未验证 提交 0a83aa46 编写于 作者: wgzqz's avatar wgzqz 提交者: GitHub

Merge pull request #1 from PaddlePaddle/develop

Merge from upstream
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import data_utils.augmentor.trans_mean_variance_norm as trans_mean_variance_norm
import data_utils.augmentor.trans_add_delta as trans_add_delta
import data_utils.augmentor.trans_splice as trans_splice
"""This model read the sample from disk. """This module contains data processing related logic.
use multiprocessing to reading samples
push samples from one block to multiprocessing queue
Todos:
1. multiprocess read block from disk
""" """
from __future__ import absolute_import from __future__ import absolute_import
from __future__ import division from __future__ import division
from __future__ import print_function from __future__ import print_function
import random import random
import struct
import Queue import Queue
import time
import numpy as np import numpy as np
import struct from threading import Thread
import signal
from multiprocessing import Manager, Process
import data_utils.augmentor.trans_mean_variance_norm as trans_mean_variance_norm import data_utils.augmentor.trans_mean_variance_norm as trans_mean_variance_norm
import data_utils.augmentor.trans_add_delta as trans_add_delta import data_utils.augmentor.trans_add_delta as trans_add_delta
from data_utils.util import suppress_complaints, suppress_signal
from data_utils.util import CriticalException, ForceExitWrapper
class OneBlock(object):
""" struct for one block :
contain label, label desc, feature, feature_desc class SampleInfo(object):
"""SampleInfo holds the necessary information to load a sample from disk.
Attributes:
label(str) : label path of one block Args:
label_desc(str) : label description path of one block feature_bin_path (str): File containing the feature data.
feature(str) : feature path of on block feature_start (int): Start position of the sample's feature data.
feature_desc(str) : feature description path of on block feature_size (int): Byte count of the sample's feature data.
feature_frame_num (int): Time length of the sample.
feature_dim (int): Feature dimension of one frame.
label_bin_path (str): File containing the label data.
label_size (int): Byte count of the sample's label data.
label_frame_num (int): Label number of the sample.
""" """
def __init__(self): def __init__(self, feature_bin_path, feature_start, feature_size,
"""the constructor.""" feature_frame_num, feature_dim, label_bin_path, label_start,
label_size, label_frame_num):
self.label = "label" self.feature_bin_path = feature_bin_path
self.label_desc = "label_desc" self.feature_start = feature_start
self.feature = "feature" self.feature_size = feature_size
self.feature_desc = "feature_desc" self.feature_frame_num = feature_frame_num
self.feature_dim = feature_dim
class DataRead(object): self.label_bin_path = label_bin_path
self.label_start = label_start
self.label_size = label_size
self.label_frame_num = label_frame_num
class SampleInfoBucket(object):
"""SampleInfoBucket contains paths of several description files. Feature
description file contains necessary information (including path of binary
data, sample start position, sample byte number etc.) to access samples'
feature data and the same with the label description file. SampleInfoBucket
is the minimum unit to do shuffle.
Args:
feature_bin_paths (list|tuple): Files containing the binary feature
data.
feature_desc_paths (list|tuple): Files containing the description of
samples' feature data.
label_bin_paths (list|tuple): Files containing the binary label data.
label_desc_paths (list|tuple): Files containing the description of
samples' label data.
split_perturb(int): Maximum perturbation value for length of
sub-sentence when splitting long sentence.
split_sentence_threshold(int): Sentence whose length larger than
the value will trigger split operation.
split_sub_sentence_len(int): sub-sentence length is equal to
(split_sub_sentence_len + rand() % split_perturb).
""" """
Attributes:
_lblock(obj:`OneBlock`) : the list of OneBlock def __init__(self,
_ndrop_sentence_len(int): dropout the sentence which's frame_num large than _ndrop_sentence_len feature_bin_paths,
_que_sample(obj:`Queue`): sample buffer feature_desc_paths,
_nframe_dim(int): the batch sample frame_dim(todo remove) label_bin_paths,
_nstart_block_idx(int): the start block id label_desc_paths,
_nload_block_num(int): the block num split_perturb=50,
split_sentence_threshold=512,
split_sub_sentence_len=256):
block_num = len(label_bin_paths)
assert len(label_desc_paths) == block_num
assert len(feature_bin_paths) == block_num
assert len(feature_desc_paths) == block_num
self._block_num = block_num
self._feature_bin_paths = feature_bin_paths
self._feature_desc_paths = feature_desc_paths
self._label_bin_paths = label_bin_paths
self._label_desc_paths = label_desc_paths
self._split_perturb = split_perturb
self._split_sentence_threshold = split_sentence_threshold
self._split_sub_sentence_len = split_sub_sentence_len
self._rng = random.Random(0)
def generate_sample_info_list(self):
sample_info_list = []
for block_idx in xrange(self._block_num):
label_bin_path = self._label_bin_paths[block_idx]
label_desc_path = self._label_desc_paths[block_idx]
feature_bin_path = self._feature_bin_paths[block_idx]
feature_desc_path = self._feature_desc_paths[block_idx]
label_desc_lines = open(label_desc_path).readlines()
feature_desc_lines = open(feature_desc_path).readlines()
sample_num = int(label_desc_lines[0].split()[1])
assert sample_num == int(feature_desc_lines[0].split()[1])
for i in xrange(sample_num):
feature_desc_split = feature_desc_lines[i + 1].split()
feature_start = int(feature_desc_split[2])
feature_size = int(feature_desc_split[3])
feature_frame_num = int(feature_desc_split[4])
feature_dim = int(feature_desc_split[5])
label_desc_split = label_desc_lines[i + 1].split()
label_start = int(label_desc_split[2])
label_size = int(label_desc_split[3])
label_frame_num = int(label_desc_split[4])
assert feature_frame_num == label_frame_num
if self._split_sentence_threshold == -1 or \
self._split_perturb == -1 or \
self._split_sub_sentence_len == -1 \
or self._split_sentence_threshold >= feature_frame_num:
sample_info_list.append(
SampleInfo(feature_bin_path, feature_start,
feature_size, feature_frame_num, feature_dim,
label_bin_path, label_start, label_size,
label_frame_num))
#split sentence
else:
cur_frame_pos = 0
cur_frame_len = 0
remain_frame_num = feature_frame_num
while True:
if remain_frame_num > self._split_sentence_threshold:
cur_frame_len = self._split_sub_sentence_len + \
self._rng.randint(0, self._split_perturb)
if cur_frame_len > remain_frame_num:
cur_frame_len = remain_frame_num
else:
cur_frame_len = remain_frame_num
sample_info_list.append(
SampleInfo(
feature_bin_path, feature_start + cur_frame_pos
* feature_dim * 4, cur_frame_len * feature_dim *
4, cur_frame_len, feature_dim, label_bin_path,
label_start + cur_frame_pos * 4, cur_frame_len *
4, cur_frame_len))
remain_frame_num -= cur_frame_len
cur_frame_pos += cur_frame_len
if remain_frame_num <= 0:
break
return sample_info_list
class EpochEndSignal():
pass
class DataReader(object):
"""DataReader provides basic audio sample preprocessing pipeline including
data loading and data augmentation.
Args:
feature_file_list (str): File containing paths of feature data file and
corresponding description file.
label_file_list (str): File containing paths of label data file and
corresponding description file.
drop_frame_len (int): Samples whose label length above the value will be
dropped.(Using '-1' to disable the policy)
process_num (int): Number of processes for processing data.
sample_buffer_size (int): Buffer size to indicate the maximum samples
cached.
sample_info_buffer_size (int): Buffer size to indicate the maximum
sample information cached.
batch_buffer_size (int): Buffer size to indicate the maximum batch
cached.
shuffle_block_num (int): Block number indicating the minimum unit to do
shuffle.
random_seed (int): Random seed.
verbose (int): If set to 0, complaints including exceptions and signal
traceback from sub-process will be suppressed. If set
to 1, all complaints will be printed.
