base_network.py 19.9 KB
Newer Older
L
lvmengsi 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
#copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.

from __future__ import division
import paddle.fluid as fluid
import numpy as np
L
lvmengsi 已提交
18
import math
L
lvmengsi 已提交
19
import os
L
lvmengsi 已提交
20
import warnings
L
lvmengsi 已提交
21 22 23 24 25 26

use_cudnn = True
if 'ce_mode' in os.environ:
    use_cudnn = False


L
lvmengsi 已提交
27 28 29 30 31 32 33 34 35 36
def cal_padding(img_size, stride, filter_size, dilation=1):
    """Calculate padding size."""
    valid_filter_size = dilation * (filter_size - 1) + 1
    if img_size % stride == 0:
        out_size = max(filter_size - stride, 0)
    else:
        out_size = max(filter_size - (img_size % stride), 0)
    return out_size // 2, out_size - out_size // 2


Z
zhumanyu 已提交
37
def norm_layer(input, norm_type='batch_norm', name=None, is_test=False, affine=True):
L
lvmengsi 已提交
38
    if norm_type == 'batch_norm':
Z
zhumanyu 已提交
39 40 41 42 43 44 45 46 47 48
        if affine == True:
            param_attr = fluid.ParamAttr(
                name=name + '_w', initializer=fluid.initializer.Constant(1.0))
            bias_attr = fluid.ParamAttr(
                name=name + '_b', initializer=fluid.initializer.Constant(value=0.0))
        else:
            param_attr = fluid.ParamAttr(
                name=name + '_w', initializer=fluid.initializer.Constant(1.0), trainable=False)
            bias_attr = fluid.ParamAttr(
                name=name + '_b', initializer=fluid.initializer.Constant(value=0.0), trainable=False)
L
lvmengsi 已提交
49 50 51 52
        return fluid.layers.batch_norm(
            input,
            param_attr=param_attr,
            bias_attr=bias_attr,
L
lvmengsi 已提交
53
            is_test=is_test,
L
lvmengsi 已提交
54 55 56 57 58 59 60 61 62 63 64 65 66
            moving_mean_name=name + '_mean',
            moving_variance_name=name + '_var')

    elif norm_type == 'instance_norm':
        helper = fluid.layer_helper.LayerHelper("instance_norm", **locals())
        dtype = helper.input_dtype()
        epsilon = 1e-5
        mean = fluid.layers.reduce_mean(input, dim=[2, 3], keep_dim=True)
        var = fluid.layers.reduce_mean(
            fluid.layers.square(input - mean), dim=[2, 3], keep_dim=True)
        if name is not None:
            scale_name = name + "_scale"
            offset_name = name + "_offset"
Z
zhumanyu 已提交
67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
        if affine:
            scale_param = fluid.ParamAttr(
                name=scale_name,
                initializer=fluid.initializer.Constant(1.0),
                trainable=True)
            offset_param = fluid.ParamAttr(
                name=offset_name,
                initializer=fluid.initializer.Constant(0.0),
                trainable=True)
        else:
            scale_param = fluid.ParamAttr(
                name=scale_name,
                initializer=fluid.initializer.Constant(1.0),
                trainable=False)
            offset_param = fluid.ParamAttr(
                name=offset_name,
                initializer=fluid.initializer.Constant(0.0),
                trainable=False)
L
lvmengsi 已提交
85 86 87 88 89 90 91 92 93 94
        scale = helper.create_parameter(
            attr=scale_param, shape=input.shape[1:2], dtype=dtype)
        offset = helper.create_parameter(
            attr=offset_param, shape=input.shape[1:2], dtype=dtype)

        tmp = fluid.layers.elementwise_mul(x=(input - mean), y=scale, axis=1)
        tmp = tmp / fluid.layers.sqrt(var + epsilon)
        tmp = fluid.layers.elementwise_add(tmp, offset, axis=1)
        return tmp
    else:
L
lvmengsi 已提交
95
        raise NotImplementedError("norm type: [%s] is not support" % norm_type)
L
lvmengsi 已提交
96 97


