Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
models
提交
124afdb7
M
models
项目概览
PaddlePaddle
/
models
1 年多 前同步成功
通知
222
Star
6828
Fork
2962
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
602
列表
看板
标记
里程碑
合并请求
255
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
M
models
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
602
Issue
602
列表
看板
标记
里程碑
合并请求
255
合并请求
255
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
124afdb7
编写于
1月 31, 2018
作者:
C
Cao Ying
提交者:
GitHub
1月 31, 2018
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #606 from peterzhang2029/add_text_classification
Add the text classification example for Fluid.
上级
2fbb52cc
353b7ab0
变更
3
显示空白变更内容
内联
并排
Showing
3 changed file
with
184 addition
and
0 deletion
+184
-0
fluid/text_classification/README.md
fluid/text_classification/README.md
+12
-0
fluid/text_classification/config.py
fluid/text_classification/config.py
+16
-0
fluid/text_classification/train.py
fluid/text_classification/train.py
+156
-0
未找到文件。
fluid/text_classification/README.md
0 → 100644
浏览文件 @
124afdb7
# Text Classification
## Data Preparation
```
wget http://ai.stanford.edu/%7Eamaas/data/sentiment/aclImdb_v1.tar.gz
tar zxf aclImdb_v1.tar.gz
```
## Training
```
python train.py --dict_path 'aclImdb/imdb.vocab'
```
fluid/text_classification/config.py
0 → 100644
浏览文件 @
124afdb7
class
TrainConfig
(
object
):
# Whether to use GPU in training or not.
use_gpu
=
False
# The training batch size.
batch_size
=
4
# The epoch number.
num_passes
=
30
# The global learning rate.
learning_rate
=
0.01
# Training log will be printed every log_period.
log_period
=
100
fluid/text_classification/train.py
0 → 100644
浏览文件 @
124afdb7
import
numpy
as
np
import
sys
import
os
import
argparse
import
time
import
paddle.v2
as
paddle
import
paddle.v2.fluid
as
fluid
from
config
import
TrainConfig
as
conf
def
parse_args
():
parser
=
argparse
.
ArgumentParser
()
parser
.
add_argument
(
'--dict_path'
,
type
=
str
,
required
=
True
,
help
=
"Path of the word dictionary."
)
return
parser
.
parse_args
()
# Define to_lodtensor function to process the sequential data.
def
to_lodtensor
(
data
,
place
):
seq_lens
=
[
len
(
seq
)
for
seq
in
data
]
cur_len
=
0
lod
=
[
cur_len
]
for
l
in
seq_lens
:
cur_len
+=
l
lod
.
append
(
cur_len
)
flattened_data
=
np
.
concatenate
(
data
,
axis
=
0
).
astype
(
"int64"
)
flattened_data
=
flattened_data
.
reshape
([
len
(
flattened_data
),
1
])
res
=
fluid
.
LoDTensor
()
res
.
set
(
flattened_data
,
place
)
res
.
set_lod
([
lod
])
return
res
# Load the dictionary.
def
load_vocab
(
filename
):
vocab
=
{}
with
open
(
filename
)
as
f
:
for
idx
,
line
in
enumerate
(
f
):
vocab
[
line
.
strip
()]
=
idx
return
vocab
# Define the convolution model.
def
conv_net
(
dict_dim
,
window_size
=
3
,
emb_dim
=
128
,
num_filters
=
128
,
fc0_dim
=
96
,
class_dim
=
2
):
data
=
fluid
.
layers
.
data
(
name
=
"words"
,
shape
=
[
1
],
dtype
=
"int64"
,
lod_level
=
1
)
label
=
fluid
.
layers
.
data
(
name
=
"label"
,
shape
=
[
1
],
dtype
=
"int64"
)
emb
=
fluid
.
layers
.
embedding
(
input
=
data
,
size
=
[
dict_dim
,
emb_dim
])
conv_3
=
fluid
.
nets
.
sequence_conv_pool
(
input
=
emb
,
num_filters
=
num_filters
,
filter_size
=
window_size
,
act
=
"tanh"
,
pool_type
=
"max"
)
fc_0
=
fluid
.
layers
.
