train.py 7.4 KB
Newer Older
1
import os
2
import numpy as np
Y
ying 已提交
3

4
import paddle.v2 as paddle
L
Luo Tao 已提交
5
import paddle.fluid as fluid
Y
ying 已提交
6

7
from model import transformer, position_encoding_init
8
from optim import LearningRateScheduler
9 10
from config import TrainTaskConfig, ModelHyperParams, pos_enc_param_names, \
        encoder_input_data_names, decoder_input_data_names, label_data_names
11 12


13 14 15 16 17 18 19
def pad_batch_data(insts,
                   pad_idx,
                   n_head,
                   is_target=False,
                   return_pos=True,
                   return_attn_bias=True,
                   return_max_len=True):
20 21
    """
    Pad the instances to the max sequence length in batch, and generate the
22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
    corresponding position data and attention bias.
    """
    return_list = []
    max_len = max(len(inst) for inst in insts)
    inst_data = np.array(
        [inst + [pad_idx] * (max_len - len(inst)) for inst in insts])
    return_list += [inst_data.astype("int64").reshape([-1, 1])]
    if return_pos:
        inst_pos = np.array([[
            pos_i + 1 if w_i != pad_idx else 0 for pos_i, w_i in enumerate(inst)
        ] for inst in inst_data])

        return_list += [inst_pos.astype("int64").reshape([-1, 1])]
    if return_attn_bias:
        if is_target:
            # This is used to avoid attention on paddings and subsequent
            # words.
            slf_attn_bias_data = np.ones((inst_data.shape[0], max_len, max_len))
            slf_attn_bias_data = np.triu(slf_attn_bias_data, 1).reshape(
                [-1, 1, max_len, max_len])
            slf_attn_bias_data = np.tile(slf_attn_bias_data,
                                         [1, n_head, 1, 1]) * [-1e9]
        else:
            # This is used to avoid attention on paddings.
            slf_attn_bias_data = np.array([[0] * len(inst) + [-1e9] *
                                           (max_len - len(inst))
                                           for inst in insts])
            slf_attn_bias_data = np.tile(
                slf_attn_bias_data.reshape([-1, 1, 1, max_len]),
                [1, n_head, max_len, 1])
        return_list += [slf_attn_bias_data.astype("float32")]
    if return_max_len:
        return_list += [max_len]
    return return_list if len(return_list) > 1 else return_list[0]


def prepare_batch_input(insts, input_data_names, src_pad_idx, trg_pad_idx,
59
                        n_head, d_model):
60 61
    """
    Put all padded data needed by training into a dict.
62
    """
63 64 65 66
    src_word, src_pos, src_slf_attn_bias, src_max_len = pad_batch_data(
        [inst[0] for inst in insts], src_pad_idx, n_head, is_target=False)
    trg_word, trg_pos, trg_slf_attn_bias, trg_max_len = pad_batch_data(
        [inst[1] for inst in insts], trg_pad_idx, n_head, is_target=True)
67 68
    trg_src_attn_bias = np.tile(src_slf_attn_bias[:, :, ::src_max_len, :],
                                [1, 1, trg_max_len, 1]).astype("float32")
69 70
    lbl_word = pad_batch_data([inst[2] for inst in insts], trg_pad_idx, n_head,
                              False, False, False, False)
71
    lbl_weight = (lbl_word != trg_pad_idx).astype("float32").reshape([-1, 1])
72 73
    src_data_shape = np.array([len(insts), src_max_len, d_model], dtype="int32")
    trg_data_shape = np.array([len(insts), trg_max_len, d_model], dtype="int32")
74 75
    input_dict = dict(
        zip(input_data_names, [
76 77 78
            src_word, src_pos, src_slf_attn_bias, src_data_shape, trg_word,
            trg_pos, trg_slf_attn_bias, trg_src_attn_bias, trg_data_shape,
            lbl_word, lbl_weight
79
        ]))
80 81 82 83
    return input_dict


def main():
84 85 86
    place = fluid.CUDAPlace(0) if TrainTaskConfig.use_gpu else fluid.CPUPlace()
    exe = fluid.Executor(place)

