提交 0fa990bb 编写于 作者: P peterzhang2029

add config and refine doc

上级 5f902e0c
......@@ -4,7 +4,7 @@
在现实生活中,包括路牌、菜单、大厦标语在内的很多场景均会有文字出现,这些场景的照片中的文字为图片场景的理解提供了更多信息,\[[1](#参考文献)\]使用深度学习模型自动识别路牌中的文字,帮助街景应用获取更加准确的地址信息。
本例将演示如何用 PaddlePaddle 完成 **场景文字识别 (STR, Scene Text Recognition)** 任务。以下图为例,给定一个场景图片,STR需要从图片中识别出对应的文字"keep":
本例将演示如何用 PaddlePaddle 完成 **场景文字识别 (STR, Scene Text Recognition)** 任务。以下图为例,给定一个场景图片,STR需要从图片中识别出对应的文字"keep"
<p align="center">
<img src="./images/503.jpg"/><br/>
......@@ -14,70 +14,66 @@
## 使用 PaddlePaddle 训练与预测
### 安装依赖包
```bash
pip install -r requirements.txt
```
### 指定训练配置参数
通过 `config.py` 脚本修改训练和模型配置参数,脚本中有对可配置参数的详细解释,示例如下:
```python
class TrainerConfig(object):
# Whether to use GPU in training or not.
use_gpu = True
# The number of computing threads.
trainer_count = 1
# The training batch size.
batch_size = 10
...
class ModelConfig(object):
# Number of the filters for convolution group.
filter_num = 8
...
```
修改 `config.py` 对参数进行调整。例如,通过修改 `use_gpu` 参数来指定是否使用 GPU 进行训练。
### 模型训练
训练脚本 [./train.py](./train.py) 中设置了如下命令行参数:
```
usage: train.py [-h] --image_shape IMAGE_SHAPE --train_file_list
TRAIN_FILE_LIST --test_file_list TEST_FILE_LIST
[--batch_size BATCH_SIZE]
[--model_output_prefix MODEL_OUTPUT_PREFIX]
[--trainer_count TRAINER_COUNT]
[--save_period_by_batch SAVE_PERIOD_BY_BATCH]
[--num_passes NUM_PASSES]
PaddlePaddle CTC example
optional arguments:
-h, --help show this help message and exit
--image_shape IMAGE_SHAPE
image's shape, format is like '173,46'
--train_file_list TRAIN_FILE_LIST
path of the file which contains path list of train
image files
--test_file_list TEST_FILE_LIST
path of the file which contains path list of test
image files
--batch_size BATCH_SIZE
size of a mini-batch
--model_output_prefix MODEL_OUTPUT_PREFIX
prefix of path for model to store (default:
./model.ctc)
--trainer_count TRAINER_COUNT
number of training threads
--save_period_by_batch SAVE_PERIOD_BY_BATCH
save model to disk every N batches
--num_passes NUM_PASSES
number of passes to train (default: 1)
```
Options:
--train_file_list_path TEXT The path of the file which contains path list
of train image files. [required]
--test_file_list_path TEXT The path of the file which contains path list
of test image files. [required]
--model_save_dir TEXT The path to save the trained models (default:
'models').
--help Show this message and exit.
