Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
models
提交
08203ee1
M
models
项目概览
PaddlePaddle
/
models
大约 1 年 前同步成功
通知
222
Star
6828
Fork
2962
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
602
列表
看板
标记
里程碑
合并请求
255
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
M
models
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
602
Issue
602
列表
看板
标记
里程碑
合并请求
255
合并请求
255
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
08203ee1
编写于
6月 18, 2017
作者:
Y
Yibing Liu
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
final refining on old data provider: enable pruning & add evaluation & code cleanup
上级
0fa063eb
变更
4
显示空白变更内容
内联
并排
Showing
4 changed file
with
339 addition
and
72 deletion
+339
-72
deep_speech_2/decoder.py
deep_speech_2/decoder.py
+61
-23
deep_speech_2/evaluate.py
deep_speech_2/evaluate.py
+214
-0
deep_speech_2/infer.py
deep_speech_2/infer.py
+25
-15
deep_speech_2/tune.py
deep_speech_2/tune.py
+39
-34
未找到文件。
deep_speech_2/decoder.py
浏览文件 @
08203ee1
...
...
@@ -5,7 +5,6 @@
import
os
from
itertools
import
groupby
import
numpy
as
np
import
copy
import
kenlm
import
multiprocessing
...
...
@@ -73,11 +72,25 @@ class Scorer(object):
return
len
(
words
)
# execute evaluation
def
__call__
(
self
,
sentence
):
def
__call__
(
self
,
sentence
,
log
=
False
):
"""
Evaluation function
:param sentence: The input sentence for evalutation
:type sentence: basestring
:param log: Whether return the score in log representation.
:type log: bool
:return: Evaluation score, in the decimal or log.
:rtype: float
"""
lm
=
self
.
language_model_score
(
sentence
)
word_cnt
=
self
.
word_count
(
sentence
)
if
log
==
False
:
score
=
np
.
power
(
lm
,
self
.
_alpha
)
\
*
np
.
power
(
word_cnt
,
self
.
_beta
)
else
:
score
=
self
.
_alpha
*
np
.
log
(
lm
)
\
+
self
.
_beta
*
np
.
log
(
word_cnt
)
return
score
...
...
@@ -85,13 +98,14 @@ def ctc_beam_search_decoder(probs_seq,
beam_size
,
vocabulary
,
blank_id
=
0
,
cutoff_prob
=
1.0
,
ext_scoring_func
=
None
,
nproc
=
False
):
'''
Beam search decoder for CTC-trained network, using beam search with width
beam_size to find many paths to one label, return beam_size labels in
the
order of probabilities. The implementation is based on Prefix Beam
Search(https://arxiv.org/abs/1408.2873), and the unclear part is
the
descending order of probabilities. The implementation is based on Prefix
Beam
Search(https://arxiv.org/abs/1408.2873), and the unclear part is
redesigned, need to be verified.
:param probs_seq: 2-D list with length num_time_steps, each element
...
...
@@ -102,22 +116,25 @@ def ctc_beam_search_decoder(probs_seq,
:type beam_size: int
:param vocabulary: Vocabulary list.
:type vocabulary: list
:param blank_id: ID of blank, default 0.
:type blank_id: int
:param cutoff_prob: Cutoff probability in pruning,
default 1.0, no pruning.
:type cutoff_prob: float
:param ext_scoring_func: External defined scoring function for
partially decoded sentence, e.g. word count
and language model.
:type external_scoring_function: function
:param blank_id: id of blank, default 0.
:type blank_id: int
:param nproc: Whether the decoder used in multiprocesses.
:type nproc: bool
:return: Decoding log probabilit
y and result string
.
:return: Decoding log probabilit
ies and result sentences in descending order
.
:rtype: list
'''
# dimension check
for
prob_list
in
probs_seq
:
if
not
len
(
prob_list
)
==
len
(
vocabulary
)
+
1
:
raise
ValueError
(
"probs dimension mismatched
d
with vocabulary"
)
raise
ValueError
(
"probs dimension mismatched with vocabulary"
)
num_time_steps
=
len
(
probs_seq
)
# blank_id check
...
...