87
    cost, predict = transformer(
Y
ying 已提交
88 89 90 91 92 93 94
        ModelHyperParams.src_vocab_size + 1,
        ModelHyperParams.trg_vocab_size + 1, ModelHyperParams.max_length + 1,
        ModelHyperParams.n_layer, ModelHyperParams.n_head,
        ModelHyperParams.d_key, ModelHyperParams.d_value,
        ModelHyperParams.d_model, ModelHyperParams.d_inner_hid,
        ModelHyperParams.dropout, ModelHyperParams.src_pad_idx,
        ModelHyperParams.trg_pad_idx, ModelHyperParams.pos_pad_idx)
95

96 97 98
    lr_scheduler = LearningRateScheduler(ModelHyperParams.d_model,
                                         TrainTaskConfig.warmup_steps, place,
                                         TrainTaskConfig.learning_rate)
99
    optimizer = fluid.optimizer.Adam(
100
        learning_rate=lr_scheduler.learning_rate,
Y
ying 已提交
101 102 103
        beta1=TrainTaskConfig.beta1,
        beta2=TrainTaskConfig.beta2,
        epsilon=TrainTaskConfig.eps)
104
    optimizer.minimize(cost)
105 106 107

    train_data = paddle.batch(
        paddle.reader.shuffle(
Y
ying 已提交
108 109
            paddle.dataset.wmt16.train(ModelHyperParams.src_vocab_size,
                                       ModelHyperParams.trg_vocab_size),
G
guosheng 已提交
110
            buf_size=100000),
Y
ying 已提交
111
        batch_size=TrainTaskConfig.batch_size)
112

113 114 115 116 117 118 119 120 121 122 123 124 125 126 127
    # Program to do validation.
    test_program = fluid.default_main_program().clone()
    with fluid.program_guard(test_program):
        test_program = fluid.io.get_inference_program([cost])
    val_data = paddle.batch(
        paddle.dataset.wmt16.validation(ModelHyperParams.src_vocab_size,
                                        ModelHyperParams.trg_vocab_size),
        batch_size=TrainTaskConfig.batch_size)

    def test(exe):
        test_costs = []
        for batch_id, data in enumerate(val_data()):
            data_input = prepare_batch_input(
                data, encoder_input_data_names + decoder_input_data_names[:-1] +
                label_data_names, ModelHyperParams.src_pad_idx,
128 129
                ModelHyperParams.trg_pad_idx, ModelHyperParams.n_head,
                ModelHyperParams.d_model)
130 131 132 133 134 135
            test_cost = exe.run(test_program,
                                feed=data_input,
                                fetch_list=[cost])[0]
            test_costs.append(test_cost)
        return np.mean(test_costs)

136 137 138 139 140 141
    # Initialize the parameters.
    exe.run(fluid.framework.default_startup_program())
    for pos_enc_param_name in pos_enc_param_names:
        pos_enc_param = fluid.global_scope().find_var(
            pos_enc_param_name).get_tensor()
        pos_enc_param.set(
Y
ying 已提交
142 143 144 145 146 147
            position_encoding_init(ModelHyperParams.max_length + 1,
                                   ModelHyperParams.d_model), place)

    for pass_id in xrange(TrainTaskConfig.pass_num):
        for batch_id, data in enumerate(train_data()):
            data_input = prepare_batch_input(
148 149
                data, encoder_input_data_names + decoder_input_data_names[:-1] +
                label_data_names, ModelHyperParams.src_pad_idx,
150 151
                ModelHyperParams.trg_pad_idx, ModelHyperParams.n_head,
                ModelHyperParams.d_model)
152
            lr_scheduler.update_learning_rate(data_input)
153 154
            outs = exe.run(fluid.framework.default_main_program(),
                           feed=data_input,
X
Xin Pan 已提交
155 156
                           fetch_list=[cost],
                           use_program_cache=True)
157
            cost_val = np.array(outs[0])
Y
ying 已提交
158
            print("pass_id = " + str(pass_id) + " batch = " + str(batch_id) +
G
guosheng 已提交
159
                  " cost = " + str(cost_val))
160 161 162 163 164 165 166 167
        # Validate and save the model for inference.
        val_cost = test(exe)
        print("pass_id = " + str(pass_id) + " val_cost = " + str(val_cost))
        fluid.io.save_inference_model(
            os.path.join(TrainTaskConfig.model_dir,
                         "pass_" + str(pass_id) + ".infer.model"),
            encoder_input_data_names + decoder_input_data_names[:-1],
            [predict], exe)
168 169 170 171


if __name__ == "__main__":
    main()