重要的几个参数包括:
```
- `image_shape` 图片的尺寸
- `train_file_list` 训练数据的列表文件,每行一个路径加对应的text,具体格式为:
```
word_1.png, "PROPER"
word_2.png, "FOOD"
```
- `test_file_list` 测试数据的列表文件,格式同上
### 预测
预测部分由infer.py完成,使用的是最优路径解码算法,即:在每个时间步选择一个概率最大的字符。在使用过程中,需要在infer.py中指定具体的模型目录、图片固定尺寸、batch_size和图片文件的列表文件。例如:
```python
model_path = "model.ctc-pass-9-batch-150-test.tar.gz"
image_shape = "173,46"
batch_size = 50
infer_file_list = 'data/test_data/Challenge2_Test_Task3_GT.txt'
```
然后运行```python infer.py```
- `test_file_list` 测试数据的列表文件,格式同上。
- `model_save_dir` 模型参数会的保存目录目录, 默认为当前目录下的`models`目录。
### 具体执行的过程:
1.从官方网站下载数据\[[2](#参考文献)\](Task 2.3: Word Recognition (2013 edition)),会有三个文件: Challenge2_Training_Task3_Images_GT.zip、Challenge2_Test_Task3_Images.zip和 Challenge2_Test_Task3_GT.txt。
分别对应训练集的图片和图片对应的单词,测试集的图片,测试数据对应的单词,然后执行以下命令,对数据解压并移动至目标文件夹:
```
```bash
mkdir -p data/train_data
mkdir -p data/test_data
unzip Challenge2_Training_Task3_Images_GT.zip -d data/train_data
......@@ -85,16 +81,26 @@ unzip Challenge2_Test_Task3_Images.zip -d data/test_data
mv Challenge2_Test_Task3_GT.txt data/test_data
```
2.获取训练数据文件夹中 `gt.txt` 的路径 (data/train_data)和测试数据文件夹中`Challenge2_Test_Task3_GT.txt`的路径(data/test_data)
2.获取训练数据文件夹中 `gt.txt` 的路径 (data/train_data)和测试数据文件夹中`Challenge2_Test_Task3_GT.txt`的路径(data/test_data)
3.执行命令
3.执行如下命令进行训练:
```bash
python train.py \
--train_file_list_path 'data/train_data/gt.txt' \
--test_file_list_path 'data/test_data/Challenge2_Test_Task3_GT.txt'
```
python train.py --train_file_list data/train_data/gt.txt --test_file_list data/test_data/Challenge2_Test_Task3_GT.txt --image_shape '173,46'
```
4.训练过程中,模型参数会自动备份到指定目录,默认为 ./model.ctc
4.训练过程中,模型参数会自动备份到指定目录,默认会保存在 `./models` 目录下。
5.设置infer.py中的相关参数(模型所在路径),运行```python infer.py``` 进行预测
### 预测
预测部分由 `infer.py` 完成,使用的是最优路径解码算法,即:在每个时间步选择一个概率最大的字符。在使用过程中,需要在 `infer.py` 中指定具体的模型目录、图片固定尺寸、batch_size(默认设置为10)和图片文件的列表文件。执行如下代码:
```bash
python infer.py \
--model_path 'models/params_pass_00000.tar.gz' \
--image_shape '173,46' \
--infer_file_list_path 'data/test_data/Challenge2_Test_Task3_GT.txt'
```
即可进行预测。
### 其他数据集
......@@ -104,7 +110,7 @@ python train.py --train_file_list data/train_data/gt.txt --test_file_list data/t
### 注意事项
- 由于模型依赖的 `warp CTC` 只有CUDA的实现,本模型只支持 GPU 运行
- 本模型参数较多,占用显存比较大,实际执行时可以调节batch_size 控制显存占用
- 本模型参数较多,占用显存比较大,实际执行时可以调节`batch_size`控制显存占用
- 本模型使用的数据集较小,可以选用其他更大的数据集\[[3](#参考文献)\]来训练需要的模型
## 参考文献
......
__all__ = ["TrainerConfig", "ModelConfig"]
class TrainerConfig(object):
# Whether to use GPU in training or not.
use_gpu = True
# The number of computing threads.
trainer_count = 1
# The training batch size.
batch_size = 10
# The epoch number.
num_passes = 10
# Parameter updates momentum.
momentum = 0
# The shape of images.
image_shape = (173, 46)
