run.sh 20.7 KB
Newer Older
R
ruri 已提交
1
#Hyperparameters config
2
#Example: SE_ResNext50_32x4d
R
ruri 已提交
3 4
python train.py \
       --model=SE_ResNeXt50_32x4d \
5
       --batch_size=400 \
R
ruri 已提交
6 7 8 9
       --total_images=1281167 \
       --class_dim=1000 \
       --image_shape=3,224,224 \
       --model_save_dir=output/ \
R
root 已提交
10
       --with_mem_opt=True \
11 12 13 14
       --lr_strategy=cosine_decay \
       --lr=0.1 \
       --num_epochs=200 \
       --l2_decay=1.2e-4 \
R
ruri 已提交
15
#      >log_SE_ResNeXt50_32x4d.txt 2>&1 &
16

17
#AlexNet:
R
ruri 已提交
18
#python train.py \
19 20 21 22 23 24 25 26 27 28 29
#       --model=AlexNet \
#       --batch_size=256 \
#       --total_images=1281167 \
#       --class_dim=1000 \
#       --image_shape=3,224,224 \
#       --model_save_dir=output/ \
#       --with_mem_opt=True \
#       --lr_strategy=piecewise_decay \
#       --num_epochs=120 \
#       --lr=0.01 \
#       --l2_decay=1e-4
30

C
cuicheng01 已提交
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
#SqueezeNet1_0
#python train.py \
#        --model=SqueezeNet1_0 \
#        --batch_size=256 \
#        --total_images=1281167 \
#        --image_shape=3,224,224 \
#        --lr_strategy=cosine_decay \
#        --class_dim=1000 \
#        --model_save_dir=output/ \
#        --lr=0.02 \
#        --num_epochs=120 \
#        --with_mem_opt=True \
#        --l2_decay=1e-4

#SqueezeNet1_1
#python train.py \
#        --model=SqueezeNet1_1 \
#        --batch_size=256 \
#        --total_images=1281167 \
#        --image_shape=3,224,224 \
#        --lr_strategy=cosine_decay \
#        --class_dim=1000 \
#        --model_save_dir=output/ \
#        --lr=0.02 \
#        --num_epochs=120 \
#        --with_mem_opt=True \
#        --l2_decay=1e-4

59
#VGG11:
R
ruri 已提交
60
#python train.py \
61 62 63 64 65 66 67 68 69 70 71
#        --model=VGG11 \
#        --batch_size=512 \
#        --total_images=1281167 \
#        --image_shape=3,224,224 \
#        --lr_strategy=cosine_decay \
#        --class_dim=1000 \
#        --model_save_dir=output/ \
#        --lr=0.1 \
#        --num_epochs=90 \
#        --with_mem_opt=True \
#        --l2_decay=2e-4
72

73
#VGG13:
R
ruri 已提交
74
#python train.py
75 76 77 78 79 80 81 82 83 84 85
#        --model=VGG13 \          
#        --batch_size=256 \
#        --total_images=1281167 \
#        --class_dim=1000 \
#        --image_shape=3,224,224 \
#        --lr_strategy=cosine_decay \
#        --lr=0.01 \
#        --num_epochs=90 \
#        --model_save_dir=output/ \
#        --with_mem_opt=True \
#        --l2_decay=3e-4
86

87
#VGG16:
R
ruri 已提交
88
#python train.py
89 90 91 92 93 94 95 96 97 98 99
#        --model=VGG16 \
#        --batch_size=256 \
#        --total_images=1281167 \
#        --class_dim=1000 \
#        --lr_strategy=cosine_decay \
#        --image_shape=3,224,224 \
#        --model_save_dir=output/ \
#        --lr=0.01 \
#        --num_epochs=90 \
#        --with_mem_opt=True \
#        --l2_decay=3e-4
100

101
#VGG19:
R
ruri 已提交
102
#python train.py
103 104 105 106 107 108 109 110 111 112 113
#        --model=VGG19 \
#        --batch_size=256 \
#        --total_images=1281167 \
#        --class_dim=1000 \
#        --image_shape=3,224,224 \
#        --lr_strategy=cosine_decay \
#        --lr=0.01 \
#        --num_epochs=90 \
#        --with_mem_opt=True \
#        --model_save_dir=output/ \
#        --l2_decay=3e-4
114