@@ -137,19 +154,35 @@ def ctc_beam_search_decoder(probs_seq,
probs_b_prev
,
probs_nb_prev
=
{
'
\t
'
:
1.0
},
{
'
\t
'
:
0.0
}
## extend prefix in loop
for
time_step
in
range
(
num_time_steps
):
for
time_step
in
x
range
(
num_time_steps
):
# the set containing candidate prefixes
prefix_set_next
=
{}
probs_b_cur
,
probs_nb_cur
=
{},
{}
for
l
in
prefix_set_prev
:
prob
=
probs_seq
[
time_step
]
prob_idx
=
[[
i
,
prob
[
i
]]
for
i
in
xrange
(
len
(
prob
))]
cutoff_len
=
len
(
prob_idx
)
#If pruning is enabled
if
(
cutoff_prob
<
1.0
):
prob_idx
=
sorted
(
prob_idx
,
key
=
lambda
asd
:
asd
[
1
],
reverse
=
True
)
cutoff_len
=
0
cum_prob
=
0.0
for
i
in
xrange
(
len
(
prob_idx
)):
cum_prob
+=
prob_idx
[
i
][
1
]
cutoff_len
+=
1
if
cum_prob
>=
cutoff_prob
:
break
prob_idx
=
prob_idx
[
0
:
cutoff_len
]
for
l
in
prefix_set_prev
:
if
not
prefix_set_next
.
has_key
(
l
):
probs_b_cur
[
l
],
probs_nb_cur
[
l
]
=
0.0
,
0.0
# extend prefix by travering vocabulary
for
c
in
range
(
0
,
probs_dim
):
# extend prefix by travering prob_idx
for
index
in
xrange
(
cutoff_len
):
c
,
prob_c
=
prob_idx
[
index
][
0
],
prob_idx
[
index
][
1
]
if
c
==
blank_id
:
probs_b_cur
[
l
]
+=
prob
[
c
]
*
(
probs_b_cur
[
l
]
+=
prob
_c
*
(
probs_b_prev
[
l
]
+
probs_nb_prev
[
l
])
else
:
last_char
=
l
[
-
1
]
...
...
@@ -159,18 +192,18 @@ def ctc_beam_search_decoder(probs_seq,
probs_b_cur
[
l_plus
],
probs_nb_cur
[
l_plus
]
=
0.0
,
0.0
if
new_char
==
last_char
:
probs_nb_cur
[
l_plus
]
+=
prob
[
c
]
*
probs_b_prev
[
l
]
probs_nb_cur
[
l
]
+=
prob
[
c
]
*
probs_nb_prev
[
l
]
probs_nb_cur
[
l_plus
]
+=
prob
_c
*
probs_b_prev
[
l
]
probs_nb_cur
[
l
]
+=
prob
_c
*
probs_nb_prev
[
l
]
elif
new_char
==
' '
:
if
(
ext_scoring_func
is
None
)
or
(
len
(
l
)
==
1
):
score
=
1.0
else
:
prefix
=
l
[
1
:]
score
=
ext_scoring_func
(
prefix
)
probs_nb_cur
[
l_plus
]
+=
score
*
prob
[
c
]
*
(
probs_nb_cur
[
l_plus
]
+=
score
*
prob
_c
*
(
probs_b_prev
[
l
]
+
probs_nb_prev
[
l
])
else
:
probs_nb_cur
[
l_plus
]
+=
prob
[
c
]
*
(
probs_nb_cur
[
l_plus
]
+=
prob
_c
*
(
probs_b_prev
[
l
]
+
probs_nb_prev
[
l
])
# add l_plus into prefix_set_next
prefix_set_next
[
l_plus
]
=
probs_nb_cur
[
...
...
@@ -203,6 +236,7 @@ def ctc_beam_search_decoder_nproc(probs_split,
beam_size
,
vocabulary
,
blank_id
=
0
,
cutoff_prob
=
1.0
,
ext_scoring_func
=
None
,
num_processes
=
None
):
'''
...
...
@@ -216,16 +250,19 @@ def ctc_beam_search_decoder_nproc(probs_split,
:type beam_size: int
:param vocabulary: Vocabulary list.
:type vocabulary: list
:param blank_id: ID of blank, default 0.
:type blank_id: int
:param cutoff_prob: Cutoff probability in pruning,
default 0, no pruning.
:type cutoff_prob: float
:param ext_scoring_func: External defined scoring function for
partially decoded sentence, e.g. word count
and language model.
