run_glue.py 16.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import argparse
import logging
import os
import sys
import random
import time
import math
from functools import partial

import numpy as np
import paddle
from paddle.io import DataLoader
from paddle.metric import Metric, Accuracy, Precision, Recall

from paddlenlp.datasets import GlueCoLA, GlueSST2, GlueMRPC, GlueSTSB, GlueQQP, GlueMNLI, GlueQNLI, GlueRTE
from paddlenlp.data import Stack, Tuple, Pad
from paddlenlp.data.sampler import SamplerHelper
from paddlenlp.transformers import BertForSequenceClassification, BertTokenizer
from paddlenlp.transformers import ElectraForSequenceClassification, ElectraTokenizer
34
from paddlenlp.transformers import ErnieForSequenceClassification, ErnieTokenizer
35
from paddlenlp.transformers import LinearDecayWithWarmup
36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55
from paddlenlp.metrics import AccuracyAndF1, Mcc, PearsonAndSpearman

FORMAT = '%(asctime)s-%(levelname)s: %(message)s'
logging.basicConfig(level=logging.INFO, format=FORMAT)
logger = logging.getLogger(__name__)

TASK_CLASSES = {
    "cola": (GlueCoLA, Mcc),
    "sst-2": (GlueSST2, Accuracy),
    "mrpc": (GlueMRPC, AccuracyAndF1),
    "sts-b": (GlueSTSB, PearsonAndSpearman),
    "qqp": (GlueQQP, AccuracyAndF1),
    "mnli": (GlueMNLI, Accuracy),
    "qnli": (GlueQNLI, Accuracy),
    "rte": (GlueRTE, Accuracy),
}

MODEL_CLASSES = {
    "bert": (BertForSequenceClassification, BertTokenizer),
    "electra": (ElectraForSequenceClassification, ElectraTokenizer),
56
    "ernie": (ErnieForSequenceClassification, ErnieTokenizer),
57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
}


def parse_args():
    parser = argparse.ArgumentParser()

    # Required parameters
    parser.add_argument(
        "--task_name",
        default=None,
        type=str,
        required=True,
        help="The name of the task to train selected in the list: " +
        ", ".join(TASK_CLASSES.keys()), )
    parser.add_argument(
        "--model_type",
        default=None,
        type=str,
        required=True,
        help="Model type selected in the list: " +
        ", ".join(MODEL_CLASSES.keys()), )
    parser.add_argument(
        "--model_name_or_path",
        default=None,
        type=str,
        required=True,
        help="Path to pre-trained model or shortcut name selected in the list: "
        + ", ".join(
            sum([
                list(classes[-1].pretrained_init_configuration.keys())
                for classes in MODEL_CLASSES.values()
            ], [])), )
    parser.add_argument(
        "--output_dir",
        default=None,
        type=str,
        required=True,
        help="The output directory where the model predictions and checkpoints will be written.",
    )
    parser.add_argument(
        "--max_seq_length",
        default=128,
        type=int,
        help="The maximum total input sequence length after tokenization. Sequences longer "
        "than this will be truncated, sequences shorter will be padded.", )
    parser.add_argument(
        "--learning_rate",
        default=1e-4,
        type=float,
        help="The initial learning rate for Adam.")
    parser.add_argument(
        "--num_train_epochs",
        default=3,
        type=int,
        help="Total number of training epochs to perform.", )
    parser.add_argument(
        "--logging_steps",
        type=int,
        default=100,
        help="Log every X updates steps.")
    parser.add_argument(
        "--save_steps",
        type=int,
        default=100,
        help="Save checkpoint every X updates steps.")
    parser.add_argument(
        "--batch_size",
        default=32,
        type=int,
        help="Batch size per GPU/CPU for training.", )
    parser.add_argument(
        "--weight_decay",
        default=0.0,
        type=float,
        help="Weight decay if we apply some.")
    parser.add_argument(
        "--warmup_steps",
        default=0,
        type=int,
        help="Linear warmup over warmup_steps. If > 0: Override warmup_proportion"
    )
    parser.add_argument(
        "--warmup_proportion",
        default=0.1,
        type=float,
        help="Linear warmup proportion over total steps.")
    parser.add_argument(
        "--adam_epsilon",
        default=1e-6,
        type=float,
        help="Epsilon for Adam optimizer.")
    parser.add_argument(
        "--max_steps",
        default=-1,
        type=int,
        help="If > 0: set total number of training steps to perform. Override num_train_epochs.",
    )
    parser.add_argument(
        "--seed", default=42, type=int, help="random seed for initialization")
    parser.add_argument(
        "--n_gpu",
        default=1,
        type=int,
        help="number of gpus to use, 0 for cpu.")
    args = parser.parse_args()
    return args