# The buffer size of the data reader.
# The number of buffer size samples will be shuffled in training.
buf_size = 1000
# The parameter is used to control logging period.
# Training log will be printed every log_period.
log_period = 50
class ModelConfig(object):
# Number of the filters for convolution group.
filter_num = 8
# Use batch normalization or not in image convolution group.
with_bn = True
# The number of channels for block expand layer.
num_channels = 128
# The parameter stride_x in block expand layer.
stride_x = 1
# The parameter stride_y in block expand layer.
stride_y = 1
# The parameter block_x in block expand layer.
block_x = 1
# The parameter block_y in block expand layer.
block_y = 11
# The hidden size for gru.
hidden_size = num_channels
# Use norm_by_times or not in warp ctc layer.
norm_by_times = True
# The list for number of filter in image convolution group layer.
filter_num_list = [16, 32, 64, 128]
# The parameter conv_padding in image convolution group layer.
conv_padding = 1
# The parameter conv_filter_size in image convolution group layer.
conv_filter_size = 3
# The parameter pool_size in image convolution group layer.
pool_size = 2
# The parameter pool_stride in image convolution group layer.
pool_stride = 2
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import cv2
from paddle.v2.image import load_image
class AsciiDic(object):
UNK = 0
def __init__(self):
self.dic = {
'<unk>': self.UNK,
}
self.chars = [chr(i) for i in range(40, 171)]
for id, c in enumerate(self.chars):
self.dic[c] = id + 1
def lookup(self, w):
return self.dic.get(w, self.UNK)
def id2word(self):
self.id2word = {}
for key, value in self.dic.items():
self.id2word[value] = key
return self.id2word
def word2ids(self, sent):
'''
transform a word to a list of ids.
'''
return [self.lookup(c) for c in list(sent)]
def size(self):
return len(self.dic)
class ImageDataset(object):
def __init__(self,
train_image_paths_generator,
test_image_paths_generator,
infer_image_paths_generator,
fixed_shape=None,
is_infer=False):
'''
:param train_image_paths_generator:
return list of train images' paths.
:type train_image_paths_generator: function
:param fixed_shape: fixed shape of images.
:type fixed_shape: tuple
'''
if is_infer == False:
self.train_filelist = [p for p in train_image_paths_generator]
self.test_filelist = [p for p in test_image_paths_generator]
else:
self.infer_filelist = [p for p in infer_image_paths_generator]
self.fixed_shape = fixed_shape
self.ascii_dic = AsciiDic()
def train(self):
for i, (image, label) in enumerate(self.train_filelist):
yield self.load_image(image), self.ascii_dic.word2ids(label)
def test(self):
for i, (image, label) in enumerate(self.test_filelist):
yield self.load_image(image), self.ascii_dic.word2ids(label)
def infer(self):
for i, (image, label) in enumerate(self.infer_filelist):
yield self.load_image(image), label
def load_image(self, path):
'''
load image and transform to 1-dimention vector
'''
image = load_image(path)
image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
# resize all images to a fixed shape
if self.fixed_shape:
image = cv2.resize(
image, self.fixed_shape, interpolation=cv2.INTER_CUBIC)
image = image.flatten() / 255.
return image
def get_file_list(image_file_list):
pwd = os.path.dirname(image_file_list)
with open(image_file_list) as f:
for line in f:
fs = line.strip().split(',', 1)
file = fs[0].strip()
path = os.path.join(pwd, file)
yield path, fs[1][2:-1]
......@@ -46,7 +46,7 @@
在现实生活中,包括路牌、菜单、大厦标语在内的很多场景均会有文字出现,这些场景的照片中的文字为图片场景的理解提供了更多信息,\[[1](#参考文献)\]使用深度学习模型自动识别路牌中的文字,帮助街景应用获取更加准确的地址信息。
本例将演示如何用 PaddlePaddle 完成 **场景文字识别 (STR, Scene Text Recognition)** 任务。以下图为例,给定一个场景图片,STR需要从图片中识别出对应的文字"keep":
本例将演示如何用 PaddlePaddle 完成 **场景文字识别 (STR, Scene Text Recognition)** 任务。以下图为例,给定一个场景图片,STR需要从图片中识别出对应的文字"keep"
<p align="center">
<img src="./images/503.jpg"/><br/>
......@@ -56,70 +56,66 @@
## 使用 PaddlePaddle 训练与预测
### 安装依赖包
```bash
pip install -r requirements.txt
```
### 指定训练配置参数
通过 `config.py` 脚本修改训练和模型配置参数,脚本中有对可配置参数的详细解释,示例如下:
```python
class TrainerConfig(object):
# Whether to use GPU in training or not.
use_gpu = True
# The number of computing threads.
trainer_count = 1
# The training batch size.
batch_size = 10
...
class ModelConfig(object):
# Number of the filters for convolution group.
filter_num = 8
...