L
lvmengsi 已提交
98
def initial_type(name,
L
lvmengsi 已提交
99 100 101
                 input,
                 op_type,
                 fan_out,
L
lvmengsi 已提交
102 103 104 105 106
                 init="normal",
                 use_bias=False,
                 filter_size=0,
                 stddev=0.02):
    if init == "kaiming":
L
lvmengsi 已提交
107 108 109 110 111 112 113 114 115
        if op_type == 'conv':
            fan_in = input.shape[1] * filter_size * filter_size
        elif op_type == 'deconv':
            fan_in = fan_out * filter_size * filter_size
        else:
            if len(input.shape) > 2:
                fan_in = input.shape[1] * input.shape[2] * input.shape[3]
            else:
                fan_in = input.shape[1]
L
lvmengsi 已提交
116 117 118
        bound = 1 / math.sqrt(fan_in)
        param_attr = fluid.ParamAttr(
            name=name + "_w",
L
lvmengsi 已提交
119 120
            initializer=fluid.initializer.Uniform(
                low=-bound, high=bound))
L
lvmengsi 已提交
121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140
        if use_bias == True:
            bias_attr = fluid.ParamAttr(
                name=name + '_b',
                initializer=fluid.initializer.Uniform(
                    low=-bound, high=bound))
        else:
            bias_attr = False
    else:
        param_attr = fluid.ParamAttr(
            name=name + "_w",
            initializer=fluid.initializer.NormalInitializer(
                loc=0.0, scale=stddev))
        if use_bias == True:
            bias_attr = fluid.ParamAttr(
                name=name + "_b", initializer=fluid.initializer.Constant(0.0))
        else:
            bias_attr = False
    return param_attr, bias_attr


L
lvmengsi 已提交
141 142 143 144 145 146 147 148 149 150
def conv2d(input,
           num_filters=64,
           filter_size=7,
           stride=1,
           stddev=0.02,
           padding=0,
           name="conv2d",
           norm=None,
           activation_fn=None,
           relufactor=0.0,
L
lvmengsi 已提交
151 152
           use_bias=False,
           padding_type=None,
L
lvmengsi 已提交
153 154
           initial="normal",
           is_test=False):
L
lvmengsi 已提交
155 156 157 158 159 160 161 162

    if padding != 0 and padding_type != None:
        warnings.warn(
            'padding value and padding type are set in the same time, and the final padding width and padding height are computed by padding_type'
        )

    param_attr, bias_attr = initial_type(
        name=name,
L
lvmengsi 已提交
163 164 165
        input=input,
        op_type='conv',
        fan_out=num_filters,
L
lvmengsi 已提交
166 167 168 169 170 171 172 173 174
        init=initial,
        use_bias=use_bias,
        filter_size=filter_size,
        stddev=stddev)

    need_crop = False
    if padding_type == "SAME":
        top_padding, bottom_padding = cal_padding(input.shape[2], stride,
                                                  filter_size)
L
lvmengsi 已提交
175
        left_padding, right_padding = cal_padding(input.shape[3], stride,
L
lvmengsi 已提交
176 177 178 179 180 181 182 183 184 185 186 187
                                                  filter_size)
        height_padding = bottom_padding
        width_padding = right_padding
        if top_padding != bottom_padding or left_padding != right_padding:
            height_padding = top_padding + stride
            width_padding = left_padding + stride
            need_crop = True
        padding = [height_padding, width_padding]
    elif padding_type == "VALID":
        height_padding = 0
        width_padding = 0
        padding = [height_padding, width_padding]
L
lvmengsi 已提交
188
    else:
L
lvmengsi 已提交
189
        padding = padding
L
lvmengsi 已提交
190 191 192 193 194 195 196 197 198 199 200

    conv = fluid.layers.conv2d(
        input,
        num_filters,
        filter_size,
        name=name,
        stride=stride,
        padding=padding,
        use_cudnn=use_cudnn,
        param_attr=param_attr,
        bias_attr=bias_attr)
L
lvmengsi 已提交
201 202 203 204 205
    if need_crop:
        conv = fluid.layers.crop(
            conv,
            shape=(-1, conv.shape[1], conv.shape[2] - 1, conv.shape[3] - 1),
            offsets=(0, 0, 1, 1))
L
lvmengsi 已提交
206
    if norm is not None:
L
lvmengsi 已提交
207 208
        conv = norm_layer(
            input=conv, norm_type=norm, name=name + "_norm", is_test=is_test)
L
lvmengsi 已提交
209 210 211 212 213 214 215
    if activation_fn == 'relu':
        conv = fluid.layers.relu(conv, name=name + '_relu')
    elif activation_fn == 'leaky_relu':
        conv = fluid.layers.leaky_relu(
            conv, alpha=relufactor, name=name + '_leaky_relu')
    elif activation_fn == 'tanh':
        conv = fluid.layers.tanh(conv, name=name + '_tanh')
L
lvmengsi 已提交
216 217
    elif activation_fn == 'sigmoid':
        conv = fluid.layers.sigmoid(conv, name=name + '_sigmoid')
L
lvmengsi 已提交
218 219 220 221 222 223 224 225 226 227 228 229 230 231
    elif activation_fn == None:
        conv = conv
    else:
        raise NotImplementedError("activation: [%s] is not support" %
                                  activation_fn)