def set_seed(args):
G
Guo Sheng 已提交
166 167 168 169 170 171 172
    # Use the same data seed(for data shuffle) for all procs to guarantee data
    # consistency after sharding.
    random.seed(args.seed)
    np.random.seed(args.seed)
    # Maybe different op seeds(for dropout) for different procs is better. By:
    # `paddle.seed(args.seed + paddle.distributed.get_rank())`
    paddle.seed(args.seed)
173 174 175 176 177 178 179 180 181 182 183


def evaluate(model, loss_fct, metric, data_loader):
    model.eval()
    metric.reset()
    for batch in data_loader:
        input_ids, segment_ids, labels = batch
        logits = model(input_ids, segment_ids)
        loss = loss_fct(logits, labels)
        correct = metric.compute(logits, labels)
        metric.update(correct)
184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204
    res = metric.accumulate()
    if isinstance(metric, AccuracyAndF1):
        print(
            "eval loss: %f, acc: %s, precision: %s, recall: %s, f1: %s, acc and f1: %s, "
            % (
                loss.numpy(),
                res[0],
                res[1],
                res[2],
                res[3],
                res[4], ),
            end='')
    elif isinstance(metric, Mcc):
        print("eval loss: %f, mcc: %s, " % (loss.numpy(), res[0]), end='')
    elif isinstance(metric, PearsonAndSpearman):
        print(
            "eval loss: %f, pearson: %s, spearman: %s, pearson and spearman: %s, "
            % (loss.numpy(), res[0], res[1], res[2]),
            end='')
    else:
        print("eval loss: %f, acc: %s, " % (loss.numpy(), res), end='')
205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349
    model.train()


def convert_example(example,
                    tokenizer,
                    label_list,
                    max_seq_length=512,
                    is_test=False):
    """convert a glue example into necessary features"""

    def _truncate_seqs(seqs, max_seq_length):
        if len(seqs) == 1:  # single sentence
            # Account for [CLS] and [SEP] with "- 2"
            seqs[0] = seqs[0][0:(max_seq_length - 2)]
        else:  # Sentence pair
            # Account for [CLS], [SEP], [SEP] with "- 3"
            tokens_a, tokens_b = seqs
            max_seq_length -= 3
            while True:  # Truncate with longest_first strategy
                total_length = len(tokens_a) + len(tokens_b)
                if total_length <= max_seq_length:
                    break
                if len(tokens_a) > len(tokens_b):
                    tokens_a.pop()
                else:
                    tokens_b.pop()
        return seqs

    def _concat_seqs(seqs, separators, seq_mask=0, separator_mask=1):
        concat = sum((seq + sep for sep, seq in zip(separators, seqs)), [])
        segment_ids = sum(
            ([i] * (len(seq) + len(sep))
             for i, (sep, seq) in enumerate(zip(separators, seqs))), [])
        if isinstance(seq_mask, int):
            seq_mask = [[seq_mask] * len(seq) for seq in seqs]
        if isinstance(separator_mask, int):
            separator_mask = [[separator_mask] * len(sep) for sep in separators]
        p_mask = sum((s_mask + mask
                      for sep, seq, s_mask, mask in zip(
                          separators, seqs, seq_mask, separator_mask)), [])
        return concat, segment_ids, p_mask

    if not is_test:
        # `label_list == None` is for regression task
        label_dtype = "int64" if label_list else "float32"
        # Get the label
        label = example[-1]
        example = example[:-1]
        # Create label maps if classification task
        if label_list:
            label_map = {}
            for (i, l) in enumerate(label_list):
                label_map[l] = i
            label = label_map[label]
        label = np.array([label], dtype=label_dtype)

