@@ -10,11 +10,8 @@ DSSM \[[1](##References)]is a classic semantic model proposed by the Institute o
## Model Architecture
<<<<<<< HEAD
In the original paper \[[1](#References)] the DSSM model uses the implicit semantic relation between the user search query and the document as metric. The model structure is as follows
=======
In the original paper \[[1](#References)]\[[1](#References\] the DSSM model uses the implicit semantic relation between the user search query and the document as metric. The model structure is as follows
>>>>>>> 5b6cd993c4dcd577787a375c0b0be056325cac52
<palign="center">
<imgsrc="./images/dssm.png"/><br/><br/>
...
...
@@ -396,14 +393,14 @@ optional arguments:
numberofbatchestooutputmodel,(default:400)
```
重要的参数描述如下
Parameter description:
-`train_data_path` Training data path
-`test_data_path` Test data path, optional
-`source_dic_path` Source dictionary path
-`target_dic_path` 目Target dictionary path
-`model_type` The type of loss function of the model: classification 0, sort 1, regression 2
-`model_arch` Model structure: FC 0,CNN 1, RNN 2
-`model_arch` Model structure: FC 0,CNN 1, RNN 2
-`dnn_dims` The dimension of each layer of the model is set, the default is `256,128,64,32`,with 4 layers.
@@ -52,6 +52,7 @@ DSSM \[[1](##References)]is a classic semantic model proposed by the Institute o
## Model Architecture
In the original paper \[[1](#References)] the DSSM model uses the implicit semantic relation between the user search query and the document as metric. The model structure is as follows
<palign="center">
...
...
@@ -434,14 +435,14 @@ optional arguments:
number of batches to output model, (default: 400)
```
重要的参数描述如下
Parameter description:
- `train_data_path` Training data path
- `test_data_path` Test data path, optional
- `source_dic_path` Source dictionary path
- `target_dic_path` 目Target dictionary path
- `model_type` The type of loss function of the model: classification 0, sort 1, regression 2
- `model_arch` Model structure: FC 0,CNN 1, RNN 2
- `model_arch` Model structure: FC 0,CNN 1, RNN 2
- `dnn_dims` The dimension of each layer of the model is set, the default is `256,128,64,32`,with 4 layers.