:type external_scoring_function: function
:param blank_id: id of blank, default 0.
:type blank_id: int
:param num_processes: Number of processes, default None, equal to the
number of CPUs.
:type num_processes: int
:return: Decoding log probabilit
y and result string
.
:return: Decoding log probabilit
ies and result sentences in descending order
.
:rtype: list
'''
...
...
@@ -243,7 +280,8 @@ def ctc_beam_search_decoder_nproc(probs_split,
pool
=
multiprocessing
.
Pool
(
processes
=
num_processes
)
results
=
[]
for
i
,
probs_list
in
enumerate
(
probs_split
):
args
=
(
probs_list
,
beam_size
,
vocabulary
,
blank_id
,
None
,
nproc
)
args
=
(
probs_list
,
beam_size
,
vocabulary
,
blank_id
,
cutoff_prob
,
None
,
nproc
)
results
.
append
(
pool
.
apply_async
(
ctc_beam_search_decoder
,
args
))
pool
.
close
()
...
...
deep_speech_2/evaluate.py
0 → 100644
浏览文件 @
08203ee1
"""
Evaluation for a simplifed version of Baidu DeepSpeech2 model.
"""
import
paddle.v2
as
paddle
import
distutils.util
import
argparse
import
gzip
from
audio_data_utils
import
DataGenerator
from
model
import
deep_speech2
from
decoder
import
*
from
error_rate
import
wer
parser
=
argparse
.
ArgumentParser
(
description
=
'Simplified version of DeepSpeech2 evaluation.'
)
parser
.
add_argument
(
"--num_samples"
,
default
=
100
,
type
=
int
,
help
=
"Number of samples for evaluation. (default: %(default)s)"
)
parser
.
add_argument
(
"--num_conv_layers"
,
default
=
2
,
type
=
int
,
help
=
"Convolution layer number. (default: %(default)s)"
)
parser
.
add_argument
(
"--num_rnn_layers"
,
default
=
3
,
type
=
int
,
help
=
"RNN layer number. (default: %(default)s)"
)
parser
.
add_argument
(
"--rnn_layer_size"
,
default
=
512
,
type
=
int
,
help
=
"RNN layer cell number. (default: %(default)s)"
)
parser
.
add_argument
(
"--use_gpu"
,
default
=
True
,
type
=
distutils
.
util
.
strtobool
,
help
=
"Use gpu or not. (default: %(default)s)"
)
parser
.
add_argument
(
"--decode_method"
,
default
=
'beam_search_nproc'
,
type
=
str
,
help
=
"Method for ctc decoding, best_path, "
"beam_search or beam_search_nproc. (default: %(default)s)"
)
parser
.
add_argument
(
"--language_model_path"
,
default
=
"./data/1Billion.klm"
,
type
=
str
,
help
=
"Path for language model. (default: %(default)s)"
)
parser
.
add_argument
(
"--alpha"
,
default
=
0.26
,
type
=
float
,
help
=
"Parameter associated with language model. (default: %(default)f)"
)
parser
.
add_argument
(
"--beta"
,
default
=
0.1
,
type
=
float
,
help
=
"Parameter associated with word count. (default: %(default)f)"
)
parser
.
add_argument
(
"--cutoff_prob"
,
default
=
0.99
,
type
=
float
,
help
=
"The cutoff probability of pruning"
"in beam search. (default: %(default)f)"
)
parser
.
add_argument
(
"--beam_size"
,
default
=
500
,
type
=
int
,
help
=
"Width for beam search decoding. (default: %(default)d)"
)
parser
.
add_argument
(
"--normalizer_manifest_path"
,
default
=
'data/manifest.libri.train-clean-100'
,
type
=
str
,
help
=
"Manifest path for normalizer. (default: %(default)s)"
)
parser
.
add_argument
(
"--decode_manifest_path"
,
default
=
'data/manifest.libri.test-clean'
,
type
=
str
,
help
=
"Manifest path for decoding. (default: %(default)s)"
)
parser
.
add_argument
(
"--model_filepath"
,
default
=
'./params.tar.gz'
,
type
=
str
,
help
=
"Model filepath. (default: %(default)s)"
)
parser
.
add_argument
(
"--vocab_filepath"
,
default
=
'data/eng_vocab.txt'
,
type
=
str
,
help
=
"Vocabulary filepath. (default: %(default)s)"
)
args
=
parser
.
parse_args
()
def
evaluate
():
"""
Evaluate on whole test data for DeepSpeech2.