    # Tokenize raw text
    tokens_raw = [tokenizer(l) for l in example]
    # Truncate to the truncate_length,
    tokens_trun = _truncate_seqs(tokens_raw, max_seq_length)
    # Concate the sequences with special tokens
    tokens_trun[0] = [tokenizer.cls_token] + tokens_trun[0]
    tokens, segment_ids, _ = _concat_seqs(tokens_trun, [[tokenizer.sep_token]] *
                                          len(tokens_trun))
    # Convert the token to ids
    input_ids = tokenizer.convert_tokens_to_ids(tokens)
    valid_length = len(input_ids)
    # The mask has 1 for real tokens and 0 for padding tokens. Only real
    # tokens are attended to.
    # input_mask = [1] * len(input_ids)
    if not is_test:
        return input_ids, segment_ids, valid_length, label
    else:
        return input_ids, segment_ids, valid_length


def do_train(args):
    paddle.set_device("gpu" if args.n_gpu else "cpu")
    if paddle.distributed.get_world_size() > 1:
        paddle.distributed.init_parallel_env()

    set_seed(args)

    args.task_name = args.task_name.lower()
    dataset_class, metric_class = TASK_CLASSES[args.task_name]
    args.model_type = args.model_type.lower()
    model_class, tokenizer_class = MODEL_CLASSES[args.model_type]

    train_dataset = dataset_class.get_datasets(["train"])
    tokenizer = tokenizer_class.from_pretrained(args.model_name_or_path)

    trans_func = partial(
        convert_example,
        tokenizer=tokenizer,
        label_list=train_dataset.get_labels(),
        max_seq_length=args.max_seq_length)
    train_dataset = train_dataset.apply(trans_func, lazy=True)
    train_batch_sampler = paddle.io.DistributedBatchSampler(
        train_dataset, batch_size=args.batch_size, shuffle=True)
    batchify_fn = lambda samples, fn=Tuple(
        Pad(axis=0, pad_val=tokenizer.pad_token_id),  # input
        Pad(axis=0, pad_val=tokenizer.pad_token_id),  # segment
        Stack(),  # length
        Stack(dtype="int64" if train_dataset.get_labels() else "float32")  # label
    ): [data for i, data in enumerate(fn(samples)) if i != 2]
    train_data_loader = DataLoader(
        dataset=train_dataset,
        batch_sampler=train_batch_sampler,
        collate_fn=batchify_fn,
        num_workers=0,
        return_list=True)
    if args.task_name == "mnli":
        dev_dataset_matched, dev_dataset_mismatched = dataset_class.get_datasets(
            ["dev_matched", "dev_mismatched"])
        dev_dataset_matched = dev_dataset_matched.apply(trans_func, lazy=True)
        dev_dataset_mismatched = dev_dataset_mismatched.apply(
            trans_func, lazy=True)
        dev_batch_sampler_matched = paddle.io.BatchSampler(
            dev_dataset_matched, batch_size=args.batch_size, shuffle=False)
        dev_data_loader_matched = DataLoader(
            dataset=dev_dataset_matched,
            batch_sampler=dev_batch_sampler_matched,
            collate_fn=batchify_fn,
            num_workers=0,
            return_list=True)
        dev_batch_sampler_mismatched = paddle.io.BatchSampler(
            dev_dataset_mismatched, batch_size=args.batch_size, shuffle=False)
        dev_data_loader_mismatched = DataLoader(
            dataset=dev_dataset_mismatched,
            batch_sampler=dev_batch_sampler_mismatched,
            collate_fn=batchify_fn,
            num_workers=0,
            return_list=True)
    else:
        dev_dataset = dataset_class.get_datasets(["dev"])
        dev_dataset = dev_dataset.apply(trans_func, lazy=True)
        dev_batch_sampler = paddle.io.BatchSampler(
            dev_dataset, batch_size=args.batch_size, shuffle=False)
        dev_data_loader = DataLoader(
            dataset=dev_dataset,
            batch_sampler=dev_batch_sampler,
            collate_fn=batchify_fn,
            num_workers=0,
            return_list=True)