115
#MobileNetV1:
R
ruri 已提交
116
#python train.py \
117
#       --model=MobileNet \
R
ruri 已提交
118 119 120 121 122
#       --batch_size=256 \
#       --total_images=1281167 \
#       --class_dim=1000 \
#       --image_shape=3,224,224 \
#       --model_save_dir=output/ \
R
root 已提交
123
#       --with_mem_opt=True \
R
ruri 已提交
124
#       --lr_strategy=piecewise_decay \
125 126 127
#       --num_epochs=120 \
#       --lr=0.1 \
#       --l2_decay=3e-5
R
ruri 已提交
128

129
#MobileNetV2_x0_25
R
ruri 已提交
130
#python train.py \
131
#       --model=MobileNetV2_x0_25 \
R
ruri 已提交
132 133 134 135 136
#       --batch_size=256 \
#       --total_images=1281167 \
#       --class_dim=1000 \
#       --image_shape=3,224,224 \
#       --model_save_dir=output/ \
R
root 已提交
137
#       --with_mem_opt=True \
138 139
#       --lr_strategy=cosine_decay \
#       --num_epochs=240 \
140
#       --lr=0.1 \
141 142 143
#       --l2_decay=3e-5 \
#       --lower_ratio=1.0 \
#       --upper_ratio=1.0
R
ruri 已提交
144

145
#MobileNetV2_x0_5
R
root 已提交
146
#python train.py \
147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172
#       --model=MobileNetV2_x0_5 \
#       --batch_size=256 \
#       --total_images=1281167 \
#       --class_dim=1000 \
#       --image_shape=3,224,224 \
#       --model_save_dir=output/ \
#       --with_mem_opt=True \
#       --lr_strategy=cosine_decay \
#       --num_epochs=240 \
#       --lr=0.1 \
#       --l2_decay=3e-5 \
#       --lower_ratio=1.0 \
#       --upper_ratio=1.0

#MobileNetV2_x1_0:
#python train.py \
#       --model=MobileNetV2_x1_0 \
#       --batch_size=500 \
#       --total_images=1281167 \
#       --class_dim=1000 \
#       --image_shape=3,224,224 \
#       --model_save_dir=output/ \
#       --with_mem_opt=True \
#       --lr_strategy=cosine_decay \
#       --num_epochs=240 \
#       --lr=0.1 \
173
#       --l2_decay=4e-5
174 175

#MobileNetV2_x1_5
176
#python train.py \
177 178 179 180 181 182 183 184 185 186 187 188 189
#       --model=MobileNetV2_x1_5 \
#       --batch_size=256 \
#       --total_images=1281167 \
#       --class_dim=1000 \
#       --image_shape=3,224,224 \
#       --model_save_dir=output/ \
#       --with_mem_opt=True \
#       --lr_strategy=cosine_decay \
#       --num_epochs=240 \
#       --lr=0.1 \
#       --l2_decay=4e-5 

#MobileNetV2_x2_0
190
#python train.py \
191 192 193 194 195 196 197 198 199 200 201 202 203
#       --model=MobileNetV2_x2_0 \
#       --batch_size=256 \
#       --total_images=1281167 \
#       --class_dim=1000 \
#       --image_shape=3,224,224 \
#       --model_save_dir=output/ \
#       --with_mem_opt=True \
#       --lr_strategy=cosine_decay \
#       --num_epochs=240 \
#       --lr=0.1 \
#       --l2_decay=4e-5 

#ShuffleNetV2_x0_25:
204
#python train.py \
205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299
#       --model=ShuffleNetV2_x0_25 \
#       --batch_size=1024 \
#       --total_images=1281167 \
#       --class_dim=1000 \
#       --image_shape=3,224,224 \
#       --model_save_dir=output/ \
#       --with_mem_opt=True \
#       --lr_strategy=cosine_warmup_decay \
#       --num_epochs=240 \
#       --lr=0.5 \
#       --l2_decay=3e-5 \
#       --lower_scale=0.64 \
#       --lower_ratio=0.8 \
#       --upper_ratio=1.2