""" """
def __init__(self, sfeature_lst, slabel_lst, ndrop_sentence_len=512): def __init__(self,
""" feature_file_list,
Args: label_file_list,
sfeature_lst(str):feature lst path drop_frame_len=512,
slabel_lst(str):label lst path process_num=10,
Returns: sample_buffer_size=1024,
None sample_info_buffer_size=1024,
""" batch_buffer_size=1024,
self._lblock = [] shuffle_block_num=10,
self._ndrop_sentence_len = ndrop_sentence_len random_seed=0,
self._que_sample = Queue.Queue() verbose=0):
self._nframe_dim = 120 * 11 self._feature_file_list = feature_file_list
self._nstart_block_idx = 0 self._label_file_list = label_file_list
self._nload_block_num = 1 self._drop_frame_len = drop_frame_len
self._ndrop_frame_len = 256 self._shuffle_block_num = shuffle_block_num
self._block_info_list = None
self._load_list(sfeature_lst, slabel_lst) self._rng = random.Random(random_seed)
self._bucket_list = None
def _load_list(self, sfeature_lst, slabel_lst): self.generate_bucket_list(True)
""" load list and shuffle self._order_id = 0
Args: self._manager = Manager()
sfeature_lst(str):feature lst path self._sample_buffer_size = sample_buffer_size
slabel_lst(str):label lst path self._sample_info_buffer_size = sample_info_buffer_size
Returns: self._batch_buffer_size = batch_buffer_size
None self._process_num = process_num
""" self._verbose = verbose
lfeature = open(sfeature_lst).readlines() self._force_exit = ForceExitWrapper(self._manager.Value('b', False))
llabel = open(slabel_lst).readlines()
assert len(llabel) == len(lfeature) def generate_bucket_list(self, is_shuffle):
for i in range(0, len(lfeature), 2): if self._block_info_list is None:
one_block = OneBlock() block_feature_info_lines = open(self._feature_file_list).readlines()
block_label_info_lines = open(self._label_file_list).readlines()
one_block.label = llabel[i] assert len(block_feature_info_lines) == len(block_label_info_lines)
one_block.label_desc = llabel[i + 1] self._block_info_list = []
one_block.feature = lfeature[i] for i in xrange(0, len(block_feature_info_lines), 2):
one_block.feature_desc = lfeature[i + 1] block_info = (block_feature_info_lines[i],
self._lblock.append(one_block) block_feature_info_lines[i + 1],
block_label_info_lines[i],
random.shuffle(self._lblock) block_label_info_lines[i + 1])
self._block_info_list.append(
def _load_one_block(self, lsample, id): map(lambda line: line.strip(), block_info))
"""read one block by id and push load sample in list lsample
Args: if is_shuffle:
lsample(list): return sample list self._rng.shuffle(self._block_info_list)
id(int): block id
Returns: self._bucket_list = []
None for i in xrange(0, len(self._block_info_list), self._shuffle_block_num):
""" bucket_block_info = self._block_info_list[i:i +
if id >= len(self._lblock): self._shuffle_block_num]
return self._bucket_list.append(
SampleInfoBucket(
slabel_path = self._lblock[id].label.strip() map(lambda info: info[0], bucket_block_info),
slabel_desc_path = self._lblock[id].label_desc.strip() map(lambda info: info[1], bucket_block_info),
sfeature_path = self._lblock[id].feature.strip() map(lambda info: info[2], bucket_block_info),
sfeature_desc_path = self._lblock[id].feature_desc.strip() map(lambda info: info[3], bucket_block_info)))
llabel_line = open(slabel_desc_path).readlines() # @TODO make this configurable
lfeature_line = open(sfeature_desc_path).readlines() def set_transformers(self, transformers):
self._transformers = transformers
file_lable_bin = open(slabel_path, "r")
file_feature_bin = open(sfeature_path, "r") def _sample_generator(self):
sample_info_queue = self._manager.Queue(self._sample_info_buffer_size)
sample_num = int(llabel_line[0].split()[1]) sample_queue = self._manager.Queue(self._sample_buffer_size)
assert sample_num == int(lfeature_line[0].split()[1]) self._order_id = 0
llabel_line = llabel_line[1:] @suppress_complaints(verbose=self._verbose, notify=self._force_exit)
lfeature_line = lfeature_line[1:] def ordered_feeding_task(sample_info_queue):
for sample_info_bucket in self._bucket_list:
for i in range(sample_num): try:
# read label sample_info_list = \
llabel_split = llabel_line[i].split() sample_info_bucket.generate_sample_info_list()
nlabel_start = int(llabel_split[2]) except Exception as e:
nlabel_size = int(llabel_split[3]) raise CriticalException(e)
nlabel_frame_num = int(llabel_split[4]) else:
self._rng.shuffle(sample_info_list) # do shuffle here
file_lable_bin.seek(nlabel_start, 0) for sample_info in sample_info_list:
label_bytes = file_lable_bin.read(nlabel_size) sample_info_queue.put((sample_info, self._order_id))
assert nlabel_frame_num * 4 == len(label_bytes) self._order_id += 1
label_array = struct.unpack('I' * nlabel_frame_num, label_bytes)
label_data = np.array(label_array, dtype="int64") for i in xrange(self._process_num):
label_data = label_data.reshape((nlabel_frame_num, 1)) sample_info_queue.put(EpochEndSignal())
# read feature feeding_thread = Thread(
lfeature_split = lfeature_line[i].split() target=ordered_feeding_task, args=(sample_info_queue, ))
nfeature_start = int(lfeature_split[2]) feeding_thread.daemon = True
nfeature_size = int(lfeature_split[3]) feeding_thread.start()
nfeature_frame_num = int(lfeature_split[4])
nfeature_frame_dim = int(lfeature_split[5]) @suppress_complaints(verbose=self._verbose, notify=self._force_exit)
def ordered_processing_task(sample_info_queue, sample_queue, out_order):
file_feature_bin.seek(nfeature_start, 0) if self._verbose == 0:
feature_bytes = file_feature_bin.read(nfeature_size) signal.signal(signal.SIGTERM, suppress_signal)
assert nfeature_frame_num * nfeature_frame_dim * 4 == len( signal.signal(signal.SIGINT, suppress_signal)
feature_bytes)
feature_array = struct.unpack('f' * nfeature_frame_num * def read_bytes(fpath, start, size):
nfeature_frame_dim, feature_bytes) try:
feature_data = np.array(feature_array, dtype="float32") f = open(fpath, 'r')
feature_data = feature_data.reshape( f.seek(start, 0)
(nfeature_frame_num, nfeature_frame_dim)) binary_bytes = f.read(size)
f.close()
#drop long sentence return binary_bytes
if self._ndrop_frame_len < feature_data.shape[0]: except Exception as e:
continue raise CriticalException(e)
lsample.append((feature_data, label_data))
ins = sample_info_queue.get()
def get_one_batch(self, nbatch_size):
"""construct one batch(feature, label), batch size is nbatch_size while not isinstance(ins, EpochEndSignal):
Args: sample_info, order_id = ins
nbatch_size(int): batch size
Returns: feature_bytes = read_bytes(sample_info.feature_bin_path,
None sample_info.feature_start,
""" sample_info.feature_size)
if self._que_sample.empty():
lsample = self._load_block( assert sample_info.feature_frame_num * sample_info.feature_dim * 4 \
range(self._nstart_block_idx, self._nstart_block_idx + == len(feature_bytes), \
self._nload_block_num, 1)) (sample_info.feature_bin_path,
self._move_sample(lsample) sample_info.feature_frame_num,
self._nstart_block_idx += self._nload_block_num sample_info.feature_dim,
len(feature_bytes))
if self._que_sample.empty():
self._nstart_block_idx = 0 label_bytes = read_bytes(sample_info.label_bin_path,
return None sample_info.label_start,
#cal all frame num sample_info.label_size)
ncur_len = 0
lod = [0] assert sample_info.label_frame_num * 4 == len(label_bytes), (
samples = [] sample_info.label_bin_path, sample_info.label_array,
bat_feature = np.zeros((nbatch_size, self._nframe_dim)) len(label_bytes))
for i in range(nbatch_size):
# empty clear zero label_array = struct.unpack('I' * sample_info.label_frame_num,
if self._que_sample.empty(): label_bytes)
self._nstart_block_idx = 0 label_data = np.array(
# copy label_array, dtype='int64').reshape(
(sample_info.label_frame_num, 1))
feature_frame_num = sample_info.feature_frame_num
feature_dim = sample_info.feature_dim
assert feature_frame_num * feature_dim * 4 == len(feature_bytes)
feature_array = struct.unpack('f' * feature_frame_num *
feature_dim, feature_bytes)
feature_data = np.array(
feature_array, dtype='float32').reshape((
sample_info.feature_frame_num, sample_info.feature_dim))
sample_data = (feature_data, label_data)
for transformer in self._transformers:
# @TODO(pkuyym) to make transfomer only accept feature_data
sample_data = transformer.perform_trans(sample_data)
while order_id != out_order[0]:
time.sleep(0.001)
# drop long sentence
if self._drop_frame_len == -1 or \
self._drop_frame_len >= sample_data[0].shape[0]:
sample_queue.put(sample_data)
out_order[0] += 1
ins = sample_info_queue.get()