fc
(
input
=
[
conv_3
],
size
=
fc0_dim
)
prediction
=
fluid
.
layers
.
fc
(
input
=
[
fc_0
],
size
=
class_dim
,
act
=
"softmax"
)
cost
=
fluid
.
layers
.
cross_entropy
(
input
=
prediction
,
label
=
label
)
avg_cost
=
fluid
.
layers
.
mean
(
x
=
cost
)
return
data
,
label
,
prediction
,
avg_cost
def
main
(
dict_path
):
word_dict
=
load_vocab
(
dict_path
)
word_dict
[
"<unk>"
]
=
len
(
word_dict
)
dict_dim
=
len
(
word_dict
)
print
(
"The dictionary size is : %d"
%
dict_dim
)
data
,
label
,
prediction
,
avg_cost
=
conv_net
(
dict_dim
)
sgd_optimizer
=
fluid
.
optimizer
.
SGD
(
learning_rate
=
conf
.
learning_rate
)
sgd_optimizer
.
minimize
(
avg_cost
)
accuracy
=
fluid
.
evaluator
.
Accuracy
(
input
=
prediction
,
label
=
label
)
inference_program
=
fluid
.
default_main_program
().
clone
()
with
fluid
.
program_guard
(
inference_program
):
test_target
=
accuracy
.
metrics
+
accuracy
.
states
inference_program
=
fluid
.
io
.
get_inference_program
(
test_target
)
# The training data set.
train_reader
=
paddle
.
batch
(
paddle
.
reader
.
shuffle
(
paddle
.
dataset
.
imdb
.
train
(
word_dict
),
buf_size
=
51200
),
batch_size
=
conf
.
batch_size
)
# The testing data set.
test_reader
=
paddle
.
batch
(
paddle
.
reader
.
shuffle
(
paddle
.
dataset
.
imdb
.
test
(
word_dict
),
buf_size
=
51200
),
batch_size
=
conf
.
batch_size
)
if
conf
.
use_gpu
:
place
=
fluid
.
CUDAPlace
(
0
)
else
:
place
=
fluid
.
CPUPlace
()
exe
=
fluid
.
Executor
(
place
)
feeder
=
fluid
.
DataFeeder
(
feed_list
=
[
data
,
label
],
place
=
place
)
exe
.
run
(
fluid
.
default_startup_program
())
def
test
(
exe
):
accuracy
.
reset
(
exe
)
for
batch_id
,
data
in
enumerate
(
test_reader
()):
input_seq
=
to_lodtensor
(
map
(
lambda
x
:
x
[
0
],
data
),
place
)
y_data
=
np
.
array
(
map
(
lambda
x
:
x
[
1
],
data
)).
astype
(
"int64"
)
y_data
=
y_data
.
reshape
([
-
1
,
1
])
acc
=
exe
.
run
(
inference_program
,
feed
=
{
"words"
:
input_seq
,
"label"
:
y_data
})
test_acc
=
accuracy
.
eval
(
exe
)
return
test_acc
total_time
=
0.
for
pass_id
in
xrange
(
conf
.
num_passes
):
accuracy
.
reset
(
exe
)
start_time
=
time
.
time
()
for
batch_id
,
data
in
enumerate
(
train_reader
()):
cost_val
,
acc_val
=
exe
.
run
(
fluid
.
default_main_program
(),
feed
=
feeder
.
feed
(
data
),
fetch_list
=
[
avg_cost
,
accuracy
.
metrics
[
0
]])
pass_acc
=
accuracy
.
eval
(
exe
)
if
batch_id
and
batch_id
%
conf
.
log_period
==
0
:
print
(
"Pass id: %d, batch id: %d, cost: %f, pass_acc %f"
%
(
pass_id
,
batch_id
,
cost_val
,
pass_acc
))
end_time
=
time
.
time
()
total_time
+=
(
end_time
-
start_time
)
pass_test_acc
=
test
(
exe
)
print
(
"Pass id: %d, test_acc: %f"
%
(
pass_id
,
pass_test_acc
))
print
(
"Total train time: %f"
%
(
total_time
))
if
__name__
==
'__main__'
:
args
=
parse_args
()
main
(
args
.
dict_path
)
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录