```
修改 `config.py` 对参数进行调整。例如,通过修改 `use_gpu` 参数来指定是否使用 GPU 进行训练。
### 模型训练
训练脚本 [./train.py](./train.py) 中设置了如下命令行参数:
```
usage: train.py [-h] --image_shape IMAGE_SHAPE --train_file_list
TRAIN_FILE_LIST --test_file_list TEST_FILE_LIST
[--batch_size BATCH_SIZE]
[--model_output_prefix MODEL_OUTPUT_PREFIX]
[--trainer_count TRAINER_COUNT]
[--save_period_by_batch SAVE_PERIOD_BY_BATCH]
[--num_passes NUM_PASSES]
PaddlePaddle CTC example
optional arguments:
-h, --help show this help message and exit
--image_shape IMAGE_SHAPE
image's shape, format is like '173,46'
--train_file_list TRAIN_FILE_LIST
path of the file which contains path list of train
image files
--test_file_list TEST_FILE_LIST
path of the file which contains path list of test
image files
--batch_size BATCH_SIZE
size of a mini-batch
--model_output_prefix MODEL_OUTPUT_PREFIX
prefix of path for model to store (default:
./model.ctc)
--trainer_count TRAINER_COUNT
number of training threads
--save_period_by_batch SAVE_PERIOD_BY_BATCH
save model to disk every N batches
--num_passes NUM_PASSES
number of passes to train (default: 1)
```
Options:
--train_file_list_path TEXT The path of the file which contains path list
of train image files. [required]
--test_file_list_path TEXT The path of the file which contains path list
of test image files. [required]
--model_save_dir TEXT The path to save the trained models (default:
'models').
--help Show this message and exit.
重要的几个参数包括:
```
- `image_shape` 图片的尺寸
- `train_file_list` 训练数据的列表文件,每行一个路径加对应的text,具体格式为:
```
word_1.png, "PROPER"
word_2.png, "FOOD"
```
- `test_file_list` 测试数据的列表文件,格式同上
### 预测
预测部分由infer.py完成,使用的是最优路径解码算法,即:在每个时间步选择一个概率最大的字符。在使用过程中,需要在infer.py中指定具体的模型目录、图片固定尺寸、batch_size和图片文件的列表文件。例如:
```python
model_path = "model.ctc-pass-9-batch-150-test.tar.gz"
image_shape = "173,46"
batch_size = 50
infer_file_list = 'data/test_data/Challenge2_Test_Task3_GT.txt'
```
然后运行```python infer.py```
- `test_file_list` 测试数据的列表文件,格式同上。
- `model_save_dir` 模型参数会的保存目录目录, 默认为当前目录下的`models`目录。
### 具体执行的过程:
1.从官方网站下载数据\[[2](#参考文献)\](Task 2.3: Word Recognition (2013 edition)),会有三个文件: Challenge2_Training_Task3_Images_GT.zip、Challenge2_Test_Task3_Images.zip和 Challenge2_Test_Task3_GT.txt。
分别对应训练集的图片和图片对应的单词,测试集的图片,测试数据对应的单词,然后执行以下命令,对数据解压并移动至目标文件夹:
```
```bash
mkdir -p data/train_data
mkdir -p data/test_data
unzip Challenge2_Training_Task3_Images_GT.zip -d data/train_data
......@@ -127,16 +123,26 @@ unzip Challenge2_Test_Task3_Images.zip -d data/test_data
mv Challenge2_Test_Task3_GT.txt data/test_data
```
2.获取训练数据文件夹中 `gt.txt` 的路径 (data/train_data)和测试数据文件夹中`Challenge2_Test_Task3_GT.txt`的路径(data/test_data)
2.获取训练数据文件夹中 `gt.txt` 的路径 (data/train_data)和测试数据文件夹中`Challenge2_Test_Task3_GT.txt`的路径(data/test_data)
3.执行命令
3.执行如下命令进行训练:
```bash
python train.py \
--train_file_list_path 'data/train_data/gt.txt' \
--test_file_list_path 'data/test_data/Challenge2_Test_Task3_GT.txt'
```
python train.py --train_file_list data/train_data/gt.txt --test_file_list data/test_data/Challenge2_Test_Task3_GT.txt --image_shape '173,46'
```
4.训练过程中,模型参数会自动备份到指定目录,默认为 ./model.ctc
4.训练过程中,模型参数会自动备份到指定目录,默认会保存在 `./models` 目录下。
5.设置infer.py中的相关参数(模型所在路径),运行```python infer.py``` 进行预测
### 预测
预测部分由 `infer.py` 完成,使用的是最优路径解码算法,即:在每个时间步选择一个概率最大的字符。在使用过程中,需要在 `infer.py` 中指定具体的模型目录、图片固定尺寸、batch_size(默认设置为10)和图片文件的列表文件。执行如下代码:
```bash
python infer.py \
--model_path 'models/params_pass_00000.tar.gz' \
--image_shape '173,46' \