sample_queue.put(EpochEndSignal())
out_order = self._manager.list([0])
args = (sample_info_queue, sample_queue, out_order)
workers = [
Process(
target=ordered_processing_task, args=args)
for _ in xrange(self._process_num)
]
for w in workers:
w.daemon = True
w.start()
finished_process_num = 0
while self._force_exit == False:
try:
sample = sample_queue.get_nowait()
except Queue.Empty:
time.sleep(0.001)
else:
if isinstance(sample, EpochEndSignal):
finished_process_num += 1
if finished_process_num >= self._process_num:
break
else:
continue
yield sample
def batch_iterator(self, batch_size, minimum_batch_size):
def batch_to_ndarray(batch_samples, lod):
assert len(batch_samples)
frame_dim = batch_samples[0][0].shape[1]
batch_feature = np.zeros((lod[-1], frame_dim), dtype="float32")
batch_label = np.zeros((lod[-1], 1), dtype="int64")
start = 0
for sample in batch_samples:
frame_num = sample[0].shape[0]
batch_feature[start:start + frame_num, :] = sample[0]
batch_label[start:start + frame_num, :] = sample[1]
start += frame_num
return (batch_feature, batch_label)
@suppress_complaints(verbose=self._verbose, notify=self._force_exit)
def batch_assembling_task(sample_generator, batch_queue):
batch_samples = []
lod = [0]
for sample in sample_generator():
batch_samples.append(sample)
lod.append(lod[-1] + sample[0].shape[0])
if len(batch_samples) == batch_size:
(batch_feature, batch_label) = batch_to_ndarray(
batch_samples, lod)
batch_queue.put((batch_feature, batch_label, lod))
batch_samples = []
lod = [0]
if len(batch_samples) >= minimum_batch_size:
(batch_feature, batch_label) = batch_to_ndarray(batch_samples,
lod)
batch_queue.put((batch_feature, batch_label, lod))
batch_queue.put(EpochEndSignal())
batch_queue = Queue.Queue(self._batch_buffer_size)
assembling_thread = Thread(
target=batch_assembling_task,
args=(self._sample_generator, batch_queue))
assembling_thread.daemon = True
assembling_thread.start()
while self._force_exit == False:
try:
batch_data = batch_queue.get_nowait()
except Queue.Empty:
time.sleep(0.001)
else: else:
(one_feature, one_label) = self._que_sample.get() if isinstance(batch_data, EpochEndSignal):
samples.append((one_feature, one_label)) break
ncur_len += one_feature.shape[0] yield batch_data
lod.append(ncur_len)
bat_feature = np.zeros((ncur_len, self._nframe_dim), dtype="float32")
bat_label = np.zeros((ncur_len, 1), dtype="int64")
ncur_len = 0
for sample in samples:
one_feature = sample[0]
one_label = sample[1]
nframe_num = one_feature.shape[0]
nstart = ncur_len
nend = ncur_len + nframe_num
bat_feature[nstart:nend, :] = one_feature
bat_label[nstart:nend, :] = one_label
ncur_len += nframe_num
return (bat_feature, bat_label, lod)
def set_trans(self, ltrans):
""" set transform list
Args:
ltrans(list): data tranform list
Returns:
None
"""
self._ltrans = ltrans
def _load_block(self, lblock_id):
"""read blocks
"""
lsample = []
for id in lblock_id:
self._load_one_block(lsample, id)
# transform sample
for (nidx, sample) in enumerate(lsample):
for trans in self._ltrans:
sample = trans.perform_trans(sample)
lsample[nidx] = sample
return lsample
def load_block(self, lblock_id):
"""read blocks
Args:
lblock_id(list):the block list id
Returns:
None
"""
lsample = []
for id in lblock_id:
self._load_one_block(lsample, id)
# transform sample
for (nidx, sample) in enumerate(lsample):
for trans in self._ltrans:
sample = trans.perform_trans(sample)
lsample[nidx] = sample
return lsample
def _move_sample(self, lsample):
"""move sample to queue
Args:
lsample(list): one block of samples read from disk
Returns:
None
"""
# random
random.shuffle(lsample)
for sample in lsample:
self._que_sample.put(sample)
from __future__ import absolute_import from __future__ import absolute_import
from __future__ import division from __future__ import division
from __future__ import print_function from __future__ import print_function
import sys
from six import reraise
from tblib import Traceback
import numpy as np
def to_lodtensor(data, place): def to_lodtensor(data, place):
...@@ -28,3 +33,42 @@ def lodtensor_to_ndarray(lod_tensor): ...@@ -28,3 +33,42 @@ def lodtensor_to_ndarray(lod_tensor):
for i in xrange(np.product(dims)): for i in xrange(np.product(dims)):
ret.ravel()[i] = lod_tensor.get_float_element(i) ret.ravel()[i] = lod_tensor.get_float_element(i)
return ret, lod_tensor.lod() return ret, lod_tensor.lod()
class CriticalException(Exception):
pass
def suppress_signal(signo, stack_frame):
pass
def suppress_complaints(verbose, notify=None):
def decorator_maker(func):
def suppress_warpper(*args, **kwargs):
try:
func(*args, **kwargs)
except:
et, ev, tb = sys.exc_info()
if notify is not None:
notify(except_type=et, except_value=ev, traceback=tb)
if verbose == 1 or isinstance(ev, CriticalException):
reraise(et, ev, Traceback(tb).as_traceback())
return suppress_warpper
return decorator_maker
class ForceExitWrapper(object):
def __init__(self, exit_flag):
self._exit_flag = exit_flag
@suppress_complaints(verbose=0)
def __call__(self, *args, **kwargs):
self._exit_flag.value = True
def __eq__(self, flag):
return self._exit_flag.value == flag
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os
import argparse
import paddle.v2.fluid as fluid
import data_utils.augmentor.trans_mean_variance_norm as trans_mean_variance_norm
import data_utils.augmentor.trans_add_delta as trans_add_delta
import data_utils.augmentor.trans_splice as trans_splice
import data_utils.data_reader as reader
from data_utils.util import lodtensor_to_ndarray
def parse_args():
parser = argparse.ArgumentParser("Inference for stacked LSTMP model.")
parser.add_argument(
'--batch_size',
type=int,
default=32,
help='The sequence number of a batch data. (default: %(default)d)')
parser.add_argument(
'--device',
type=str,
default='GPU',
choices=['CPU', 'GPU'],
help='The device type. (default: %(default)s)')
parser.add_argument(
'--mean_var',
type=str,
default='data/global_mean_var_search26kHr',
help="The path for feature's global mean and variance. "
"(default: %(default)s)")
parser.add_argument(
'--infer_feature_lst',
type=str,
default='data/infer_feature.lst',
help='The feature list path for inference. (default: %(default)s)')
parser.add_argument(
'--infer_label_lst',
type=str,
default='data/infer_label.lst',
help='The label list path for inference. (default: %(default)s)')
parser.add_argument(
'--model_save_path',
type=str,
default='./checkpoints/deep_asr.pass_0.model/',
help='The directory for saving model. (default: %(default)s)')
args = parser.parse_args()
return args
def print_arguments(args):
print('----------- Configuration Arguments -----------')
for arg, value in sorted(vars(args).iteritems()):
print('%s: %s' % (arg, value))
print('------------------------------------------------')
def split_infer_result(infer_seq, lod):
infer_batch = []
for i in xrange(0, len(lod[0]) - 1):
infer_batch.append(infer_seq[lod[0][i]:lod[0][i + 1]])
return infer_batch
def infer(args):
""" Gets one batch of feature data and predicts labels for each sample.
"""
if not os.path.exists(args.model_save_path):
raise IOError("Invalid model path!")
place = fluid.CUDAPlace(0) if args.device == 'GPU' else fluid.CPUPlace()
exe = fluid.Executor(place)
# load model
[infer_program, feed_dict,
fetch_targets] = fluid.io.load_inference_model(args.model_save_path, exe)
ltrans = [
trans_add_delta.TransAddDelta(2, 2),
trans_mean_variance_norm.TransMeanVarianceNorm(args.mean_var),
trans_splice.TransSplice()
]
infer_data_reader = reader.DataReader(args.infer_feature_lst,
args.infer_label_lst)
infer_data_reader.set_transformers(ltrans)
feature_t = fluid.LoDTensor()
one_batch = infer_data_reader.batch_iterator(args.batch_size, 1).next()
(features, labels, lod) = one_batch
feature_t.set(features, place)
feature_t.set_lod([lod])
results = exe.run(infer_program,
feed={feed_dict[0]: feature_t},
fetch_list=fetch_targets,
return_numpy=False)
probs, lod = lodtensor_to_ndarray(results[0])
preds = probs.argmax(axis=1)
infer_batch = split_infer_result(preds, lod)
for index, sample in enumerate(infer_batch):
print("result %d: " % index, sample, '\n')
if __name__ == '__main__':
args = parse_args()
print_arguments(args)
infer(args)
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import paddle.v2 as paddle
import paddle.v2.fluid as fluid
def stacked_lstmp_model(hidden_dim,
proj_dim,
stacked_num,
class_num,
parallel=False,
is_train=True):
""" The model for DeepASR. The main structure is composed of stacked
identical LSTMP (LSTM with recurrent projection) layers.