#ShuffleNetV2_x0_33:
#python train.py \
#       --model=ShuffleNetV2_x0_33 \
#       --batch_size=1024 \
#       --total_images=1281167 \
#       --class_dim=1000 \
#       --image_shape=3,224,224 \
#       --model_save_dir=output/ \
#       --with_mem_opt=True \
#       --lr_strategy=cosine_warmup_decay \
#       --num_epochs=240 \
#       --lr=0.5 \
#       --l2_decay=3e-5 \
#       --lower_scale=0.64 \
#       --lower_ratio=0.8 \
#       --upper_ratio=1.2

#ShuffleNetV2_x0_5:
#python train.py \
#       --model=ShuffleNetV2_x0_5 \
#       --batch_size=1024 \
#       --total_images=1281167 \
#       --class_dim=1000 \
#       --image_shape=3,224,224 \
#       --model_save_dir=output/ \
#       --with_mem_opt=True \
#       --lr_strategy=cosine_warmup_decay \
#       --num_epochs=240 \
#       --lr=0.5 \
#       --l2_decay=3e-5 \
#       --lower_scale=0.64 \
#       --lower_ratio=0.8 \
#       --upper_ratio=1.2

#ShuffleNetV2_x1_0:
#python train.py \
#       --model=ShuffleNetV2_x1_0 \
#       --batch_size=1024 \
#       --total_images=1281167 \
#       --class_dim=1000 \
#       --image_shape=3,224,224 \
#       --model_save_dir=output/ \
#       --with_mem_opt=True \
#       --lr_strategy=cosine_warmup_decay \
#       --num_epochs=240 \
#       --lr=0.5 \
#       --l2_decay=4e-5 \
#       --lower_scale=0.2

#ShuffleNetV2_x1_5:
#python train.py \
#       --model=ShuffleNetV2_x1_5 \
#       --batch_size=512 \
#       --total_images=1281167 \
#       --class_dim=1000 \
#       --image_shape=3,224,224 \
#       --model_save_dir=output/ \
#       --with_mem_opt=True \
#       --lr_strategy=cosine_warmup_decay \
#       --num_epochs=240 \
#       --lr=0.25 \
#       --l2_decay=4e-5 \
#       --lower_ratio=1.0 \
#       --upper_ratio=1.0

#ShuffleNetV2_x2_0:
#python train.py \
#       --model=ShuffleNetV2_x2_0 \
#       --batch_size=512 \
#       --total_images=1281167 \
#       --class_dim=1000 \
#       --image_shape=3,224,224 \
#       --model_save_dir=output/ \
#       --with_mem_opt=True \
#       --lr_strategy=cosine_warmup_decay \
#       --num_epochs=240 \
#       --lr=0.25 \
#       --l2_decay=4e-5 

#ShuffleNetV2_x1_0_swish:
300
#python train.py \
301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340
#       --model=ShuffleNetV2_x1_0_swish \
#       --batch_size=1024 \
#       --total_images=1281167 \
#       --class_dim=1000 \
#       --image_shape=3,224,224 \
#       --model_save_dir=output/ \
#       --with_mem_opt=True \
#       --lr_strategy=cosine_warmup_decay \
#       --lr=0.5 \
#       --num_epochs=240 \
#       --l2_decay=4e-5 

#ResNet18:
#python train.py \
#       --model=ResNet18 \
#       --batch_size=256 \
#       --total_images=1281167 \
#       --class_dim=1000 \
#       --image_shape=3,224,224 \
#       --model_save_dir=output/ \
#       --with_mem_opt=True \
#       --lr_strategy=cosine_decay \
#       --lr=0.1 \
#       --num_epochs=120 \
#       --l2_decay=1e-4

#ResNet34:
#python train.py \
#       --model=ResNet34 \
#       --batch_size=256 \
#       --total_images=1281167 \
#       --class_dim=1000 \
#       --image_shape=3,224,224 \
#       --model_save_dir=output/ \
#       --with_mem_opt=True \
#       --lr_strategy=cosine_decay \
#       --lr=0.1 \
#       --num_epochs=120 \
#       --l2_decay=1e-4

R
ruri 已提交
341 342 343 344 345 346 347 348
#ResNet50:
#python train.py \
#       --model=ResNet50 \
#       --batch_size=256 \
#       --total_images=1281167 \
#       --class_dim=1000 \
#       --image_shape=3,224,224 \
#       --model_save_dir=output/ \
R
root 已提交
349
#       --with_mem_opt=True \
R
ruri 已提交
350
#       --lr_strategy=piecewise_decay \
351
#       --num_epochs=120 \
352 353
#       --lr=0.1 \
#       --l2_decay=1e-4
R
ruri 已提交
354