--infer_file_list_path 'data/test_data/Challenge2_Test_Task3_GT.txt'
```
即可进行预测。
### 其他数据集
......@@ -146,7 +152,7 @@ python train.py --train_file_list data/train_data/gt.txt --test_file_list data/t
### 注意事项
- 由于模型依赖的 `warp CTC` 只有CUDA的实现,本模型只支持 GPU 运行
- 本模型参数较多,占用显存比较大,实际执行时可以调节batch_size 控制显存占用
- 本模型参数较多,占用显存比较大,实际执行时可以调节`batch_size`控制显存占用
- 本模型使用的数据集较小,可以选用其他更大的数据集\[[3](#参考文献)\]来训练需要的模型
## 参考文献
......
import logging
import argparse
import click
import gzip
import paddle.v2 as paddle
from model import Model
from data_provider import get_file_list, AsciiDic, ImageDataset
from reader import DataGenerator
from decoder import ctc_greedy_decoder
from utils import AsciiDic, get_file_list
def infer_batch(inferer, test_batch, labels):
......@@ -15,9 +15,8 @@ def infer_batch(inferer, test_batch, labels):
infer_results[i * num_steps:(i + 1) * num_steps]
for i in xrange(0, len(test_batch))
]
results = []
# best path decode
# Best path decode.
for i, probs in enumerate(probs_split):
output_transcription = ctc_greedy_decoder(
probs_seq=probs, vocabulary=AsciiDic().id2word())
......@@ -28,21 +27,42 @@ def infer_batch(inferer, test_batch, labels):
(result, label))
def infer(model_path, image_shape, batch_size, infer_file_list):
@click.command('infer')
@click.option(
"--model_path", type=str, required=True, help=("The path of saved model."))
@click.option(
"--image_shape",
type=str,
required=True,
help=("The fixed size for image dataset (format is like: '173,46')."))
@click.option(
"--batch_size",
type=int,
default=10,
help=("The number of examples in one batch (default: 10)."))
@click.option(
"--infer_file_list_path",
type=str,
required=True,
help=("The path of the file which contains "
"path list of image files for inference."))
def infer(model_path, image_shape, batch_size, infer_file_list_path):
image_shape = tuple(map(int, image_shape.split(',')))
infer_generator = get_file_list(infer_file_list)
dataset = ImageDataset(None, None, infer_generator, image_shape, True)
infer_file_list = get_file_list(infer_file_list_path)
char_dict = AsciiDic()
dict_size = char_dict.size()
data_generator = DataGenerator(char_dict=char_dict, image_shape=image_shape)
paddle.init(use_gpu=True, trainer_count=4)
paddle.init(use_gpu=True, trainer_count=1)
parameters = paddle.parameters.Parameters.from_tar(gzip.open(model_path))
model = Model(AsciiDic().size(), image_shape, is_infer=True)
model = Model(dict_size, image_shape, is_infer=True)
inferer = paddle.inference.Inference(
output_layer=model.log_probs, parameters=parameters)
test_batch = []
labels = []
for i, (image, label) in enumerate(dataset.infer()):
for i, (image,
label) in enumerate(data_generator.infer_reader(infer_file_list)()):
test_batch.append([image])
labels.append(label)
if len(test_batch) == batch_size:
......@@ -54,9 +74,4 @@ def infer(model_path, image_shape, batch_size, infer_file_list):
if __name__ == "__main__":
model_path = "model.ctc-pass-9-batch-150-test.tar.gz"
image_shape = "173,46"
batch_size = 50
infer_file_list = 'data/test_data/Challenge2_Test_Task3_GT.txt'
infer(model_path, image_shape, batch_size, infer_file_list)
infer()
......@@ -3,16 +3,17 @@ from paddle.v2 import layer
from paddle.v2 import evaluator
from paddle.v2.activation import Relu, Linear
from paddle.v2.networks import img_conv_group, simple_gru
from config import ModelConfig as conf
class Model(object):
def __init__(self, num_classes, shape, is_infer=False):
'''
:param num_classes: size of the character dict.
