/community/johngiorgi/declutr-base/merges.txt)
[model_config.json](https://bj.bcebos.com/paddlenlp/models/community/johngiorgi/declutr-base/model_config.json)
[model_state.pdparams](https://bj.bcebos.com/paddlenlp/models/community/johngiorgi/declutr-base/model_state.pdparams)
[tokenizer_config.json](https://bj.bcebos.com/paddlenlp/models/community/johngiorgi/declutr-base/tokenizer_config.json)
[vocab.json](https://bj.bcebos.com/paddlenlp/models/community/johngiorgi/declutr-base/vocab.json)
[vocab.txt](https://bj.bcebos.com/paddlenlp/models/community/johngiorgi/declutr-base/vocab.txt) |
-
-or you can download all of model file with the following steps:
-
-* install paddlenlp
-
-```shell
-pip install --upgrade paddlenlp
-```
-
-* download model with cli tool
-
-```shell
-paddlenlp download --cache-dir ./pretrained_models johngiorgi/declutr-base
-```
-
-If you have any problems with it, you can post issue on [PaddleNLP](https://github.com/PaddlePaddle/PaddleNLP) to get support.
diff --git a/modelcenter/community/johngiorgi/declutr-base/info.yaml b/modelcenter/community/johngiorgi/declutr-base/info.yaml
deleted file mode 100644
index 86e42194738a2c421d9180847dbbbb371887cb91..0000000000000000000000000000000000000000
--- a/modelcenter/community/johngiorgi/declutr-base/info.yaml
+++ /dev/null
@@ -1,28 +0,0 @@
-Model_Info:
- name: "johngiorgi/declutr-base"
- description: "DeCLUTR-base"
- description_en: "DeCLUTR-base"
- icon: ""
- from_repo: "https://huggingface.co/johngiorgi/declutr-base"
-
-Task:
-- tag_en: "Natural Language Processing"
- tag: "自然语言处理"
- sub_tag_en: "Sentence Similarity"
- sub_tag: "句子相似度"
-- tag_en: "Natural Language Processing"
- tag: "自然语言处理"
- sub_tag_en: "Feature Extraction"
- sub_tag: "特征抽取"
-
-Example:
-
-Datasets: "openwebtext"
-Publisher: "johngiorgi"
-License: "apache-2.0"
-Language: "English"
-Paper:
- - title: 'DeCLUTR: Deep Contrastive Learning for Unsupervised Textual Representations'
- url: 'http://arxiv.org/abs/2006.03659v4'
-IfTraining: 0
-IfOnlineDemo: 0
\ No newline at end of file