When running in training and validation phase, the feeding dictionary
is {'feature', 'label'}, fed by the LodTensor for feature data and
label data respectively. And in inference, only `feature` is needed.
Args:
hidden_dim(int): The hidden state's dimension of the LSTMP layer.
proj_dim(int): The projection size of the LSTMP layer.
stacked_num(int): The number of stacked LSTMP layers.
parallel(bool): Run in parallel or not, default `False`.
is_train(bool): Run in training phase or not, default `True`.
class_dim(int): The number of output classes.
"""
# network configuration
def _net_conf(feature, label):
seq_conv1 = fluid.layers.sequence_conv(
input=feature,
num_filters=1024,
filter_size=3,
filter_stride=1,
bias_attr=True)
bn1 = fluid.layers.batch_norm(
input=seq_conv1,
act="sigmoid",
is_test=not is_train,
momentum=0.9,
epsilon=1e-05,
data_layout='NCHW')
stack_input = bn1
for i in range(stacked_num):
fc = fluid.layers.fc(input=stack_input,
size=hidden_dim * 4,
bias_attr=True)
proj, cell = fluid.layers.dynamic_lstmp(
input=fc,
size=hidden_dim * 4,
proj_size=proj_dim,
bias_attr=True,
use_peepholes=True,
is_reverse=False,
cell_activation="tanh",
proj_activation="tanh")
bn = fluid.layers.batch_norm(
input=proj,
act="sigmoid",
is_test=not is_train,
momentum=0.9,
epsilon=1e-05,
data_layout='NCHW')
stack_input = bn
prediction = fluid.layers.fc(input=stack_input,
size=class_num,
act='softmax')
cost = fluid.layers.cross_entropy(input=prediction, label=label)
avg_cost = fluid.layers.mean(x=cost)
acc = fluid.layers.accuracy(input=prediction, label=label)
return prediction, avg_cost, acc
# data feeder
feature = fluid.layers.data(
name="feature", shape=[-1, 120 * 11], dtype="float32", lod_level=1)
label = fluid.layers.data(
name="label", shape=[-1, 1], dtype="int64", lod_level=1)
if parallel:
# When the execution place is specified to CUDAPlace, the program will
# run on all $CUDA_VISIBLE_DEVICES GPUs. Otherwise the program will
# run on all CPU devices.
places = fluid.layers.get_places()
pd = fluid.layers.ParallelDo(places)
with pd.do():
feat_ = pd.read_input(feature)
label_ = pd.read_input(label)
prediction, avg_cost, acc = _net_conf(feat_, label_)
for out in [avg_cost, acc]:
pd.write_output(out)
# get mean loss and acc through every devices.
avg_cost, acc = pd()
avg_cost = fluid.layers.mean(x=avg_cost)
acc = fluid.layers.mean(x=acc)
else:
prediction, avg_cost, acc = _net_conf(feature, label)
return prediction, avg_cost, acc
"""Add the parent directory to $PYTHONPATH"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os.path
import sys
def add_path(path):
if path not in sys.path:
sys.path.insert(0, path)
this_dir = os.path.dirname(__file__)
# Add project path to PYTHONPATH
proj_path = os.path.join(this_dir, '..')
add_path(proj_path)
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import sys
import numpy as np
import argparse
import time
import paddle.v2.fluid as fluid
import paddle.v2.fluid.profiler as profiler
import _init_paths
import data_utils.augmentor.trans_mean_variance_norm as trans_mean_variance_norm
import data_utils.augmentor.trans_add_delta as trans_add_delta
import data_utils.augmentor.trans_splice as trans_splice
import data_utils.data_reader as reader
from model_utils.model import stacked_lstmp_model
from data_utils.util import lodtensor_to_ndarray
def parse_args():
parser = argparse.ArgumentParser("Profiling for the stacked LSTMP model.")
parser.add_argument(
'--batch_size',
type=int,
default=32,
help='The sequence number of a batch data. (default: %(default)d)')
parser.add_argument(
'--minimum_batch_size',
type=int,
default=1,
help='The minimum sequence number of a batch data. '
'(default: %(default)d)')
parser.add_argument(
'--stacked_num',
type=int,
default=5,
help='Number of lstmp layers to stack. (default: %(default)d)')
parser.add_argument(
'--proj_dim',
type=int,
default=512,
help='Project size of lstmp unit. (default: %(default)d)')
parser.add_argument(
'--hidden_dim',
type=int,
default=1024,
help='Hidden size of lstmp unit. (default: %(default)d)')
parser.add_argument(
'--learning_rate',
type=float,
default=0.002,
help='Learning rate used to train. (default: %(default)f)')
parser.add_argument(
'--device',
type=str,
default='GPU',
choices=['CPU', 'GPU'],
help='The device type. (default: %(default)s)')
parser.add_argument(
'--parallel', action='store_true', help='If set, run in parallel.')
parser.add_argument(
'--mean_var',
type=str,
default='data/global_mean_var_search26kHr',
help='mean var path')
parser.add_argument(
'--feature_lst',
type=str,
default='data/feature.lst',
help='feature list path.')
parser.add_argument(
'--label_lst',
type=str,
default='data/label.lst',
help='label list path.')
parser.add_argument(
'--max_batch_num',
type=int,
default=10,
help='Maximum number of batches for profiling. (default: %(default)d)')
parser.add_argument(
'--first_batches_to_skip',
type=int,
default=1,
help='Number of first batches to skip for profiling. '
'(default: %(default)d)')
parser.add_argument(
'--print_train_acc',
action='store_true',
help='If set, output training accuray.')
parser.add_argument(
'--sorted_key',
type=str,
default='total',
choices=['None', 'total', 'calls', 'min', 'max', 'ave'],
help='Different types of time to sort the profiling report. '
'(default: %(default)s)')
args = parser.parse_args()
return args
def print_arguments(args):
print('----------- Configuration Arguments -----------')
for arg, value in sorted(vars(args).iteritems()):
print('%s: %s' % (arg, value))
print('------------------------------------------------')
def profile(args):
"""profile the training process.
"""
if not args.first_batches_to_skip < args.max_batch_num:
raise ValueError("arg 'first_batches_to_skip' must be smaller than "
"'max_batch_num'.")
if not args.first_batches_to_skip >= 0:
raise ValueError(
"arg 'first_batches_to_skip' must not be smaller than 0.")
_, avg_cost, accuracy = stacked_lstmp_model(
hidden_dim=args.hidden_dim,
proj_dim=args.proj_dim,
stacked_num=args.stacked_num,
class_num=1749,
parallel=args.parallel)
adam_optimizer = fluid.optimizer.Adam(learning_rate=args.learning_rate)
adam_optimizer.minimize(avg_cost)
place = fluid.CPUPlace() if args.device == 'CPU' else fluid.CUDAPlace(0)
exe = fluid.Executor(place)
exe.run(fluid.default_startup_program())
ltrans = [
trans_add_delta.TransAddDelta(2, 2),
trans_mean_variance_norm.TransMeanVarianceNorm(args.mean_var),
trans_splice.TransSplice()
]
data_reader = reader.DataReader(args.feature_lst, args.label_lst)
data_reader.set_transformers(ltrans)
feature_t = fluid.LoDTensor()
label_t = fluid.LoDTensor()
sorted_key = None if args.sorted_key is 'None' else args.sorted_key
with profiler.profiler(args.device, sorted_key) as prof:
frames_seen, start_time = 0, 0.0
for batch_id, batch_data in enumerate(
data_reader.batch_iterator(args.batch_size,
args.minimum_batch_size)):
if batch_id >= args.max_batch_num:
break
if args.first_batches_to_skip == batch_id:
profiler.reset_profiler()
start_time = time.time()
frames_seen = 0
# load_data
(features, labels, lod) = batch_data
feature_t.set(features, place)
feature_t.set_lod([lod])
label_t.set(labels, place)
label_t.set_lod([lod])
frames_seen += lod[-1]
outs = exe.run(fluid.default_main_program(),
feed={"feature": feature_t,
"label": label_t},
fetch_list=[avg_cost, accuracy],
return_numpy=False)
if args.print_train_acc:
print("Batch %d acc: %f" %
(batch_id, lodtensor_to_ndarray(outs[1])[0]))
else:
sys.stdout.write('.')