"""
# initialize data generator
data_generator
=
DataGenerator
(
vocab_filepath
=
args
.
vocab_filepath
,
normalizer_manifest_path
=
args
.
normalizer_manifest_path
,
normalizer_num_samples
=
200
,
max_duration
=
20.0
,
min_duration
=
0.0
,
stride_ms
=
10
,
window_ms
=
20
)
# create network config
dict_size
=
data_generator
.
vocabulary_size
()
vocab_list
=
data_generator
.
vocabulary_list
()
audio_data
=
paddle
.
layer
.
data
(
name
=
"audio_spectrogram"
,
height
=
161
,
width
=
2000
,
type
=
paddle
.
data_type
.
dense_vector
(
322000
))
text_data
=
paddle
.
layer
.
data
(
name
=
"transcript_text"
,
type
=
paddle
.
data_type
.
integer_value_sequence
(
dict_size
))
output_probs
=
deep_speech2
(
audio_data
=
audio_data
,
text_data
=
text_data
,
dict_size
=
dict_size
,
num_conv_layers
=
args
.
num_conv_layers
,
num_rnn_layers
=
args
.
num_rnn_layers
,
rnn_size
=
args
.
rnn_layer_size
,
is_inference
=
True
)
# load parameters
parameters
=
paddle
.
parameters
.
Parameters
.
from_tar
(
gzip
.
open
(
args
.
model_filepath
))
# prepare infer data
feeding
=
data_generator
.
data_name_feeding
()
test_batch_reader
=
data_generator
.
batch_reader_creator
(
manifest_path
=
args
.
decode_manifest_path
,
batch_size
=
args
.
num_samples
,
padding_to
=
2000
,
flatten
=
True
,
sort_by_duration
=
False
,
shuffle
=
False
)
# define inferer
inferer
=
paddle
.
inference
.
Inference
(
output_layer
=
output_probs
,
parameters
=
parameters
)
# initialize external scorer for beam search decoding
if
args
.
decode_method
==
'beam_search'
or
\
args
.
decode_method
==
'beam_search_nproc'
:
ext_scorer
=
Scorer
(
args
.
alpha
,
args
.
beta
,
args
.
language_model_path
)
wer_counter
,
wer_sum
=
0
,
0.0
for
infer_data
in
test_batch_reader
():
# run inference
infer_results
=
inferer
.
infer
(
input
=
infer_data
)
num_steps
=
len
(
infer_results
)
/
len
(
infer_data
)
probs_split
=
[
infer_results
[
i
*
num_steps
:(
i
+
1
)
*
num_steps
]
for
i
in
xrange
(
0
,
len
(
infer_data
))
]
# decode and print
# best path decode
if
args
.
decode_method
==
"best_path"
:
for
i
,
probs
in
enumerate
(
probs_split
):
output_transcription
=
ctc_decode
(
probs_seq
=
probs
,
vocabulary
=
vocab_list
,
method
=
"best_path"
)
target_transcription
=
''
.
join
(
[
vocab_list
[
index
]
for
index
in
infer_data
[
i
][
1
]])
wer_sum
+=
wer
(
target_transcription
,
output_transcription
)
wer_counter
+=
1
# beam search decode in single process
elif
args
.
decode_method
==
"beam_search"
:
for
i
,
probs
in
enumerate
(
probs_split
):
target_transcription
=
''
.
join
(
[
vocab_list
[
index
]
for
index
in
infer_data
[
i
][
1
]])
beam_search_result
=
ctc_beam_search_decoder
(
probs_seq
=
probs
,
vocabulary
=
vocab_list
,
beam_size
=
args
.
beam_size
,
blank_id
=
len
(
vocab_list
),
ext_scoring_func
=
ext_scorer
,
cutoff_prob
=
args
.
cutoff_prob
,
)
wer_sum
+=
wer
(
target_transcription
,
beam_search_result
[
0
][
1
])
wer_counter
+=
1
# beam search using multiple processes
elif
args
.