    return conv


def deconv2d(input,
             num_filters=64,
             filter_size=7,
             stride=1,
             stddev=0.02,
L
lvmengsi 已提交
232
             padding=0,
L
lvmengsi 已提交
233 234 235 236 237 238
             outpadding=[0, 0, 0, 0],
             name="deconv2d",
             norm=None,
             activation_fn=None,
             relufactor=0.0,
             use_bias=False,
L
lvmengsi 已提交
239 240
             padding_type=None,
             output_size=None,
L
lvmengsi 已提交
241 242
             initial="normal",
             is_test=False):
L
lvmengsi 已提交
243 244 245 246 247 248 249 250

    if padding != 0 and padding_type != None:
        warnings.warn(
            'padding value and padding type are set in the same time, and the final padding width and padding height are computed by padding_type'
        )

    param_attr, bias_attr = initial_type(
        name=name,
L
lvmengsi 已提交
251 252 253
        input=input,
        op_type='deconv',
        fan_out=num_filters,
L
lvmengsi 已提交
254 255 256 257 258 259 260 261 262
        init=initial,
        use_bias=use_bias,
        filter_size=filter_size,
        stddev=stddev)

    need_crop = False
    if padding_type == "SAME":
        top_padding, bottom_padding = cal_padding(input.shape[2], stride,
                                                  filter_size)
L
lvmengsi 已提交
263
        left_padding, right_padding = cal_padding(input.shape[3], stride,
L
lvmengsi 已提交
264 265 266 267 268 269 270 271 272 273 274 275
                                                  filter_size)
        height_padding = bottom_padding
        width_padding = right_padding
        if top_padding != bottom_padding or left_padding != right_padding:
            height_padding = top_padding + stride
            width_padding = left_padding + stride
            need_crop = True
        padding = [height_padding, width_padding]
    elif padding_type == "VALID":
        height_padding = 0
        width_padding = 0
        padding = [height_padding, width_padding]
L
lvmengsi 已提交
276
    else:
L
lvmengsi 已提交
277
        padding = padding
L
lvmengsi 已提交
278 279 280 281 282 283 284 285 286 287 288 289 290

    conv = fluid.layers.conv2d_transpose(
        input,
        num_filters,
        output_size=output_size,
        name=name,
        filter_size=filter_size,
        stride=stride,
        padding=padding,
        use_cudnn=use_cudnn,
        param_attr=param_attr,
        bias_attr=bias_attr)

L
lvmengsi 已提交
291
    if np.mean(outpadding) != 0 and padding_type == None:
L
lvmengsi 已提交
292 293
        conv = fluid.layers.pad2d(
            conv, paddings=outpadding, mode='constant', pad_value=0.0)
L
lvmengsi 已提交
294 295

    if norm is not None:
L
lvmengsi 已提交
296 297
        conv = norm_layer(
            input=conv, norm_type=norm, name=name + "_norm", is_test=is_test)
L
lvmengsi 已提交
298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324
    if activation_fn == 'relu':
        conv = fluid.layers.relu(conv, name=name + '_relu')
    elif activation_fn == 'leaky_relu':
        if relufactor == 0.0:
            raise Warning(
                "the activation is leaky_relu, but the relufactor is 0")
        conv = fluid.layers.leaky_relu(
            conv, alpha=relufactor, name=name + '_leaky_relu')
    elif activation_fn == 'tanh':
        conv = fluid.layers.tanh(conv, name=name + '_tanh')
    elif activation_fn == 'sigmoid':
        conv = fluid.layers.sigmoid(conv, name=name + '_sigmoid')
    elif activation_fn == None:
        conv = conv
    else:
        raise NotImplementedError("activation: [%s] is not support" %
                                  activation_fn)

    return conv


def linear(input,
           output_size,
           norm=None,
           stddev=0.02,
           activation_fn=None,
           relufactor=0.2,
L
lvmengsi 已提交
325
           name="linear",
L
lvmengsi 已提交
326 327
           initial="normal",
           is_test=False):
L
lvmengsi 已提交
328 329 330

    param_attr, bias_attr = initial_type(
        name=name,
L
lvmengsi 已提交
331 332 333
        input=input,
        op_type='linear',
        fan_out=output_size,
L
lvmengsi 已提交
334 335 336 337 338
        init=initial,
        use_bias=True,
        filter_size=1,
        stddev=stddev)