sys.stdout.flush()
time_consumed = time.time() - start_time
frames_per_sec = frames_seen / time_consumed
print("\nTime consumed: %f s, performance: %f frames/s." %
(time_consumed, frames_per_sec))
if __name__ == '__main__':
args = parse_args()
print_arguments(args)
profile(args)
...@@ -2,26 +2,34 @@ from __future__ import absolute_import ...@@ -2,26 +2,34 @@ from __future__ import absolute_import
from __future__ import division from __future__ import division
from __future__ import print_function from __future__ import print_function
import sys
import os
import numpy as np import numpy as np
import argparse import argparse
import time import time
import paddle.v2 as paddle
import paddle.v2.fluid as fluid import paddle.v2.fluid as fluid
import paddle.v2.fluid.profiler as profiler import data_utils.augmentor.trans_mean_variance_norm as trans_mean_variance_norm
import data_utils.trans_mean_variance_norm as trans_mean_variance_norm import data_utils.augmentor.trans_add_delta as trans_add_delta
import data_utils.trans_add_delta as trans_add_delta import data_utils.augmentor.trans_splice as trans_splice
import data_utils.trans_splice as trans_splice
import data_utils.data_reader as reader import data_utils.data_reader as reader
from data_utils.util import lodtensor_to_ndarray
from model_utils.model import stacked_lstmp_model
def parse_args(): def parse_args():
parser = argparse.ArgumentParser("LSTM model benchmark.") parser = argparse.ArgumentParser("Training for stacked LSTMP model.")
parser.add_argument( parser.add_argument(
'--batch_size', '--batch_size',
type=int, type=int,
default=32, default=32,
help='The sequence number of a batch data. (default: %(default)d)') help='The sequence number of a batch data. (default: %(default)d)')
parser.add_argument(
'--minimum_batch_size',
type=int,
default=1,
help='The minimum sequence number of a batch data. '
'(default: %(default)d)')
parser.add_argument( parser.add_argument(
'--stacked_num', '--stacked_num',
type=int, type=int,
...@@ -42,6 +50,11 @@ def parse_args(): ...@@ -42,6 +50,11 @@ def parse_args():
type=int, type=int,
default=100, default=100,
help='Epoch number to train. (default: %(default)d)') help='Epoch number to train. (default: %(default)d)')
parser.add_argument(
'--print_per_batches',
type=int,
default=100,
help='Interval to print training accuracy. (default: %(default)d)')
parser.add_argument( parser.add_argument(
'--learning_rate', '--learning_rate',
type=float, type=float,
...@@ -54,107 +67,68 @@ def parse_args(): ...@@ -54,107 +67,68 @@ def parse_args():
choices=['CPU', 'GPU'], choices=['CPU', 'GPU'],
help='The device type. (default: %(default)s)') help='The device type. (default: %(default)s)')
parser.add_argument( parser.add_argument(
'--infer_only', action='store_true', help='If set, run forward only.') '--parallel', action='store_true', help='If set, run in parallel.')
parser.add_argument(
'--mean_var',
type=str,
default='data/global_mean_var_search26kHr',
help="The path for feature's global mean and variance. "
"(default: %(default)s)")
parser.add_argument(
'--train_feature_lst',
type=str,
default='data/feature.lst',
help='The feature list path for training. (default: %(default)s)')
parser.add_argument(
'--train_label_lst',
type=str,
default='data/label.lst',
help='The label list path for training. (default: %(default)s)')
parser.add_argument(
'--val_feature_lst',
type=str,
default='data/val_feature.lst',
help='The feature list path for validation. (default: %(default)s)')
parser.add_argument( parser.add_argument(
'--use_cprof', action='store_true', help='If set, use cProfile.') '--val_label_lst',
type=str,
default='data/val_label.lst',
help='The label list path for validation. (default: %(default)s)')
parser.add_argument( parser.add_argument(
'--use_nvprof', '--model_save_dir',
action='store_true', type=str,
help='If set, use nvprof for CUDA.') default='./checkpoints',
parser.add_argument('--mean_var', type=str, help='mean var path') help="The directory for saving model. Do not save model if set to "
parser.add_argument('--feature_lst', type=str, help='mean var path') "''. (default: %(default)s)")
parser.add_argument('--label_lst', type=str, help='mean var path')
args = parser.parse_args() args = parser.parse_args()
return args return args
def print_arguments(args): def print_arguments(args):
vars(args)['use_nvprof'] = (vars(args)['use_nvprof'] and
vars(args)['device'] == 'GPU')
print('----------- Configuration Arguments -----------') print('----------- Configuration Arguments -----------')
for arg, value in sorted(vars(args).iteritems()): for arg, value in sorted(vars(args).iteritems()):
print('%s: %s' % (arg, value)) print('%s: %s' % (arg, value))
print('------------------------------------------------') print('------------------------------------------------')
def dynamic_lstmp_model(hidden_dim,
proj_dim,
stacked_num,
class_num=1749,
is_train=True):
feature = fluid.layers.data(
name="feature", shape=[-1, 120 * 11], dtype="float32", lod_level=1)
seq_conv1 = fluid.layers.sequence_conv(
input=feature,
num_filters=1024,
filter_size=3,
filter_stride=1,
bias_attr=True)
bn1 = fluid.layers.batch_norm(
input=seq_conv1,
act="sigmoid",
is_test=False,
momentum=0.9,
epsilon=1e-05,
data_layout='NCHW')
stack_input = bn1
for i in range(stacked_num):
fc = fluid.layers.fc(input=stack_input,
size=hidden_dim * 4,
bias_attr=True)
proj, cell = fluid.layers.dynamic_lstmp(
input=fc,
size=hidden_dim * 4,
proj_size=proj_dim,
bias_attr=True,
use_peepholes=True,
is_reverse=False,
cell_activation="tanh",
proj_activation="tanh")
bn = fluid.layers.batch_norm(
input=proj,
act="sigmoid",
is_test=False,
momentum=0.9,
epsilon=1e-05,
data_layout='NCHW')
stack_input = bn
prediction = fluid.layers.fc(input=stack_input,
size=class_num,
act='softmax')
if not is_train: return feature, prediction
label = fluid.layers.data(
name="label", shape=[-1, 1], dtype="int64", lod_level=1)
cost = fluid.layers.cross_entropy(input=prediction, label=label)
avg_cost = fluid.layers.mean(x=cost)
return prediction, label, avg_cost
def train(args): def train(args):
if args.use_cprof: """train in loop.
