提交 04a00348 编写于 作者: J julie

DSSM English README

上级 32df13a1
......@@ -10,11 +10,8 @@ DSSM \[[1](##References)]is a classic semantic model proposed by the Institute o
## Model Architecture
<<<<<<< HEAD
In the original paper \[[1](#References)] the DSSM model uses the implicit semantic relation between the user search query and the document as metric. The model structure is as follows
=======
In the original paper \[[1](#References)]\[[1](#References\] the DSSM model uses the implicit semantic relation between the user search query and the document as metric. The model structure is as follows
>>>>>>> 5b6cd993c4dcd577787a375c0b0be056325cac52
<p align="center">
<img src="./images/dssm.png"/><br/><br/>
......@@ -396,14 +393,14 @@ optional arguments:
number of batches to output model, (default: 400)
```
重要的参数描述如下
Parameter description:
- `train_data_path` Training data path
- `test_data_path` Test data path, optional
- `source_dic_path` Source dictionary path
- `target_dic_path` 目Target dictionary path
- `model_type` The type of loss function of the model: classification 0, sort 1, regression 2
- `model_arch` Model structure: FC 0, CNN 1, RNN 2
- `model_arch` Model structure: FC 0,CNN 1, RNN 2
- `dnn_dims` The dimension of each layer of the model is set, the default is `256,128,64,32`,with 4 layers.
## To predict using the trained model
......
......@@ -52,6 +52,7 @@ DSSM \[[1](##References)]is a classic semantic model proposed by the Institute o
## Model Architecture
In the original paper \[[1](#References)] the DSSM model uses the implicit semantic relation between the user search query and the document as metric. The model structure is as follows
<p align="center">
......@@ -434,14 +435,14 @@ optional arguments:
number of batches to output model, (default: 400)
```
重要的参数描述如下
Parameter description:
- `train_data_path` Training data path
- `test_data_path` Test data path, optional
- `source_dic_path` Source dictionary path
- `target_dic_path` 目Target dictionary path
- `model_type` The type of loss function of the model: classification 0, sort 1, regression 2
- `model_arch` Model structure: FC 0, CNN 1, RNN 2
- `model_arch` Model structure: FC 0,CNN 1, RNN 2
- `dnn_dims` The dimension of each layer of the model is set, the default is `256,128,64,32`,with 4 layers.
## To predict using the trained model
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册