L
lvmengsi 已提交
339 340 341 342 343 344 345
    linear = fluid.layers.fc(input,
                             output_size,
                             param_attr=param_attr,
                             bias_attr=bias_attr,
                             name=name)

    if norm is not None:
L
lvmengsi 已提交
346 347
        linear = norm_layer(
            input=linear, norm_type=norm, name=name + '_norm', is_test=is_test)
L
lvmengsi 已提交
348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393
    if activation_fn == 'relu':
        linear = fluid.layers.relu(linear, name=name + '_relu')
    elif activation_fn == 'leaky_relu':
        if relufactor == 0.0:
            raise Warning(
                "the activation is leaky_relu, but the relufactor is 0")
        linear = fluid.layers.leaky_relu(
            linear, alpha=relufactor, name=name + '_leaky_relu')
    elif activation_fn == 'tanh':
        linear = fluid.layers.tanh(linear, name=name + '_tanh')
    elif activation_fn == 'sigmoid':
        linear = fluid.layers.sigmoid(linear, name=name + '_sigmoid')
    elif activation_fn == None:
        linear = linear
    else:
        raise NotImplementedError("activation: [%s] is not support" %
                                  activation_fn)

    return linear


def conv_cond_concat(x, y):
    ones = fluid.layers.fill_constant_batch_size_like(
        x, [-1, y.shape[1], x.shape[2], x.shape[3]], "float32", 1.0)
    out = fluid.layers.concat([x, ones * y], 1)
    return out


def conv_and_pool(x, num_filters, name, stddev=0.02, act=None):
    param_attr = fluid.ParamAttr(
        name=name + '_w',
        initializer=fluid.initializer.NormalInitializer(
            loc=0.0, scale=stddev))
    bias_attr = fluid.ParamAttr(
        name=name + "_b", initializer=fluid.initializer.Constant(0.0))

    out = fluid.nets.simple_img_conv_pool(
        input=x,
        filter_size=5,
        num_filters=num_filters,
        pool_size=2,
        pool_stride=2,
        param_attr=param_attr,
        bias_attr=bias_attr,
        act=act)
    return out
Z
zhumanyu 已提交
394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539
def conv2d_spectral_norm(input,
                         num_filters=64,
                         filter_size=7,
                         stride=1,
                         stddev=0.02,
                         padding=0,
                         name="conv2d_spectral_norm",
                         norm=None,
                         activation_fn=None,
                         relufactor=0.0,
                         use_bias=False,
                         padding_type=None,
                         initial="normal",
                         is_test=False, norm_affine=True):
    b, c, h, w = input.shape
    height = num_filters
    width = c * filter_size * filter_size
    helper = fluid.layer_helper.LayerHelper("conv2d_spectral_norm", **locals())
    dtype = helper.input_dtype()
    weight_param = fluid.ParamAttr(
        name=name+".weight_orig",
        initializer=fluid.initializer.Constant(1.0),
        trainable=True)
    weight = helper.create_parameter(
        attr=weight_param, shape=(num_filters, c, filter_size, filter_size), dtype=dtype)
    weight_spectral_norm = fluid.layers.spectral_norm(weight, dim=0, name=name+".spectral_norm")
    weight = weight_spectral_norm
    if use_bias:
        bias_attr = fluid.ParamAttr(
            name=name + "_b", initializer=fluid.initializer.Constant(0.0))
    else:
        bias_attr = False
    conv = conv2d_with_filter(input, weight, stride, padding, bias_attr=bias_attr, name=name)
    if norm is not None:
        conv = norm_layer(
            input=conv, norm_type=norm, name=name + "_norm", is_test=is_test, affine=norm_affine)
    if activation_fn == 'relu':
        conv = fluid.layers.relu(conv, name=name + '_relu')
    elif activation_fn == 'leaky_relu':
        conv = fluid.layers.leaky_relu(
            conv, alpha=relufactor, name=name + '_leaky_relu')
    elif activation_fn == 'tanh':
        conv = fluid.layers.tanh(conv, name=name + '_tanh')
    elif activation_fn == 'sigmoid':
        conv = fluid.layers.sigmoid(conv, name=name + '_sigmoid')
    elif activation_fn == None:
        conv = conv
    else:
        raise NotImplementedError("activation: [%s] is not support" %
                                  activation_fn)
    return conv