decode_method
==
"beam_search_nproc"
:
beam_search_nproc_results
=
ctc_beam_search_decoder_nproc
(
probs_split
=
probs_split
,
vocabulary
=
vocab_list
,
beam_size
=
args
.
beam_size
,
blank_id
=
len
(
vocab_list
),
ext_scoring_func
=
ext_scorer
,
cutoff_prob
=
args
.
cutoff_prob
,
)
for
i
,
beam_search_result
in
enumerate
(
beam_search_nproc_results
):
target_transcription
=
''
.
join
(
[
vocab_list
[
index
]
for
index
in
infer_data
[
i
][
1
]])
wer_sum
+=
wer
(
target_transcription
,
beam_search_result
[
0
][
1
])
wer_counter
+=
1
else
:
raise
ValueError
(
"Decoding method [%s] is not supported."
%
method
)
print
(
"Cur WER = %f"
%
(
wer_sum
/
wer_counter
))
print
(
"Final WER = %f"
%
(
wer_sum
/
wer_counter
))
def
main
():
paddle
.
init
(
use_gpu
=
args
.
use_gpu
,
trainer_count
=
1
)
evaluate
()
if
__name__
==
'__main__'
:
main
()
deep_speech_2/infer.py
浏览文件 @
08203ee1
...
...
@@ -9,14 +9,14 @@ import gzip
from
audio_data_utils
import
DataGenerator
from
model
import
deep_speech2
from
decoder
import
*
import
kenlm
from
error_rate
import
wer
import
time
parser
=
argparse
.
ArgumentParser
(
description
=
'Simplified version of DeepSpeech2 inference.'
)
parser
.
add_argument
(
"--num_samples"
,
default
=
10
,
default
=
10
0
,
type
=
int
,
help
=
"Number of samples for inference. (default: %(default)s)"
)
parser
.
add_argument
(
...
...
@@ -46,7 +46,7 @@ parser.add_argument(
help
=
"Manifest path for normalizer. (default: %(default)s)"
)
parser
.
add_argument
(
"--decode_manifest_path"
,
default
=
'data/manifest.libri.test-
clean
'
,
default
=
'data/manifest.libri.test-
100sample
'
,
type
=
str
,
help
=
"Manifest path for decoding. (default: %(default)s)"
)
parser
.
add_argument
(
...
...
@@ -63,11 +63,13 @@ parser.add_argument(
"--decode_method"
,
default
=
'beam_search_nproc'
,
type
=
str
,
help
=
"Method for ctc decoding, best_path, beam_search or beam_search_nproc. (default: %(default)s)"
)
help
=
"Method for ctc decoding:"
" best_path,"
" beam_search, "
" or beam_search_nproc. (default: %(default)s)"
)
parser
.
add_argument
(
"--beam_size"
,
default
=
50
,
default
=
50
0
,
type
=
int
,
help
=
"Width for beam search decoding. (default: %(default)d)"
)
parser
.
add_argument
(
...
...
@@ -82,14 +84,20 @@ parser.add_argument(
help
=
"Path for language model. (default: %(default)s)"
)
parser
.
add_argument
(
"--alpha"
,
default
=
0.
0
,
default
=
0.
26
,
type
=
float
,
help
=
"Parameter associated with language model. (default: %(default)f)"
)
parser
.
add_argument
(
"--beta"
,
default
=
0.
0
,
default
=
0.
1
,
type
=
float
,
help
=
"Parameter associated with word count. (default: %(default)f)"
)
parser
.
add_argument
(
"--cutoff_prob"
,
default
=
0.99
,
type
=
float
,
help
=
"The cutoff probability of pruning"
"in beam search. (default: %(default)f)"
)
args
=
parser
.
parse_args
()
...
...
@@ -154,6 +162,7 @@ def infer():
## decode and print
# best path decode
wer_sum
,
wer_counter
=
0
,
0
total_time
=
0.0
if
args
.
decode_method
==
"best_path"
:
for
i
,
probs
in
enumerate
(
probs_split
):
target_transcription
=
''
.
join
(
...
...