350
    num_classes = 1 if train_dataset.get_labels() == None else len(
351 352
        train_dataset.get_labels())
    model = model_class.from_pretrained(
353
        args.model_name_or_path, num_classes=num_classes)
354 355 356 357 358
    if paddle.distributed.get_world_size() > 1:
        model = paddle.DataParallel(model)

    num_training_steps = args.max_steps if args.max_steps > 0 else (
        len(train_data_loader) * args.num_train_epochs)
359 360 361 362
    warmup = args.warmup_steps if args.warmup_steps > 0 else args.warmup_proportion

    lr_scheduler = LinearDecayWithWarmup(args.learning_rate, num_training_steps,
                                         warmup)
363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437

    optimizer = paddle.optimizer.AdamW(
        learning_rate=lr_scheduler,
        beta1=0.9,
        beta2=0.999,
        epsilon=args.adam_epsilon,
        parameters=model.parameters(),
        weight_decay=args.weight_decay,
        apply_decay_param_fun=lambda x: x in [
            p.name for n, p in model.named_parameters()
            if not any(nd in n for nd in ["bias", "norm"])
        ])

    loss_fct = paddle.nn.loss.CrossEntropyLoss() if train_dataset.get_labels(
    ) else paddle.nn.loss.MSELoss()

    metric = metric_class()

    global_step = 0
    tic_train = time.time()
    for epoch in range(args.num_train_epochs):
        for step, batch in enumerate(train_data_loader):
            global_step += 1
            input_ids, segment_ids, labels = batch
            logits = model(input_ids, segment_ids)
            loss = loss_fct(logits, labels)
            loss.backward()
            optimizer.step()
            lr_scheduler.step()
            optimizer.clear_gradients()
            if global_step % args.logging_steps == 0:
                print(
                    "global step %d/%d, epoch: %d, batch: %d, rank_id: %s, loss: %f, lr: %.10f, speed: %.4f step/s"
                    % (global_step, num_training_steps, epoch, step,
                       paddle.distributed.get_rank(), loss, optimizer.get_lr(),
                       args.logging_steps / (time.time() - tic_train)))
                tic_train = time.time()
            if global_step % args.save_steps == 0:
                tic_eval = time.time()
                if args.task_name == "mnli":
                    evaluate(model, loss_fct, metric, dev_data_loader_matched)
                    evaluate(model, loss_fct, metric,
                             dev_data_loader_mismatched)
                    print("eval done total : %s s" % (time.time() - tic_eval))
                else:
                    evaluate(model, loss_fct, metric, dev_data_loader)
                    print("eval done total : %s s" % (time.time() - tic_eval))
                if (not args.n_gpu > 1) or paddle.distributed.get_rank() == 0:
                    output_dir = os.path.join(args.output_dir,
                                              "%s_ft_model_%d.pdparams" %
                                              (args.task_name, global_step))
                    if not os.path.exists(output_dir):
                        os.makedirs(output_dir)
                    # Need better way to get inner model of DataParallel
                    model_to_save = model._layers if isinstance(
                        model, paddle.DataParallel) else model
                    model_to_save.save_pretrained(output_dir)
                    tokenizer.save_pretrained(output_dir)


def print_arguments(args):
    """print arguments"""
    print('-----------  Configuration Arguments -----------')
    for arg, value in sorted(vars(args).items()):
        print('%s: %s' % (arg, value))
    print('------------------------------------------------')


if __name__ == "__main__":
    args = parse_args()
    print_arguments(args)
    if args.n_gpu > 1:
        paddle.distributed.spawn(do_train, args=(args, ), nprocs=args.n_gpu)
    else:
        do_train(args)