def conv2d_with_filter(input,
                       filter,
                       stride=1,
                       padding=0,
                       dilation=1,
                       groups=None,
                       bias_attr=None,
                       use_cudnn=True,
                       act=None,
                       name=None):
    """ 
    Similar with conv2d, this is a convolution2D layers. Difference
    is filter can be token as input directly instead of setting filter size
    and number of fliters. Filter is a  4-D tensor with shape 
    [num_filter, num_channel, filter_size_h, filter_size_w].
     Args:
        input (Variable): The input image with [N, C, H, W] format.
        filter(Variable): The input filter with [N, C, H, W] format.
        stride (int|tuple): The stride size. If stride is a tuple, it must
            contain two integers, (stride_H, stride_W). Otherwise, the
            stride_H = stride_W = stride. Default: stride = 1.
        padding (int|tuple): The padding size. If padding is a tuple, it must
            contain two integers, (padding_H, padding_W). Otherwise, the
            padding_H = padding_W = padding. Default: padding = 0.
        dilation (int|tuple): The dilation size. If dilation is a tuple, it must
            contain two integers, (dilation_H, dilation_W). Otherwise, the
            dilation_H = dilation_W = dilation. Default: dilation = 1.
        bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d.
            If it is set to False, no bias will be added to the output units.
            If it is set to None or one attribute of ParamAttr, conv2d
            will create ParamAttr as bias_attr. If the Initializer of the bias_attr
            is not set, the bias is initialized zero. Default: None.
        use_cudnn (bool): Use cudnn kernel or not, it is valid only when the cudnn
            library is installed. Default: True
        act (str): Activation type, if it is set to None, activation is not appended.
            Default: None
        name (str|None): A name for this layer(optional). If set None, the layer
            will be named automatically. Default: None
    Returns:
        Variable: The tensor variable storing the convolution and \
                  non-linearity activation result.
    Raises:
        ValueError: If the shapes of input, filter_size, stride, padding and
                    groups mismatch.
    Examples:
        .. code-block:: python
          data = fluid.layers.data(name='data', shape=[3, 32, 32], \
                                  dtype='float32')
          filter = fluid.layers.data(name='filter',shape=[10,3,3,3], \
                                    dtype='float32',append_batch_size=False)
          conv2d = fluid.layers.conv2d(input=data, 
                                       filter=filter,
                                       act="relu") 
    """
    helper = fluid.layer_helper.LayerHelper("conv2d_with_filter", **locals())
    num_channels = input.shape[1]
    num_filters = filter.shape[0]
    num_filter_channels = filter.shape[1]
    l_type = 'conv2d'
    if (num_channels == groups and num_filters % num_channels == 0 and
            not use_cudnn):
        l_type = 'depthwise_conv2d'
    if groups is None:
        assert num_filter_channels == num_channels
    else:
        if num_channels % groups != 0:
            raise ValueError("num_channels must be divisible by groups.")
        if num_channels // groups != num_filter_channels:
            raise ValueError("num_filter_channels must equal to num_channels\
                              divided by groups.")
    stride = fluid.layers.utils.convert_to_list(stride, 2, 'stride')
    padding = fluid.layers.utils.convert_to_list(padding, 2, 'padding')
    dilation = fluid.layers.utils.convert_to_list(dilation, 2, 'dilation')
    if not isinstance(use_cudnn, bool):
        raise ValueError("use_cudnn should be True or False")
    pre_bias = helper.create_variable_for_type_inference(dtype=input.dtype)
    helper.append_op(
        type=l_type,
        inputs={
            'Input': input,
            'Filter': filter,
        },
        outputs={"Output": pre_bias},
        attrs={
            'strides': stride,
            'paddings': padding,
            'dilations': dilation,
            'groups': groups,
            'use_cudnn': use_cudnn,
            'use_mkldnn': False
        })
    pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2)
    return helper.append_activation(pre_act)