infer.py 11.7 KB
Newer Older
Y
Yibing Liu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
import argparse
import ast
import multiprocessing
import numpy as np
import os
from functools import partial

import paddle
import paddle.fluid as fluid

import model
import reader
from config import *
from model import wrap_encoder as encoder
from model import wrap_decoder as decoder
from model import fast_decode as fast_decoder
from train import pad_batch_data, prepare_data_generator


def parse_args():
    parser = argparse.ArgumentParser("Training for Transformer.")
    parser.add_argument(
        "--src_vocab_fpath",
        type=str,
        required=True,
        help="The path of vocabulary file of source language.")
    parser.add_argument(
        "--trg_vocab_fpath",
        type=str,
        required=True,
        help="The path of vocabulary file of target language.")
    parser.add_argument(
        "--test_file_pattern",
        type=str,
        required=True,
        help="The pattern to match test data files.")
    parser.add_argument(
        "--batch_size",
        type=int,
        default=50,
        help="The number of examples in one run for sequence generation.")
    parser.add_argument(
        "--pool_size",
        type=int,
        default=10000,
        help="The buffer size to pool data.")
    parser.add_argument(
        "--special_token",
49 50
        type=lambda x: x.encode(),
        default=[b"<s>", b"<e>", b"<unk>"],
Y
Yibing Liu 已提交
51 52 53 54
        nargs=3,
        help="The <bos>, <eos> and <unk> tokens in the dictionary.")
    parser.add_argument(
        "--token_delimiter",
55 56
        type=lambda x: x.encode(),
        default=b" ",
Y
Yibing Liu 已提交
57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282
        help="The delimiter used to split tokens in source or target sentences. "
        "For EN-DE BPE data we provided, use spaces as token delimiter. ")
    parser.add_argument(
        "--use_mem_opt",
        type=ast.literal_eval,
        default=True,
        help="The flag indicating whether to use memory optimization.")
    parser.add_argument(
        "--use_py_reader",
        type=ast.literal_eval,
        default=True,
        help="The flag indicating whether to use py_reader.")
    parser.add_argument(
        "--use_parallel_exe",
        type=ast.literal_eval,
        default=False,
        help="The flag indicating whether to use ParallelExecutor.")
    parser.add_argument(
        'opts',
        help='See config.py for all options',
        default=None,
        nargs=argparse.REMAINDER)
    args = parser.parse_args()
    # Append args related to dict
    src_dict = reader.DataReader.load_dict(args.src_vocab_fpath)
    trg_dict = reader.DataReader.load_dict(args.trg_vocab_fpath)
    dict_args = [
        "src_vocab_size", str(len(src_dict)), "trg_vocab_size",
        str(len(trg_dict)), "bos_idx", str(src_dict[args.special_token[0]]),
        "eos_idx", str(src_dict[args.special_token[1]]), "unk_idx",
        str(src_dict[args.special_token[2]])
    ]
    merge_cfg_from_list(args.opts + dict_args,
                        [InferTaskConfig, ModelHyperParams])
    return args


def post_process_seq(seq,
                     bos_idx=ModelHyperParams.bos_idx,
                     eos_idx=ModelHyperParams.eos_idx,
                     output_bos=InferTaskConfig.output_bos,
                     output_eos=InferTaskConfig.output_eos):
    """
    Post-process the beam-search decoded sequence. Truncate from the first
    <eos> and remove the <bos> and <eos> tokens currently.
    """
    eos_pos = len(seq) - 1
    for i, idx in enumerate(seq):
        if idx == eos_idx:
            eos_pos = i
            break
    seq = [
        idx for idx in seq[:eos_pos + 1]
        if (output_bos or idx != bos_idx) and (output_eos or idx != eos_idx)
    ]
    return seq


