diff --git a/PaddleCV/image_classification/models/shufflenet_v2.py b/PaddleCV/image_classification/models/shufflenet_v2.py index c0f3d0d6e08454d0d216e758ff5328ee4dee3151..c1467e4546372b4d03050ae0f38afe1e11ae615b 100644 --- a/PaddleCV/image_classification/models/shufflenet_v2.py +++ b/PaddleCV/image_classification/models/shufflenet_v2.py @@ -82,7 +82,6 @@ class ShuffleNetV2(): use_cudnn=True, if_act=True, name=None): -# print(num_groups) conv = fluid.layers.conv2d( input=input, num_filters=num_filters, @@ -95,8 +94,6 @@ class ShuffleNetV2(): param_attr=ParamAttr(initializer=MSRA(),name=name+'_weights'), bias_attr=False) out = int((input.shape[2] - 1)/float(stride) + 1) - # print(input.shape[1],(out, out), num_filters, (filter_size, filter_size), stride, - # (filter_size - 1) / 2, num_groups, name) bn_name = name + '_bn' if if_act: return fluid.layers.batch_norm(input=conv, act='swish', @@ -137,8 +134,6 @@ class ShuffleNetV2(): if benchmodel == 1: x1, x2 = fluid.layers.split( input, num_or_sections=[input.shape[1]//2, input.shape[1]//2], dim=1) -# x1 = input[:, :(input.shape[1]//2), :, :] -# x2 = input[:, (input.shape[1]//2):, :, :] conv_pw = self.conv_bn_layer( input=x2,