:param num_classes: The size of the character dict.
:type num_classes: int
:param shape: size of the input images.
:param shape: The size of the input images.
:type shape: tuple of 2 int
:param is_infer: infer mode or not
:param is_infer: For inference or not
:type shape: bool
'''
self.num_classes = num_classes
......@@ -24,39 +25,50 @@ class Model(object):
self.__build_nn__()
def __declare_input_layers__(self):
# image input as a float vector
'''
Define the input layer.
'''
# Image input as a float vector.
self.image = layer.data(
name='image',
type=paddle.data_type.dense_vector(self.image_vector_size),
height=self.shape[0],
width=self.shape[1])
# label input as a ID list
if self.is_infer == False:
# Label input as an ID list
if not self.is_infer:
self.label = layer.data(
name='label',
type=paddle.data_type.integer_value_sequence(self.num_classes))
def __build_nn__(self):
# CNN output image features, 128 float matrixes
conv_features = self.conv_groups(self.image, 8, True)
'''
Build the network topology.
'''
# CNN output image features.
conv_features = self.conv_groups(self.image, conf.filter_num,
conf.with_bn)
# cutting CNN output into a sequence of feature vectors, which are
# Cut CNN output into a sequence of feature vectors, which are
# 1 pixel wide and 11 pixel high.
sliced_feature = layer.block_expand(
input=conv_features,
num_channels=128,
stride_x=1,
stride_y=1,
block_x=1,
block_y=11)
num_channels=conf.num_channels,
stride_x=conf.stride_x,
stride_y=conf.stride_y,
block_x=conf.block_x,
block_y=conf.block_y)
# RNNs to capture sequence information forwards and backwards.
gru_forward = simple_gru(input=sliced_feature, size=128, act=Relu())
gru_forward = simple_gru(
input=sliced_feature, size=conf.hidden_size, act=Relu())
gru_backward = simple_gru(
input=sliced_feature, size=128, act=Relu(), reverse=True)
input=sliced_feature,
size=conf.hidden_size,
act=Relu(),
reverse=True)
# map each step of RNN to character distribution.
# Map each step of RNN to character distribution.
self.output = layer.fc(
input=[gru_forward, gru_backward],
size=self.num_classes + 1,
......@@ -66,31 +78,31 @@ class Model(object):
input=paddle.layer.identity_projection(input=self.output),
act=paddle.activation.Softmax())
# warp CTC to calculate cost for a CTC task.
if self.is_infer == False:
# Use warp CTC to calculate cost for a CTC task.
if not self.is_infer:
self.cost = layer.warp_ctc(
input=self.output,
label=self.label,
size=self.num_classes + 1,
norm_by_times=True,
norm_by_times=conf.norm_by_times,
blank=self.num_classes)
self.eval = evaluator.ctc_error(input=self.output, label=self.label)
def conv_groups(self, input_image, num, with_bn):
def conv_groups(self, input, num, with_bn):
'''
:param input_image: input image.
:type input_image: LayerOutput
:param num: number of CONV filters.
:param input: Input layer.
:type input: LayerOutput
:param num: Number of the filters.
:type num: int
:param with_bn: whether with batch normal.
:param with_bn: Whether with batch normalization.