def prepare_batch_input(insts, data_input_names, src_pad_idx, bos_idx, n_head,
                        d_model, place):
    """
    Put all padded data needed by beam search decoder into a dict.
    """
    src_word, src_pos, src_slf_attn_bias, src_max_len = pad_batch_data(
        [inst[0] for inst in insts], src_pad_idx, n_head, is_target=False)
    # start tokens
    trg_word = np.asarray([[bos_idx]] * len(insts), dtype="int64")
    trg_src_attn_bias = np.tile(src_slf_attn_bias[:, :, ::src_max_len, :],
                                [1, 1, 1, 1]).astype("float32")
    trg_word = trg_word.reshape(-1, 1, 1)
    src_word = src_word.reshape(-1, src_max_len, 1)
    src_pos = src_pos.reshape(-1, src_max_len, 1)

    def to_lodtensor(data, place, lod=None):
        data_tensor = fluid.LoDTensor()
        data_tensor.set(data, place)
        if lod is not None:
            data_tensor.set_lod(lod)
        return data_tensor

    # beamsearch_op must use tensors with lod
    init_score = to_lodtensor(
        np.zeros_like(
            trg_word, dtype="float32").reshape(-1, 1),
        place, [range(trg_word.shape[0] + 1)] * 2)
    trg_word = to_lodtensor(trg_word, place, [range(trg_word.shape[0] + 1)] * 2)
    init_idx = np.asarray(range(len(insts)), dtype="int32")

    data_input_dict = dict(
        zip(data_input_names, [
            src_word, src_pos, src_slf_attn_bias, trg_word, init_score,
            init_idx, trg_src_attn_bias
        ]))
    return data_input_dict


def prepare_feed_dict_list(data_generator, count, place):
    """
    Prepare the list of feed dict for multi-devices.
    """
    feed_dict_list = []
    if data_generator is not None:  # use_py_reader == False
        data_input_names = encoder_data_input_fields + fast_decoder_data_input_fields
        data = next(data_generator)
        for idx, data_buffer in enumerate(data):
            data_input_dict = prepare_batch_input(
                data_buffer, data_input_names, ModelHyperParams.eos_idx,
                ModelHyperParams.bos_idx, ModelHyperParams.n_head,
                ModelHyperParams.d_model, place)
            feed_dict_list.append(data_input_dict)
    return feed_dict_list if len(feed_dict_list) == count else None


def py_reader_provider_wrapper(data_reader, place):
    """
    Data provider needed by fluid.layers.py_reader.
    """

    def py_reader_provider():
        data_input_names = encoder_data_input_fields + fast_decoder_data_input_fields
        for batch_id, data in enumerate(data_reader()):
            data_input_dict = prepare_batch_input(
                data, data_input_names, ModelHyperParams.eos_idx,
                ModelHyperParams.bos_idx, ModelHyperParams.n_head,
                ModelHyperParams.d_model, place)
            yield [data_input_dict[item] for item in data_input_names]

    return py_reader_provider


def fast_infer(args):
    """
    Inference by beam search decoder based solely on Fluid operators.
    """
    out_ids, out_scores, pyreader = fast_decoder(
        ModelHyperParams.src_vocab_size,
        ModelHyperParams.trg_vocab_size,
        ModelHyperParams.max_length + 1,
        ModelHyperParams.n_layer,
        ModelHyperParams.n_head,
        ModelHyperParams.d_key,
        ModelHyperParams.d_value,
        ModelHyperParams.d_model,
        ModelHyperParams.d_inner_hid,
        ModelHyperParams.prepostprocess_dropout,
        ModelHyperParams.attention_dropout,
        ModelHyperParams.relu_dropout,
        ModelHyperParams.preprocess_cmd,
        ModelHyperParams.postprocess_cmd,
        ModelHyperParams.weight_sharing,
        InferTaskConfig.beam_size,
        InferTaskConfig.max_out_len,
        ModelHyperParams.eos_idx,
        use_py_reader=args.use_py_reader)

