diff --git a/PaddleCV/PaddleDetection/docs/QUICK_STARTED.md b/PaddleCV/PaddleDetection/docs/QUICK_STARTED.md index c6649f71f7b41c2fda00141e20c16dffc1f93e40..18b8602328075a2734dc139c16215e95a6025a3d 100644 --- a/PaddleCV/PaddleDetection/docs/QUICK_STARTED.md +++ b/PaddleCV/PaddleDetection/docs/QUICK_STARTED.md @@ -26,7 +26,7 @@ Training: python -u tools/train.py -c configs/yolov3_mobilenet_v1_fruit.yml \ --use_tb=True \ --tb_log_dir=tb_fruit_dir/scalar \ - --eval \ + --eval ``` Use `yolov3_mobilenet_v1` to fine-tune the model from COCO dataset. Meanwhile, loss and mAP can be observed on tensorboard. diff --git a/PaddleCV/PaddleDetection/docs/QUICK_STARTED_cn.md b/PaddleCV/PaddleDetection/docs/QUICK_STARTED_cn.md index 8c02ffb798250a0fa29db02ab7e4b38f04e4daac..c11f041ba4405ebbf6c60365bbe937df55e6374d 100644 --- a/PaddleCV/PaddleDetection/docs/QUICK_STARTED_cn.md +++ b/PaddleCV/PaddleDetection/docs/QUICK_STARTED_cn.md @@ -26,7 +26,7 @@ export CUDA_VISIBLE_DEVICES=0 python -u tools/train.py -c configs/yolov3_mobilenet_v1_fruit.yml \ --use_tb=True \ --tb_log_dir=tb_fruit_dir/scalar \ - --eval \ + --eval ``` 训练使用`yolov3_mobilenet_v1`基于COCO数据集训练好的模型进行finetune。训练期间可以通过tensorboard实时观察loss和精度值,启动命令如下: diff --git a/PaddleCV/PaddleDetection/ppdet/utils/download.py b/PaddleCV/PaddleDetection/ppdet/utils/download.py index 73f909e966f267ba551e5149294c24315e9facb4..772e19044c320bc0fb7ba5e75216951915074cf5 100644 --- a/PaddleCV/PaddleDetection/ppdet/utils/download.py +++ b/PaddleCV/PaddleDetection/ppdet/utils/download.py @@ -74,6 +74,7 @@ DATASETS = { 'fruit': ([( 'https://dataset.bj.bcebos.com/PaddleDetection_demo/fruit-detection.tar', 'ee4a1bf2e321b75b0850cc6e063f79d7', ), ], ["fruit-detection"]), + 'objects365': (), } DOWNLOAD_RETRY_LIMIT = 3 @@ -104,6 +105,11 @@ def get_dataset_path(path, annotation, image_dir): if os.path.split(path.strip().lower())[-1] == name: logger.info("Parse dataset_dir {} as dataset " "{}".format(path, name)) + if name == 'objects365': + raise NotImplementedError( + "Dataset {} is not valid for download automatically." + "Please apply and download the dataset from." + "https://www.objects365.org/download.html") data_dir = osp.join(DATASET_HOME, name) # For voc, only check dir VOCdevkit/VOC2012, VOCdevkit/VOC2007