:type with_bn: bool
'''
assert num % 4 == 0
filter_num_list = [16, 32, 64, 128]
filter_num_list = conf.filter_num_list
is_input_image = True
tmp = input_image
tmp = input
for num_filter in filter_num_list:
......@@ -103,12 +115,12 @@ class Model(object):
tmp = img_conv_group(
input=tmp,
num_channels=num_channels,
conv_padding=1,
conv_padding=conf.conv_padding,
conv_num_filter=[num_filter] * (num / 4),
conv_filter_size=3,
conv_filter_size=conf.conv_filter_size,
conv_act=Relu(),
conv_with_batchnorm=with_bn,
pool_size=2,
pool_stride=2, )
pool_size=conf.pool_size,
pool_stride=conf.pool_stride, )
return tmp
import os
import cv2
from paddle.v2.image import load_image
class DataGenerator(object):
def __init__(self, char_dict, image_shape):
'''
:param char_dict: The dictionary class for labels.
:type char_dict: class
:param image_shape: The fixed shape of images.
:type image_shape: tuple
'''
self.image_shape = image_shape
self.char_dict = char_dict
def train_reader(self, file_list):
'''
Reader interface for training.
:param file_list: The path list of the image file for training.
:type file_list: list
'''
def reader():
for i, (image, label) in enumerate(file_list):
yield self.load_image(image), self.char_dict.word2ids(label)
return reader
def infer_reader(self, file_list):
'''
Reader interface for inference.
:param file_list: The path list of the image file for inference.
:type file_list: list
'''
def reader():
for i, (image, label) in enumerate(file_list):
yield self.load_image(image), label
return reader
def load_image(self, path):
'''
Load image and transform to 1-dimention vector.
:param path: The path of the image data.
:type path: str
'''
image = load_image(path)
image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
# Resize all images to a fixed shape.
if self.image_shape:
image = cv2.resize(
image, self.image_shape, interpolation=cv2.INTER_CUBIC)
image = image.flatten() / 255.
return image
click
opencv-python
\ No newline at end of file
import logging
import argparse
import gzip
import os
import click
import paddle.v2 as paddle
from config import TrainerConfig as conf
from model import Model
from data_provider import get_file_list, AsciiDic, ImageDataset
from reader import DataGenerator
from utils import get_file_list, AsciiDic
parser = argparse.ArgumentParser(description="PaddlePaddle CTC example")
parser.add_argument(
'--image_shape',
type=str,
required=True,
help="image's shape, format is like '173,46'")
parser.add_argument(
'--train_file_list',
@click.command('train')
@click.option(
"--train_file_list_path",
type=str,
required=True,
help='path of the file which contains path list of train image files')
parser.add_argument(
'--test_file_list',
help=("The path of the file which contains "
"path list of train image files."))
@click.option(
"--test_file_list_path",
type=str,
required=True,
help='path of the file which contains path list of test image files')
parser.add_argument(
'--batch_size', type=int, default=5, help='size of a mini-batch')
parser.add_argument(
'--model_output_prefix',
help=("The path of the file which contains "
"path list of test image files."))
@click.option(
"--model_save_dir",
type=str,
default='model.ctc',
help='prefix of path for model to store (default: ./model.ctc)')
parser.add_argument(
'--trainer_count', type=int, default=4, help='number of training threads')
parser.add_argument(
'--save_period_by_batch',
type=int,
default=150,
help='save model to disk every N batches')
parser.add_argument(
'--num_passes',
type=int,
default=10,
help='number of passes to train (default: 1)')
args = parser.parse_args()
def main():
image_shape = tuple(map(int, args.image_shape.split(',')))
print 'image_shape', image_shape
print 'batch_size', args.batch_size
print 'train_file_list', args.train_file_list
print 'test_file_list', args.test_file_list
train_generator = get_file_list(args.train_file_list)
test_generator = get_file_list(args.test_file_list)
infer_generator = None
dataset = ImageDataset(
train_generator,
test_generator,
infer_generator,
fixed_shape=image_shape,
is_infer=False)
paddle.init(use_gpu=True, trainer_count=args.trainer_count)
model = Model(AsciiDic().size(), image_shape, is_infer=False)
default="models",
help="The path to save the trained models (default: 'models').")