@@ -177,11 +186,12 @@ def infer():
probs_seq
=
probs
,
vocabulary
=
vocab_list
,
beam_size
=
args
.
beam_size
,
ext_scoring_func
=
ext_scorer
,
blank_id
=
len
(
vocab_list
))
blank_id
=
len
(
vocab_list
),
cutoff_prob
=
args
.
cutoff_prob
,
ext_scoring_func
=
ext_scorer
,
)
print
(
"
\n
Target Transcription:
\t
%s"
%
target_transcription
)
for
index
in
range
(
args
.
num_results_per_sample
):
for
index
in
x
range
(
args
.
num_results_per_sample
):
result
=
beam_search_result
[
index
]
#output: index, log prob, beam result
print
(
"Beam %d: %f
\t
%s"
%
(
index
,
result
[
0
],
result
[
1
]))
...
...
@@ -190,21 +200,21 @@ def infer():
wer_counter
+=
1
print
(
"cur wer = %f , average wer = %f"
%
(
wer_cur
,
wer_sum
/
wer_counter
))
# beam search using multiple processes
elif
args
.
decode_method
==
"beam_search_nproc"
:
ext_scorer
=
Scorer
(
args
.
alpha
,
args
.
beta
,
args
.
language_model_path
)
beam_search_nproc_results
=
ctc_beam_search_decoder_nproc
(
probs_split
=
probs_split
,
vocabulary
=
vocab_list
,
beam_size
=
args
.
beam_size
,
ext_scoring_func
=
ext_scorer
,
blank_id
=
len
(
vocab_list
))
blank_id
=
len
(
vocab_list
),
cutoff_prob
=
args
.
cutoff_prob
,
ext_scoring_func
=
ext_scorer
,
)
for
i
,
beam_search_result
in
enumerate
(
beam_search_nproc_results
):
target_transcription
=
''
.
join
(
[
vocab_list
[
index
]
for
index
in
infer_data
[
i
][
1
]])
print
(
"
\n
Target Transcription:
\t
%s"
%
target_transcription
)
for
index
in
range
(
args
.
num_results_per_sample
):
for
index
in
x
range
(
args
.
num_results_per_sample
):
result
=
beam_search_result
[
index
]
#output: index, log prob, beam result
print
(
"Beam %d: %f
\t
%s"
%
(
index
,
result
[
0
],
result
[
1
]))
...
...
deep_speech_2/tune.py
浏览文件 @
08203ee1
"""
Tune parameters
for beam search decoder in Deep Speech 2.
Parameters tuning
for beam search decoder in Deep Speech 2.
"""
import
paddle.v2
as
paddle
...
...
@@ -12,7 +12,7 @@ from decoder import *
from
error_rate
import
wer
parser
=
argparse
.
ArgumentParser
(
description
=
'Parameters tuning
script
for ctc beam search decoder in Deep Speech 2.'
description
=
'Parameters tuning for ctc beam search decoder in Deep Speech 2.'
)
parser
.
add_argument
(
"--num_samples"
,
...
...
@@ -82,34 +82,40 @@ parser.add_argument(
help
=
"Path for language model. (default: %(default)s)"
)
parser
.
add_argument
(
"--alpha_from"
,
default
=
0.
0
,
default
=
0.
1
,
type
=
float
,
help
=
"Where alpha starts from
, <= alpha_to
. (default: %(default)f)"
)
help
=
"Where alpha starts from. (default: %(default)f)"
)
parser
.
add_argument
(
"--
alpha_stride
"
,
default
=
0.001
,
type
=
floa
t
,
help
=
"
Step length for varying alpha. (default: %(default)f
)"
)
"--
num_alphas
"
,
default
=
14
,
type
=
in
t
,
help
=
"
Number of candidate alphas. (default: %(default)d
)"
)
parser
.
add_argument
(
"--alpha_to"
,
default
=
0.
01
,
default
=
0.
36
,
type
=
float
,
help
=
"Where alpha ends with
, >= alpha_from
. (default: %(default)f)"
)
help
=
"Where alpha ends with. (default: %(default)f)"
)
parser
.
add_argument
(
"--beta_from"
,
default
=
0.0
,
default
=
0.0
5
,
type
=
float
,
help
=
"Where beta starts from
, <= beta_to
. (default: %(default)f)"
)
help
=
"Where beta starts from. (default: %(default)f)"
)
parser
.
add_argument
(
"--
beta_stride
"
,
default
=
0.01
,
"--
num_betas
"
,
default
=
20
,
type
=
float
,
help
=
"
Step length for varying beta. (default: %(default)f
)"
)
help
=
"
Number of candidate betas. (default: %(default)d
)"
)
parser
.
