提交 069ae2d3 编写于 作者: D Dang Qingqing

Enable CE.

上级 ff63e48f
......@@ -4,8 +4,8 @@
export FLAGS_cudnn_deterministic=True
cudaid=${object_detection_cudaid:=0}
export CUDA_VISIBLE_DEVICES=$cudaid
python train.py --batch_size=64 --num_epochs=10 --enable_ce=True | python _ce.py
python train.py --batch_size=64 --num_epochs=5 --enable_ce=True --lr_strategy=cosine_decay | python _ce.py
cudaid=${object_detection_cudaid_m:=0, 1, 2, 3}
export CUDA_VISIBLE_DEVICES=$cudaid
python train.py --batch_size=64 --num_epochs=10 --enable_ce=True | python _ce.py
python train.py --batch_size=64 --num_epochs=5 --enable_ce=True --lr_strategy=cosine_decay | python _ce.py
......@@ -10,39 +10,39 @@ from kpi import CostKpi, DurationKpi, AccKpi
#### NOTE kpi.py should shared in models in some way!!!!
train_acc_top1_kpi = AccKpi(
'train_acc_top1', 0.05, 0, actived=False, desc='TOP1 ACC')
'train_acc_top1', 0.02, 0, actived=True, desc='TOP1 ACC')
train_acc_top5_kpi = AccKpi(
'train_acc_top5', 0.05, 0, actived=False, desc='TOP5 ACC')
train_cost_kpi = CostKpi('train_cost', 0.5, 0, actived=False, desc='train cost')
'train_acc_top5', 0.02, 0, actived=True, desc='TOP5 ACC')
train_cost_kpi = CostKpi('train_cost', 0.02, 0, actived=True, desc='train cost')
test_acc_top1_kpi = AccKpi(
'test_acc_top1', 0.05, 0, actived=False, desc='TOP1 ACC')
'test_acc_top1', 0.02, 0, actived=True, desc='TOP1 ACC')
test_acc_top5_kpi = AccKpi(
'test_acc_top5', 0.05, 0, actived=False, desc='TOP5 ACC')
test_cost_kpi = CostKpi('test_cost', 0.5, 0, actived=False, desc='train cost')
'test_acc_top5', 0.02, 0, actived=True, desc='TOP5 ACC')
test_cost_kpi = CostKpi('test_cost', 0.02, 0, actived=True, desc='train cost')
train_speed_kpi = AccKpi(
'train_speed',
0.5,
0.05,
0,
actived=False,
actived=True,
unit_repr='seconds/image',
desc='train speed in one GPU card')
train_acc_top1_card4_kpi = AccKpi(
'train_acc_top1_card4', 0.05, 0, actived=False, desc='TOP1 ACC')
'train_acc_top1_card4', 0.02, 0, actived=True, desc='TOP1 ACC')
train_acc_top5_card4_kpi = AccKpi(
'train_acc_top5_card4', 0.05, 0, actived=False, desc='TOP5 ACC')
'train_acc_top5_card4', 0.02, 0, actived=True, desc='TOP5 ACC')
train_cost_card4_kpi = CostKpi(
'train_cost_card4', 0.5, 0, actived=False, desc='train cost')
'train_cost_card4', 0.02, 0, actived=True, desc='train cost')
test_acc_top1_card4_kpi = AccKpi(
'test_acc_top1_card4', 0.05, 0, actived=False, desc='TOP1 ACC')
'test_acc_top1_card4', 0.02, 0, actived=True, desc='TOP1 ACC')
test_acc_top5_card4_kpi = AccKpi(
'test_acc_top5_card4', 0.05, 0, actived=False, desc='TOP5 ACC')
'test_acc_top5_card4', 0.02, 0, actived=True, desc='TOP5 ACC')
test_cost_card4_kpi = CostKpi(
'test_cost_card4', 0.5, 0, actived=False, desc='train cost')
'test_cost_card4', 0.02, 0, actived=True, desc='train cost')
train_speed_card4_kpi = AccKpi(
'train_speed_card4',
0.5,
0.05,
0,
actived=False,
actived=True,
unit_repr='seconds/image',
desc='train speed in four GPU card')
tracking_kpis = [
......
......@@ -14,7 +14,7 @@ train_parameters = {
"input_size": [3, 224, 224],
"input_mean": [0.485, 0.456, 0.406],
"input_std": [0.229, 0.224, 0.225],
"enable_ce": False,
"dropout_seed": None,
"learning_strategy": {
"name": "piecewise_decay",
"batch_size": 256,
......@@ -105,11 +105,8 @@ class SE_ResNeXt():
pool = fluid.layers.pool2d(
input=conv, pool_size=7, pool_type='avg', global_pooling=True)
# enable_ce is used for continuous evaluation to remove the randomness
if self.params["enable_ce"]:
drop = pool
else:
drop = fluid.layers.dropout(x=pool, dropout_prob=0.5)
drop = fluid.layers.dropout(
x=pool, dropout_prob=0.5, seed=self.params['dropout_seed'])
stdv = 1.0 / math.sqrt(drop.shape[1] * 1.0)
out = fluid.layers.fc(input=drop,
size=class_dim,
......
......@@ -108,7 +108,7 @@ def train(args):
if args.enable_ce:
assert model_name == "SE_ResNeXt50_32x4d"
fluid.default_startup_program().random_seed = 1000
model.params["enable_ce"] = True
model.params["dropout_seed"] = 100
class_dim = 102
if model_name == "GoogleNet":
......@@ -269,21 +269,14 @@ def train(args):
print("kpis train_speed %s" % train_speed)
else:
# Use the mean cost/acc for training
print("kpis train_cost_card%s %s" %
(gpu_nums, train_loss))
print("kpis train_acc_top1_card%s %s" %
(gpu_nums, train_acc1))
print("kpis train_acc_top5_card%s %s" %
(gpu_nums, train_acc5))
print("kpis train_cost_card%s %s" % (gpu_nums, train_loss))
print("kpis train_acc_top1_card%s %s" % (gpu_nums, train_acc1))
print("kpis train_acc_top5_card%s %s" % (gpu_nums, train_acc5))
# Use the mean cost/acc for testing
print("kpis test_cost_card%s %s" %
(gpu_nums, test_loss))
print("kpis test_acc_top1_card%s %s" %
(gpu_nums, test_acc1))
print("kpis test_acc_top5_card%s %s" %
(gpu_nums, test_acc5))
print("kpis train_speed_card%s %s" %
(gpu_nums, train_speed))
print("kpis test_cost_card%s %s" % (gpu_nums, test_loss))
print("kpis test_acc_top1_card%s %s" % (gpu_nums, test_acc1))
print("kpis test_acc_top5_card%s %s" % (gpu_nums, test_acc5))
print("kpis train_speed_card%s %s" % (gpu_nums, train_speed))
def main():
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册