    # This is used here to set dropout to the test mode.
    infer_program = fluid.default_main_program().clone(for_test=True)

    if args.use_mem_opt:
        fluid.memory_optimize(infer_program)

    if InferTaskConfig.use_gpu:
        place = fluid.CUDAPlace(0)
        dev_count = fluid.core.get_cuda_device_count()
    else:
        place = fluid.CPUPlace()
        dev_count = int(os.environ.get('CPU_NUM', multiprocessing.cpu_count()))
    exe = fluid.Executor(place)
    exe.run(fluid.default_startup_program())

    fluid.io.load_vars(
        exe,
        InferTaskConfig.model_path,
        vars=[
            var for var in infer_program.list_vars()
            if isinstance(var, fluid.framework.Parameter)
        ])

    exec_strategy = fluid.ExecutionStrategy()
    # For faster executor
    exec_strategy.use_experimental_executor = True
    exec_strategy.num_threads = 1
    build_strategy = fluid.BuildStrategy()
    infer_exe = fluid.ParallelExecutor(
        use_cuda=TrainTaskConfig.use_gpu,
        main_program=infer_program,
        build_strategy=build_strategy,
        exec_strategy=exec_strategy)

    # data reader settings for inference
    args.train_file_pattern = args.test_file_pattern
    args.use_token_batch = False
    args.sort_type = reader.SortType.NONE
    args.shuffle = False
    args.shuffle_batch = False
    test_data = prepare_data_generator(
        args,
        is_test=False,
        count=dev_count,
        pyreader=pyreader,
        py_reader_provider_wrapper=py_reader_provider_wrapper,
        place=place)
    if args.use_py_reader:
        pyreader.start()
        data_generator = None
    else:
        data_generator = test_data()
    trg_idx2word = reader.DataReader.load_dict(
        dict_path=args.trg_vocab_fpath, reverse=True)

    while True:
        try:
            feed_dict_list = prepare_feed_dict_list(data_generator, dev_count,
                                                    place)
            if args.use_parallel_exe:
                seq_ids, seq_scores = infer_exe.run(
                    fetch_list=[out_ids.name, out_scores.name],
                    feed=feed_dict_list,
                    return_numpy=False)
            else:
                seq_ids, seq_scores = exe.run(
                    program=infer_program,
                    fetch_list=[out_ids.name, out_scores.name],
                    feed=feed_dict_list[0]
                    if feed_dict_list is not None else None,
                    return_numpy=False,
283
                    use_program_cache=False)
Y
Yibing Liu 已提交
284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324
            seq_ids_list, seq_scores_list = [
                seq_ids
            ], [seq_scores] if isinstance(
                seq_ids, paddle.fluid.LoDTensor) else (seq_ids, seq_scores)
            for seq_ids, seq_scores in zip(seq_ids_list, seq_scores_list):
                # How to parse the results:
                #   Suppose the lod of seq_ids is:
                #     [[0, 3, 6], [0, 12, 24, 40, 54, 67, 82]]
                #   then from lod[0]:
                #     there are 2 source sentences, beam width is 3.
                #   from lod[1]:
                #     the first source sentence has 3 hyps; the lengths are 12, 12, 16
                #     the second source sentence has 3 hyps; the lengths are 14, 13, 15
                hyps = [[] for i in range(len(seq_ids.lod()[0]) - 1)]
                scores = [[] for i in range(len(seq_scores.lod()[0]) - 1)]
                for i in range(len(seq_ids.lod()[0]) -
                               1):  # for each source sentence
                    start = seq_ids.lod()[0][i]
                    end = seq_ids.lod()[0][i + 1]
                    for j in range(end - start):  # for each candidate
                        sub_start = seq_ids.lod()[1][start + j]
                        sub_end = seq_ids.lod()[1][start + j + 1]
                        hyps[i].append(" ".join([
                            trg_idx2word[idx]
                            for idx in post_process_seq(
                                np.array(seq_ids)[sub_start:sub_end])
                        ]))
                        scores[i].append(np.array(seq_scores)[sub_end - 1])
                        print(hyps[i][-1])
                        if len(hyps[i]) >= InferTaskConfig.n_best:
                            break
        except (StopIteration, fluid.core.EOFException):
            # The data pass is over.
            if args.use_py_reader:
                pyreader.reset()
            break


if __name__ == "__main__":
    args = parse_args()
    fast_infer(args)