add_argument
(
"--beta_to"
,
default
=
0.0
,
default
=
1.0
,
type
=
float
,
help
=
"Where beta ends with. (default: %(default)f)"
)
parser
.
add_argument
(
"--cutoff_prob"
,
default
=
0.99
,
type
=
float
,
help
=
"Where beta ends with, >= beta_from. (default: %(default)f)"
)
help
=
"The cutoff probability of pruning"
"in beam search. (default: %(default)f)"
)
args
=
parser
.
parse_args
()
...
...
@@ -118,15 +124,11 @@ def tune():
Tune parameters alpha and beta on one minibatch.
"""
if
not
args
.
alpha_from
<=
args
.
alpha_to
:
raise
ValueError
(
"alpha_from <= alpha_to doesn't satisfy!"
)
if
not
args
.
alpha_stride
>
0
:
raise
ValueError
(
"alpha_stride shouldn't be negative!"
)
if
not
args
.
num_alphas
>=
0
:
raise
ValueError
(
"num_alphas must be non-negative!"
)
if
not
args
.
beta_from
<=
args
.
beta_to
:
raise
ValueError
(
"beta_from <= beta_to doesn't satisfy!"
)
if
not
args
.
beta_stride
>
0
:
raise
ValueError
(
"beta_stride shouldn't be negative!"
)
if
not
args
.
num_betas
>=
0
:
raise
ValueError
(
"num_betas must be non-negative!"
)
# initialize data generator
data_generator
=
DataGenerator
(
...
...
@@ -171,6 +173,7 @@ def tune():
flatten
=
True
,
sort_by_duration
=
False
,
shuffle
=
False
)
# get one batch data for tuning
infer_data
=
test_batch_reader
().
next
()
# run inference
...
...
@@ -182,11 +185,12 @@ def tune():
for
i
in
xrange
(
0
,
len
(
infer_data
))
]
cand_alpha
=
np
.
arange
(
args
.
alpha_from
,
args
.
alpha_to
+
args
.
alpha_stride
,
args
.
alpha_stride
)
cand_beta
=
np
.
arange
(
args
.
beta_from
,
args
.
beta_to
+
args
.
beta_stride
,
args
.
beta_stride
)
params_grid
=
[(
alpha
,
beta
)
for
alpha
in
cand_alpha
for
beta
in
cand_beta
]
# create grid for search
cand_alphas
=
np
.
linspace
(
args
.
alpha_from
,
args
.
alpha_to
,
args
.
num_alphas
)
cand_betas
=
np
.
linspace
(
args
.
beta_from
,
args
.
beta_to
,
args
.
num_betas
)
params_grid
=
[(
alpha
,
beta
)
for
alpha
in
cand_alphas
for
beta
in
cand_betas
]
## tune parameters in loop
for
(
alpha
,
beta
)
in
params_grid
:
wer_sum
,
wer_counter
=
0
,
0
...
...
@@ -200,8 +204,9 @@ def tune():
probs_seq
=
probs
,
vocabulary
=
vocab_list
,
beam_size
=
args
.
beam_size
,
ext_scoring_func
=
ext_scorer
,
blank_id
=
len
(
vocab_list
))
blank_id
=
len
(
vocab_list
),
cutoff_prob
=
args
.
cutoff_prob
,
ext_scoring_func
=
ext_scorer
,
)
wer_sum
+=
wer
(
target_transcription
,
beam_search_result
[
0
][
1
])
wer_counter
+=
1
# beam search using multiple processes
...
...
@@ -210,9 +215,9 @@ def tune():
probs_split
=
probs_split
,
vocabulary
=
vocab_list
,
beam_size
=
args
.
beam_size
,
ext_scoring_func
=
ext_scorer
,
cutoff_prob
=
args
.
cutoff_prob
,
blank_id
=
len
(
vocab_list
),
num_processes
=
1
)
ext_scoring_func
=
ext_scorer
,
)
for
i
,
beam_search_result
in
enumerate
(
beam_search_nproc_results
):
target_transcription
=
''
.
join
(
[
vocab_list
[
index
]
for
index
in
infer_data
[
i
][
1
]])
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录