README_cn.md 6.6 KB
Newer Older
J
jerrywgz 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147
# Faster RCNN 目标检测

---
## 内容

- [安装](#安装)
- [简介](#简介)
- [数据准备](#数据准备)
- [模型训练](#模型训练)
- [参数微调](#参数微调)
- [模型评估](#模型评估)
- [模型推断及可视化](#模型推断及可视化)
- [附录](#附录)

## 安装

在当前目录下运行样例代码需要PadddlePaddle Fluid的v.1.0.0或以上的版本。如果你的运行环境中的PaddlePaddle低于此版本,请根据[安装文档](http://www.paddlepaddle.org/documentation/docs/zh/0.15.0/beginners_guide/install/install_doc.html#paddlepaddle)中的说明来更新PaddlePaddle。

## 简介

[Faster Rcnn](https://arxiv.org/abs/1506.01497) 是典型的两阶段目标检测器。如下图所示,整体网络可以分为4个主要内容:
<p align="center">
<img src="image/Faster_RCNN.jpg" height=400 width=400 hspace='10'/> <br />
Faster RCNN 目标检测模型
</p>

1. 基础卷积层。作为一种卷积神经网络目标检测方法,Faster RCNN首先使用一组基础的卷积网络提取图像的特征图。特征图被后续RPN层和全连接层共享。本示例采用[ResNet-50](https://arxiv.org/abs/1512.03385)作为基础卷积层。
2. 区域生成网络(RPN)。RPN网络用于生成候选区域(proposals)。该层通过一组固定的尺寸和比例得到一组锚点(anchors), 通过softmax判断锚点属于前景或者背景,再利用区域回归修正锚点从而获得精确的候选区域。
3. RoI池化。该层收集输入的特征图和候选区域,将候选区域映射到特征图中并池化为统一大小的区域特征图,送入全连接层判定目标类别。
4. 检测层。利用区域特征图计算候选区域的类别,同时再次通过区域回归获得检测框最终的精确位置。

## 数据准备

[MS-COCO数据集](http://cocodataset.org/#download)上进行训练,通过如下方式下载数据集。

    cd dataset/coco
    ./download.sh

## 模型训练

数据准备完毕后,可以通过如下的方式启动训练:

    python train.py \
       --max_size=1333 \
       --scales=800 \
       --batch_size=8 \
       --model_save_dir=output/ \
       --pretrained_model=${path_to_pretrain_model}

- 通过设置export CUDA\_VISIBLE\_DEVICES=0,1,2,3,4,5,6,7指定8卡GPU训练。
- 可选参数见:

    python train.py --help

**下载预训练模型:** 本示例提供Resnet-50预训练模型,该模性转换自Caffe,并对批标准化层(Batch Normalization Layer)进行参数融合。采用如下命令下载预训练模型:

    sh ./pretrained/download.sh

通过初始化`pretrained_model` 加载预训练模型。同时在参数微调时也采用该设置加载已训练模型。

**数据读取器说明:** 数据读取器定义在reader.py中。所有图像将短边等比例缩放至`scales`,若长边大于`max_size`, 则再次将长边等比例缩放至`max_iter`。在训练阶段,对图像采用水平翻转。支持将同一个batch内的图像padding为相同尺寸。

**模型设置:**

* 使用RoIPooling。
* 训练过程pre\_nms=12000, post\_nms=2000,测试过程pre\_nms=6000, post\_nms=1000。nms阈值为0.7。
* RPN网络得到labels的过程中,fg\_fraction=0.25,fg\_thresh=0.5,bg\_thresh_hi=0.5,bg\_thresh\_lo=0.0
* RPN选择anchor时,rpn\_fg\_fraction=0.5,rpn\_positive\_overlap=0.7,rpn\_negative\_overlap=0.3


下图为模型训练结果:
<p align="center">
<img src="image/train_loss.jpg" height=500 width=650 hspace='10'/> <br />
Faster RCNN 训练loss
</p>
* Fluid all padding: 每张图像填充为1333\*1333大小。
* Fluid minibatch padding: 同一个batch内的图像填充为相同尺寸。该方法与detectron处理相同。
* Fluid no padding: 不对图像做填充处理。

**训练策略:**

*  采用momentum优化算法训练Faster RCNN,momentum=0.9。
*  权重衰减系数为0.0001,前500轮学习率从0.00333线性增加至0.01。在120000,160000轮时使用0.1,0.01乘子进行学习率衰减,最大训练180000轮。
*  非基础卷积层卷积bias学习率为整体学习率2倍。
*  基础卷积层中,affine_layers参数不更新,res2层参数不更新。
*  使用Nvidia Tesla V100 8卡并行,总共训练时长大约40小时。

## 模型评估

模型评估是指对训练完毕的模型评估各类性能指标。本示例采用[COCO官方评估](http://cocodataset.org/#detections-eval),使用前需要首先下载[cocoapi](https://github.com/cocodataset/cocoapi)

    # COCOAPI=/path/to/clone/cocoapi
    git clone https://github.com/cocodataset/cocoapi.git $COCOAPI
    cd $COCOAPI/PythonAPI
    # if cython is not installed
    pip install Cython
    # Install into global site-packages
    make install
    # Alternatively, if you do not have permissions or prefer
    # not to install the COCO API into global site-packages
    python2 setup.py install --user

`eval_coco_map.py`是评估模块的主要执行程序,调用示例如下:

    python eval_coco_map.py \
        --dataset=coco2017 \
        --pretrained_mode=${path_to_pretrain_model} \
        --batch_size=1 \
        --nms_threshold=0.5 \
        --score_threshold=0.05

下图为模型评估结果:
<p align="center">
<img src="image/mAP.jpg" height=500 width=650 hspace='10'/> <br />
Faster RCNN mAP
</p>

| 模型                    | 批量大小     | 迭代次数        | mAP  |
| :------------------------------ | :------------:    | :------------------:    |------: |
| Detectron                 | 8            |    180000        | 0.315 |
| Fluid minibatch padding | 8            |    180000        | 0.314 |
| Fluid all padding         | 8            |    180000        | 0.308 |
| Fluid no padding            |6            |    240000        | 0.317 |

* Fluid all padding: 每张图像填充为1333\*1333大小。
* Fluid minibatch padding: 同一个batch内的图像填充为相同尺寸。该方法与detectron处理相同。
* Fluid no padding: 不对图像做填充处理。

## 模型推断及可视化

模型推断可以获取图像中的物体及其对应的类别,`infer.py`是主要执行程序,调用示例如下:

    python infer.py \
       --dataset=coco2017 \
        --pretrained_model=${path_to_pretrain_model}  \
        --image_path=data/COCO17/val2017/  \
        --image_name=000000000139.jpg \
        --draw_threshold=0.6

下图为模型可视化预测结果:
<p align="center">
<img src="image/000000000139.jpg" height=300 width=400 hspace='10'/>
<img src="image/000000127517.jpg" height=300 width=400 hspace='10'/>
<img src="image/000000203864.jpg" height=300 width=400 hspace='10'/>
<img src="image/000000515077.jpg" height=300 width=400 hspace='10'/> <br />
Faster RCNN 预测可视化
</p>