pr = cProfile.Profile() """
pr.enable()
prediction, label, avg_cost = dynamic_lstmp_model( prediction, avg_cost, accuracy = stacked_lstmp_model(
args.hidden_dim, args.proj_dim, args.stacked_num) hidden_dim=args.hidden_dim,
proj_dim=args.proj_dim,
stacked_num=args.stacked_num,
class_num=1749,
parallel=args.parallel)
adam_optimizer = fluid.optimizer.Adam(learning_rate=args.learning_rate) adam_optimizer = fluid.optimizer.Adam(learning_rate=args.learning_rate)
adam_optimizer.minimize(avg_cost) adam_optimizer.minimize(avg_cost)
accuracy = fluid.evaluator.Accuracy(input=prediction, label=label) # program for test
test_program = fluid.default_main_program().clone()
# clone from default main program with fluid.program_guard(test_program):
inference_program = fluid.default_main_program().clone() test_program = fluid.io.get_inference_program([avg_cost, accuracy])
with fluid.program_guard(inference_program):
test_accuracy = fluid.evaluator.Accuracy(input=prediction, label=label)
test_target = [avg_cost] + test_accuracy.metrics + test_accuracy.states
inference_program = fluid.io.get_inference_program(test_target)
place = fluid.CPUPlace() if args.device == 'CPU' else fluid.CUDAPlace(0) place = fluid.CPUPlace() if args.device == 'CPU' else fluid.CUDAPlace(0)
exe = fluid.Executor(place) exe = fluid.Executor(place)
...@@ -166,62 +140,90 @@ def train(args): ...@@ -166,62 +140,90 @@ def train(args):
trans_splice.TransSplice() trans_splice.TransSplice()
] ]
data_reader = reader.DataRead(args.feature_lst, args.label_lst) feature_t = fluid.LoDTensor()
data_reader.set_trans(ltrans) label_t = fluid.LoDTensor()
res_feature = fluid.LoDTensor() # validation
res_label = fluid.LoDTensor() def test(exe):
# If test data not found, return invalid cost and accuracy
if not (os.path.exists(args.val_feature_lst) and
os.path.exists(args.val_label_lst)):
return -1.0, -1.0
# test data reader
test_data_reader = reader.DataReader(args.val_feature_lst,
args.val_label_lst)
test_data_reader.set_transformers(ltrans)
test_costs, test_accs = [], []
for batch_id, batch_data in enumerate(
test_data_reader.batch_iterator(args.batch_size,
args.minimum_batch_size)):
# load_data
(features, labels, lod) = batch_data
feature_t.set(features, place)
feature_t.set_lod([lod])
label_t.set(labels, place)
label_t.set_lod([lod])
cost, acc = exe.run(test_program,
feed={"feature": feature_t,
"label": label_t},
fetch_list=[avg_cost, accuracy],
return_numpy=False)
test_costs.append(lodtensor_to_ndarray(cost)[0])
test_accs.append(lodtensor_to_ndarray(acc)[0])
return np.mean(test_costs), np.mean(test_accs)
# train data reader
train_data_reader = reader.DataReader(args.train_feature_lst,
args.train_label_lst, -1)
train_data_reader.set_transformers(ltrans)
# train
for pass_id in xrange(args.pass_num): for pass_id in xrange(args.pass_num):
pass_start_time = time.time() pass_start_time = time.time()
words_seen = 0 for batch_id, batch_data in enumerate(
accuracy.reset(exe) train_data_reader.batch_iterator(args.batch_size,
batch_id = 0 args.minimum_batch_size)):
while True:
# load_data # load_data
one_batch = data_reader.get_one_batch(args.batch_size) (features, labels, lod) = batch_data
if one_batch == None: feature_t.set(features, place)
break feature_t.set_lod([lod])
(bat_feature, bat_label, lod) = one_batch label_t.set(labels, place)
res_feature.set(bat_feature, place) label_t.set_lod([lod])
res_feature.set_lod([lod])
res_label.set(bat_label, place) cost, acc = exe.run(fluid.default_main_program(),
res_label.set_lod([lod]) feed={"feature": feature_t,
"label": label_t},
batch_id += 1 fetch_list=[avg_cost, accuracy],
return_numpy=False)
words_seen += lod[-1]
if batch_id > 0 and (batch_id % args.print_per_batches == 0):
loss, acc = exe.run( print("\nBatch %d, train cost: %f, train acc: %f" %
fluid.default_main_program(), (batch_id, lodtensor_to_ndarray(cost)[0],
feed={"feature": res_feature, lodtensor_to_ndarray(acc)[0]))
"label": res_label}, else:
fetch_list=[avg_cost] + accuracy.metrics, sys.stdout.write('.')
return_numpy=False) sys.stdout.flush()
train_acc = accuracy.eval(exe) # run test
print("acc:", lodtensor_to_ndarray(loss)) val_cost, val_acc = test(exe)
# save model
if args.model_save_dir != '':
model_path = os.path.join(
args.model_save_dir, "deep_asr.pass_" + str(pass_id) + ".model")
fluid.io.save_inference_model(model_path, ["feature"],
[prediction], exe)
# cal pass time
pass_end_time = time.time() pass_end_time = time.time()
time_consumed = pass_end_time - pass_start_time time_consumed = pass_end_time - pass_start_time
words_per_sec = words_seen / time_consumed # print info at pass end
print("\nPass %d, time consumed: %f s, val cost: %f, val acc: %f\n" %
(pass_id, time_consumed, val_cost, val_acc))
def lodtensor_to_ndarray(lod_tensor):
dims = lod_tensor.get_dims()
ret = np.zeros(shape=dims).astype('float32')
for i in xrange(np.product(dims)):
ret.ravel()[i] = lod_tensor.get_float_element(i)
return ret, lod_tensor.lod()
if __name__ == '__main__': if __name__ == '__main__':
args = parse_args() args = parse_args()
print_arguments(args) print_arguments(args)
if args.infer_only: if args.model_save_dir != '' and not os.path.exists(args.model_save_dir):
pass os.mkdir(args.model_save_dir)
else:
if args.use_nvprof and args.device == 'GPU': train(args)
with profiler.cuda_profiler("cuda_profiler.txt", 'csv') as nvprof:
train(args)
else:
train(args)
"""
This module provide the attack method for JSMA's implement.
"""
from __future__ import division
import logging
import random
import numpy as np
from .base import Attack
class SaliencyMapAttack(Attack):
"""
Implements the Saliency Map Attack.
The Jacobian-based Saliency Map Approach (Papernot et al. 2016).
Paper link: https://arxiv.org/pdf/1511.07528.pdf
"""
def _apply(self,
adversary,
max_iter=2000,
fast=True,
theta=0.1,
max_perturbations_per_pixel=7):
"""
Apply the JSMA attack.
Args:
adversary(Adversary): The Adversary object.
max_iter(int): The max iterations.
fast(bool): Whether evaluate the pixel influence on sum of residual classes.
theta(float): Perturbation per pixel relative to [min, max] range.
max_perturbations_per_pixel(int): The max count of perturbation per pixel.
Return:
adversary: The Adversary object.
"""
assert adversary is not None
if not adversary.is_targeted_attack or (adversary.target_label is None):
target_labels = self._generate_random_target(
adversary.original_label)
else:
target_labels = [adversary.target_label]
for target in target_labels:
original_image = adversary.original
# the mask defines the search domain
# each modified pixel with border value is set to zero in mask
mask = np.ones_like(original_image)
# count tracks how often each pixel was changed
counts = np.zeros_like(original_image)
labels = range(self.model.num_classes())
adv_img = original_image.copy()
min_, max_ = self.model.bounds()
for step in range(max_iter):
adv_img = np.clip(adv_img, min_, max_)
adv_label = np.argmax(self.model.predict(adv_img))
if adversary.try_accept_the_example(adv_img, adv_label):
return adversary
# stop if mask is all zero
if not any(mask.flatten()):
return adversary
logging.info('step = {}, original_label = {}, adv_label={}'.
format(step, adversary.original_label, adv_label))
# get pixel location with highest influence on class
idx, p_sign = self._saliency_map(
adv_img, target, labels, mask, fast=fast)
# apply perturbation
adv_img[idx] += -p_sign * theta * (max_ - min_)
# tracks number of updates for each pixel
counts[idx] += 1
# remove pixel from search domain if it hits the bound
if adv_img[idx] <= min_ or adv_img[idx] >= max_:
mask[idx] = 0
# remove pixel if it was changed too often
if counts[idx] >= max_perturbations_per_pixel:
mask[idx] = 0
adv_img = np.clip(adv_img, min_, max_)
def _generate_random_target(self, original_label):
"""
Draw random target labels all of which are different and not the original label.
Args:
original_label(int): Original label.
Return:
target_labels(list): random target labels
"""
num_random_target = 1
num_classes = self.model.num_classes()
assert num_random_target <= num_classes - 1
target_labels = random.sample(range(num_classes), num_random_target + 1)
target_labels = [t for t in target_labels if t != original_label]
target_labels = target_labels[:num_random_target]
return target_labels
def _saliency_map(self, image, target, labels, mask, fast=False):
"""
Get pixel location with highest influence on class.
Args:
image(numpy.ndarray): Image with shape (height, width, channels).
target(int): The target label.
labels(int): The number of classes of the output label.
mask(list): Each modified pixel with border value is set to zero in mask.
fast(bool): Whether evaluate the pixel influence on sum of residual classes.
Return:
idx: The index of optimal pixel.
pix_sign: The direction of perturbation
"""
# pixel influence on target class
alphas = self.model.gradient(image, target) * mask
# pixel influence on sum of residual classes(don't evaluate if fast == True)
if fast:
betas = -np.ones_like(alphas)
else:
betas = np.sum([
self.model.gradient(image, label) * mask - alphas
for label in labels
], 0)
# compute saliency map (take into account both pos. & neg. perturbations)
sal_map = np.abs(alphas) * np.abs(betas) * np.sign(alphas * betas)
# find optimal pixel & direction of perturbation
idx = np.argmin(sal_map)
idx = np.unravel_index(idx, mask.shape)
pix_sign = np.sign(alphas)[idx]
return idx, pix_sign
JSMA = SaliencyMapAttack
"""
FGSM demos on mnist using advbox tool.