def train(train_file_list_path, test_file_list_path, model_save_dir):
if not os.path.exists(model_save_dir):
os.mkdir(model_save_dir)
train_file_list = get_file_list(train_file_list_path)
test_file_list = get_file_list(test_file_list_path)
char_dict = AsciiDic()
dict_size = char_dict.size()
data_generator = DataGenerator(
char_dict=char_dict, image_shape=conf.image_shape)
paddle.init(use_gpu=conf.use_gpu, trainer_count=conf.trainer_count)
# Create optimizer.
optimizer = paddle.optimizer.Momentum(momentum=conf.momentum)
# Define network topology.
model = Model(dict_size, conf.image_shape, is_infer=False)
# Create all the trainable parameters.
params = paddle.parameters.create(model.cost)
optimizer = paddle.optimizer.Momentum(momentum=0)
trainer = paddle.trainer.SGD(
cost=model.cost,
parameters=params,
update_equation=optimizer,
extra_layers=model.eval)
# Feeding dictionary.
feeding = {'image': 0, 'label': 1}
def event_handler(event):
if isinstance(event, paddle.event.EndIteration):
if event.batch_id % 100 == 0:
print "Pass %d, batch %d, Samples %d, Cost %f, Eval %s" % (
event.pass_id, event.batch_id,
event.batch_id * args.batch_size, event.cost, event.metrics)
if event.batch_id > 0 and event.batch_id % args.save_period_by_batch == 0:
if event.batch_id % conf.log_period == 0:
print("Pass %d, batch %d, Samples %d, Cost %f, Eval %s" %
(event.pass_id, event.batch_id, event.batch_id *
conf.batch_size, event.cost, event.metrics))
if isinstance(event, paddle.event.EndPass):
# Here, because training and testing data share a same format,
# we still use the reader.train_reader to read the testing data.
result = trainer.test(
reader=paddle.batch(dataset.test, batch_size=10),
feeding={'image': 0,
'label': 1})
print "Test %d-%d, Cost %f, Eval %s" % (
event.pass_id, event.batch_id, result.cost, result.metrics)
path = "{}-pass-{}-batch-{}-test.tar.gz".format(
args.model_output_prefix, event.pass_id, event.batch_id)
with gzip.open(path, 'w') as f:
params.to_tar(f)
reader=paddle.batch(
data_generator.train_reader(test_file_list),
batch_size=conf.batch_size),
feeding=feeding)
print("Test %d, Cost %f, Eval %s" %
(event.pass_id, result.cost, result.metrics))
with gzip.open(
os.path.join(model_save_dir, "params_pass_%05d.tar.gz" %
event.pass_id), "w") as f:
trainer.save_parameter_to_tar(f)
trainer.train(
reader=paddle.batch(
paddle.reader.shuffle(dataset.train, buf_size=500),
batch_size=args.batch_size),
feeding={'image': 0,
'label': 1},
paddle.reader.shuffle(
data_generator.train_reader(train_file_list),
buf_size=conf.buf_size),
batch_size=conf.batch_size),
feeding=feeding,
event_handler=event_handler,
num_passes=args.num_passes)
num_passes=conf.num_passes)
if __name__ == "__main__":
main()
train()
import os
class AsciiDic(object):
UNK_ID = 0
def __init__(self):
self.dic = {
'<unk>': self.UNK_ID,
}
self.chars = [chr(i) for i in range(40, 171)]
for id, c in enumerate(self.chars):
self.dic[c] = id + 1
def lookup(self, w):
return self.dic.get(w, self.UNK_ID)
def id2word(self):
'''
Return a reversed char dict.
'''
self.id2word = {}
for key, value in self.dic.items():
self.id2word[value] = key
return self.id2word
def word2ids(self, word):
'''
Transform a word to a list of ids.
:param word: The word appears in image data.
:type word: str
'''
return [self.lookup(c) for c in list(word)]
def size(self):
return len(self.dic)
def get_file_list(image_file_list):
'''
Generate the file list for training and testing data.
:param image_file_list: The path of the file which contains
path list of image files.
:type image_file_list: str
'''
dirname = os.path.dirname(image_file_list)
path_list = []
with open(image_file_list) as f:
for line in f:
line_split = line.strip().split(',', 1)
filename = line_split[0].strip()
path = os.path.join(dirname, filename)
label = line_split[1][2:-1]
path_list.append((path, label))
return path_list
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册