"""
import matplotlib.pyplot as plt
import paddle.v2 as paddle
import paddle.v2.fluid as fluid
import numpy as np
from advbox import Adversary
from advbox.attacks.saliency import SaliencyMapAttack
from advbox.models.paddle import PaddleModel
def cnn_model(img):
"""
Mnist cnn model
Args:
img(Varaible): the input image to be recognized
Returns:
Variable: the label prediction
"""
# conv1 = fluid.nets.conv2d()
conv_pool_1 = fluid.nets.simple_img_conv_pool(
input=img,
num_filters=20,
filter_size=5,
pool_size=2,
pool_stride=2,
act='relu')
conv_pool_2 = fluid.nets.simple_img_conv_pool(
input=conv_pool_1,
num_filters=50,
filter_size=5,
pool_size=2,
pool_stride=2,
act='relu')
logits = fluid.layers.fc(input=conv_pool_2, size=10, act='softmax')
return logits
def main():
"""
Advbox demo which demonstrate how to use advbox.
"""
IMG_NAME = 'img'
LABEL_NAME = 'label'
img = fluid.layers.data(name=IMG_NAME, shape=[1, 28, 28], dtype='float32')
# gradient should flow
img.stop_gradient = False
label = fluid.layers.data(name=LABEL_NAME, shape=[1], dtype='int64')
logits = cnn_model(img)
cost = fluid.layers.cross_entropy(input=logits, label=label)
avg_cost = fluid.layers.mean(x=cost)
place = fluid.CPUPlace()
exe = fluid.Executor(place)
BATCH_SIZE = 1
train_reader = paddle.batch(
paddle.reader.shuffle(
paddle.dataset.mnist.train(), buf_size=500),
batch_size=BATCH_SIZE)
feeder = fluid.DataFeeder(
feed_list=[IMG_NAME, LABEL_NAME],
place=place,
program=fluid.default_main_program())
fluid.io.load_params(
exe, "./mnist/", main_program=fluid.default_main_program())
# advbox demo
m = PaddleModel(fluid.default_main_program(), IMG_NAME, LABEL_NAME,
logits.name, avg_cost.name, (-1, 1))
attack = SaliencyMapAttack(m)
total_num = 0
success_num = 0
for data in train_reader():
total_num += 1
# adversary.set_target(True, target_label=target_label)
jsma_attack = attack(Adversary(data[0][0], data[0][1]))
if jsma_attack is not None and jsma_attack.is_successful():
# plt.imshow(jsma_attack.target, cmap='Greys_r')
# plt.show()
success_num += 1
print('original_label=%d, adversary examples label =%d' %
(data[0][1], jsma_attack.adversarial_label))
# np.save('adv_img', jsma_attack.adversarial_example)
print('total num = %d, success num = %d ' % (total_num, success_num))
if total_num == 100:
break
if __name__ == '__main__':
main()
import os
import paddle.v2 as paddle
import paddle.v2.fluid as fluid
from paddle.v2.fluid.initializer import MSRA
from paddle.v2.fluid.param_attr import ParamAttr
parameter_attr = ParamAttr(initializer=MSRA())
def conv_bn_layer(input,
filter_size,
num_filters,
stride,
padding,
channels=None,
num_groups=1,
act='relu',
use_cudnn=True):
conv = fluid.layers.conv2d(
input=input,
num_filters=num_filters,
filter_size=filter_size,
stride=stride,
padding=padding,
groups=num_groups,
act=None,
use_cudnn=use_cudnn,
param_attr=parameter_attr,
bias_attr=False)
return fluid.layers.batch_norm(input=conv, act=act)
def depthwise_separable(input, num_filters1, num_filters2, num_groups, stride,
scale):
"""
"""
depthwise_conv = conv_bn_layer(
input=input,
filter_size=3,
num_filters=int(num_filters1 * scale),
stride=stride,
padding=1,
num_groups=int(num_groups * scale),
use_cudnn=False)
pointwise_conv = conv_bn_layer(
input=depthwise_conv,
filter_size=1,
num_filters=int(num_filters2 * scale),
stride=1,
padding=0)
return pointwise_conv
def mobile_net(img, class_dim, scale=1.0):
# conv1: 112x112
tmp = conv_bn_layer(
img,
filter_size=3,
channels=3,
num_filters=int(32 * scale),
stride=2,
padding=1)
# 56x56
tmp = depthwise_separable(
tmp,
num_filters1=32,
num_filters2=64,
num_groups=32,
stride=1,
scale=scale)
tmp = depthwise_separable(
tmp,
num_filters1=64,
num_filters2=128,
num_groups=64,
stride=2,
scale=scale)
# 28x28
tmp = depthwise_separable(
tmp,
num_filters1=128,
num_filters2=128,
num_groups=128,
stride=1,
scale=scale)
tmp = depthwise_separable(
tmp,
num_filters1=128,
num_filters2=256,
num_groups=128,
stride=2,
scale=scale)
# 14x14
tmp = depthwise_separable(
tmp,
num_filters1=256,
num_filters2=256,
num_groups=256,
stride=1,
scale=scale)
tmp = depthwise_separable(
tmp,
num_filters1=256,
num_filters2=512,
num_groups=256,
stride=2,
scale=scale)
# 14x14
for i in range(5):
tmp = depthwise_separable(
tmp,
num_filters1=512,
num_filters2=512,
num_groups=512,
stride=1,
scale=scale)
# 7x7
tmp = depthwise_separable(
tmp,
num_filters1=512,
num_filters2=1024,
num_groups=512,
stride=2,
scale=scale)
tmp = depthwise_separable(
tmp,
num_filters1=1024,
num_filters2=1024,
num_groups=1024,
stride=1,
scale=scale)
tmp = fluid.layers.pool2d(
input=tmp,
pool_size=0,
pool_stride=1,
pool_type='avg',
global_pooling=True)
tmp = fluid.layers.fc(input=tmp,
size=class_dim,
act='softmax',
param_attr=parameter_attr)
return tmp
def train(learning_rate, batch_size, num_passes, model_save_dir='model'):
class_dim = 102
image_shape = [3, 224, 224]
image = fluid.layers.data(name='image', shape=image_shape, dtype='float32')
label = fluid.layers.data(name='label', shape=[1], dtype='int64')
out = mobile_net(image, class_dim=class_dim)
cost = fluid.layers.cross_entropy(input=out, label=label)
avg_cost = fluid.layers.mean(x=cost)
optimizer = fluid.optimizer.Momentum(
learning_rate=learning_rate,
momentum=0.9,
regularization=fluid.regularizer.L2Decay(5 * 1e-5))
opts = optimizer.minimize(avg_cost)
accuracy = fluid.evaluator.Accuracy(input=out, label=label)
inference_program = fluid.default_main_program().clone()
with fluid.program_guard(inference_program):
test_accuracy = fluid.evaluator.Accuracy(input=out, label=label)
test_target = [avg_cost] + test_accuracy.metrics + test_accuracy.states
inference_program = fluid.io.get_inference_program(test_target)
place = fluid.CUDAPlace(0)
exe = fluid.Executor(place)
exe.run(fluid.default_startup_program())
train_reader = paddle.batch(
paddle.dataset.flowers.train(), batch_size=batch_size)
test_reader = paddle.batch(
paddle.dataset.flowers.test(), batch_size=batch_size)
feeder = fluid.DataFeeder(place=place, feed_list=[image, label])
for pass_id in range(num_passes):
accuracy.reset(exe)
for batch_id, data in enumerate(train_reader()):
loss, acc = exe.run(fluid.default_main_program(),
feed=feeder.feed(data),
fetch_list=[avg_cost] + accuracy.metrics)
print("Pass {0}, batch {1}, loss {2}, acc {3}".format(
pass_id, batch_id, loss[0], acc[0]))
pass_acc = accuracy.eval(exe)
test_accuracy.reset(exe)
for data in test_reader():
loss, acc = exe.run(inference_program,
feed=feeder.feed(data),
fetch_list=[avg_cost] + test_accuracy.metrics)
test_pass_acc = test_accuracy.eval(exe)
print("End pass {0}, train_acc {1}, test_acc {2}".format(
pass_id, pass_acc, test_pass_acc))
if pass_id % 10 == 0:
model_path = os.path.join(model_save_dir, str(pass_id))
print 'save models to %s' % (model_path)
fluid.io.save_inference_model(model_path, ['image'], [out], exe)
if __name__ == '__main__':
train(learning_rate=0.005, batch_size=40, num_passes=300)
...@@ -103,66 +103,87 @@ def train(learning_rate, ...@@ -103,66 +103,87 @@ def train(learning_rate,
batch_size, batch_size,
num_passes, num_passes,
init_model=None, init_model=None,
model_save_dir='model'): model_save_dir='model',
parallel=True):
class_dim = 1000 class_dim = 1000
image_shape = [3, 224, 224] image_shape = [3, 224, 224]
image = fluid.layers.data(name='image', shape=image_shape, dtype='float32') image = fluid.layers.data(name='image', shape=image_shape, dtype='float32')
label = fluid.layers.data(name='label', shape=[1], dtype='int64') label = fluid.layers.data(name='label', shape=[1], dtype='int64')
out = SE_ResNeXt(input=image, class_dim=class_dim) if parallel:
places = fluid.layers.get_places()
cost = fluid.layers.cross_entropy(input=out, label=label) pd = fluid.layers.ParallelDo(places)
avg_cost = fluid.layers.mean(x=cost)
with pd.do():
image_ = pd.read_input(image)
label_ = pd.read_input(label)
out = SE_ResNeXt(input=image_, class_dim=class_dim)
cost = fluid.layers.cross_entropy(input=out, label=label_)
avg_cost = fluid.layers.mean(x=cost)
accuracy = fluid.layers.accuracy(input=out, label=label_)
pd.write_output(avg_cost)
pd.write_output(accuracy)
avg_cost, accuracy = pd()
avg_cost = fluid.layers.mean(x=avg_cost)
accuracy = fluid.layers.mean(x=accuracy)
else:
out = SE_ResNeXt(input=image, class_dim=class_dim)
cost = fluid.layers.cross_entropy(input=out, label=label)
avg_cost = fluid.layers.mean(x=cost)
accuracy = fluid.layers.accuracy(input=out, label=label)
optimizer = fluid.optimizer.Momentum( optimizer = fluid.optimizer.Momentum(
learning_rate=learning_rate, learning_rate=learning_rate,
momentum=0.9, momentum=0.9,
regularization=fluid.regularizer.L2Decay(1e-4)) regularization=fluid.regularizer.L2Decay(1e-4))
opts = optimizer.minimize(avg_cost) opts = optimizer.minimize(avg_cost)
accuracy = fluid.evaluator.Accuracy(input=out, label=label)
inference_program = fluid.default_main_program().clone() inference_program = fluid.default_main_program().clone()
with fluid.program_guard(inference_program): with fluid.program_guard(inference_program):
test_accuracy = fluid.evaluator.Accuracy(input=out, label=label) inference_program = fluid.io.get_inference_program([avg_cost, accuracy])
test_target = [avg_cost] + test_accuracy.metrics + test_accuracy.states
inference_program = fluid.io.get_inference_program(test_target)
place = fluid.CUDAPlace(0) place = fluid.CUDAPlace(0)
exe = fluid.Executor(place) exe = fluid.Executor(place)
exe.run(fluid.default_startup_program()) exe.run(fluid.default_startup_program())
if init_model is not None: if init_model is not None:
fluid.io.load_persistables_if_exist(exe, init_model) fluid.io.load_persistables(exe, init_model)
train_reader = paddle.batch(reader.train(), batch_size=batch_size) train_reader = paddle.batch(reader.train(), batch_size=batch_size)
test_reader = paddle.batch(reader.test(), batch_size=batch_size) test_reader = paddle.batch(reader.test(), batch_size=batch_size)
feeder = fluid.DataFeeder(place=place, feed_list=[image, label]) feeder = fluid.DataFeeder(place=place, feed_list=[image, label])
for pass_id in range(num_passes): for pass_id in range(num_passes):
accuracy.reset(exe)
for batch_id, data in enumerate(train_reader()): for batch_id, data in enumerate(train_reader()):
loss, acc = exe.run(fluid.default_main_program(), loss = exe.run(fluid.default_main_program(),
feed=feeder.feed(data), feed=feeder.feed(data),
fetch_list=[avg_cost] + accuracy.metrics) fetch_list=[avg_cost])
print("Pass {0}, batch {1}, loss {2}, acc {3}".format( print("Pass {0}, batch {1}, loss {2}".format(pass_id, batch_id,
pass_id, batch_id, loss[0], acc[0])) float(loss[0])))
pass_acc = accuracy.eval(exe)
total_loss = 0.0
test_accuracy.reset(exe) total_acc = 0.0
total_batch = 0
for data in test_reader(): for data in test_reader():
loss, acc = exe.run(inference_program, loss, acc = exe.run(inference_program,
feed=feeder.feed(data), feed=feeder.feed(data),
fetch_list=[avg_cost] + test_accuracy.metrics) fetch_list=[avg_cost, accuracy])
test_pass_acc = test_accuracy.eval(exe) total_loss += float(loss)
print("End pass {0}, train_acc {1}, test_acc {2}".format( total_acc += float(acc)
pass_id, pass_acc, test_pass_acc)) total_batch += 1
print("End pass {0}, test_loss {1}, test_acc {2}".format(
pass_id, total_loss / total_batch, total_acc / total_batch))
model_path = os.path.join(model_save_dir, str(pass_id)) model_path = os.path.join(model_save_dir, str(pass_id))
if not os.path.isdir(model_path): fluid.io.save_inference_model(model_path, ['image'], [out], exe)
os.makedirs(model_path)
fluid.io.save_persistables(exe, model_path)
if __name__ == '__main__': if __name__ == '__main__':
train(learning_rate=0.1, batch_size=8, num_passes=100, init_model=None) train(
learning_rate=0.1,
batch_size=8,
num_passes=100,
init_model=None,
parallel=False)
import os
import cv2
import numpy as np
from PIL import Image
from paddle.v2.image import load_image
class DataGenerator(object):
def __init__(self):
pass
def train_reader(self, img_root_dir, img_label_list, batchsize):
'''
Reader interface for training.
:param img_root_dir: The root path of the image for training.
:type file_list: str
:param img_label_list: The path of the <image_name, label> file for training.
:type file_list: str
'''
img_label_lines = []
if batchsize == 1:
to_file = "tmp.txt"
cmd = "cat " + img_label_list + " | awk '{print $1,$2,$3,$4;}' | shuf > " + to_file
print "cmd: " + cmd
os.system(cmd)
print "finish batch shuffle"
img_label_lines = open(to_file, 'r').readlines()
else:
to_file = "tmp.txt"
#cmd1: partial shuffle
cmd = "cat " + img_label_list + " | awk '{printf(\"%04d%.4f %s\\n\", $1, rand(), $0)}' | sort | sed 1,$((1 + RANDOM % 100))d | "
#cmd2: batch merge and shuffle
cmd += "awk '{printf $2\" \"$3\" \"$4\" \"$5\" \"; if(NR % " + str(
batchsize) + " == 0) print \"\";}' | shuf | "
#cmd3: batch split
cmd += "awk '{if(NF == " + str(
batchsize
) + " * 4) {for(i = 0; i < " + str(
batchsize
) + "; i++) print $(4*i+1)\" \"$(4*i+2)\" \"$(4*i+3)\" \"$(4*i+4);}}' > " + to_file
print "cmd: " + cmd
os.system(cmd)
print "finish batch shuffle"
img_label_lines = open(to_file, 'r').readlines()
def reader():
sizes = len(img_label_lines) / batchsize
for i in range(sizes):
result = []
sz = [0, 0]
for j in range(batchsize):
line = img_label_lines[i * batchsize + j]
# h, w, img_name, labels
items = line.split(' ')
label = [int(c) for c in items[-1].split(',')]
img = Image.open(os.path.join(img_root_dir, items[
2])).convert('L') #zhuanhuidu
if j == 0:
sz = img.size
img = img.resize((sz[0], sz[1]))
img = np.array(img) - 127.5
img = img[np.newaxis, ...]
result.append([img, label])
yield result
return reader
def test_reader(self, img_root_dir, img_label_list):
'''
Reader interface for inference.
:param img_root_dir: The root path of the images for training.
:type file_list: str
:param img_label_list: The path of the <image_name, label> file for testing.
:type file_list: list
'''
def reader():
for line in open(img_label_list):
# h, w, img_name, labels
items = line.split(' ')
label = [int(c) for c in items[-1].split(',')]
img = Image.open(os.path.join(img_root_dir, items[2])).convert(
'L')
img = np.array(img) - 127.5
img = img[np.newaxis, ...]
yield img, label
return reader
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册