355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385
#ResNet50_vc
#python train.py
#       --model=ResNet50_vc \
#       --batch_size=256 \
#       --total_images=1281167 \
#       --image_shape=3,224,224 \
#       --class_dim=1000 \
#       --lr_strategy=cosine_decay \
#       --lr=0.1 \
#       --num_epochs=200 \
#       --with_mem_opt=True \
#       --model_save_dir=output/ \
#       --l2_decay=1e-4 \

#ResNet50_vd
#python train.py
#       --model=ResNet50_vd \
#       --batch_size=256 \
#       --total_images=1281167 \
#       --image_shape=3,224,224 \
#       --class_dim=1000 \
#       --lr_strategy=cosine_decay \
#       --lr=0.1 \
#       --num_epochs=200 \
#       --with_mem_opt=True \
#       --model_save_dir=output/ \
#       --l2_decay=7e-5 \
#       --use_mixup=True \
#       --use_label_smoothing=True \
#       --label_smoothing_epsilon=0.1

R
ruri 已提交
386 387 388 389 390 391 392 393
#ResNet101:
#python train.py \
#       --model=ResNet101 \
#       --batch_size=256 \
#       --total_images=1281167 \
#       --class_dim=1000 \
#       --image_shape=3,224,224 \
#       --model_save_dir=output/ \
394
#       --with_mem_opt=True \
R
ruri 已提交
395
#       --lr_strategy=piecewise_decay \
396
#       --num_epochs=120 \
397 398
#       --lr=0.1 \
#       --l2_decay=1e-4
R
ruri 已提交
399

400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416
#ResNet101_vd
#python train.py
#       --model=ResNet101_vd \
#       --batch_size=256 \
#       --total_images=1281167 \
#       --image_shape=3,224,224 \
#       --class_dim=1000 \
#       --lr_strategy=cosine_decay \
#       --lr=0.1 \
#       --num_epochs=200 \
#       --with_mem_opt=True \
#       --model_save_dir=output/ \
#       --l2_decay=1e-4 \
#       --use_mixup=True \
#       --use_label_smoothing=True \
#       --label_smoothing_epsilon=0.1

S
shippingwang 已提交
417 418 419 420 421
#ResNet152:
#python train.py \
#       --model=ResNet152 \
#       --batch_size=256 \
#       --total_images=1281167 \
422
#       --class_dim=1000 \
S
shippingwang 已提交
423
#       --image_shape=3,224,224 \
424
#       --model_save_dir=output/ \
S
shippingwang 已提交
425
#       --lr_strategy=piecewise_decay \
426
#       --with_mem_opt=True \
S
shippingwang 已提交
427 428
#       --lr=0.1 \
#       --num_epochs=120 \
429
#       --l2_decay=1e-4
S
shippingwang 已提交
430

431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478
#ResNet152_vd
#python train.py
#       --model=ResNet152_vd \
#       --batch_size=256 \
#       --total_images=1281167 \
#       --image_shape=3,224,224 \
#       --class_dim=1000 \
#       --lr_strategy=cosine_decay \
#       --lr=0.1 \
#       --num_epochs=200 \
#       --with_mem_opt=True \
#       --model_save_dir=output/ \
#       --l2_decay=1e-4 \
#       --use_mixup=True \
#       --use_label_smoothing=True \
#       --label_smoothing_epsilon=0.1

#ResNet200_vd
#python train.py
#       --model=ResNet200_vd \
#       --batch_size=256 \
#       --total_images=1281167 \
#       --image_shape=3,224,224 \
#       --class_dim=1000 \
#       --lr_strategy=cosine_decay \
#       --lr=0.1 \
#       --num_epochs=200 \
#       --with_mem_opt=True \
#       --model_save_dir=output/ \
#       --l2_decay=1e-4 \
#       --use_mixup=True \
#       --use_label_smoothing=True \
#       --label_smoothing_epsilon=0.1

#ResNeXt50_32x4d
#python train.py \
#       --model=ResNeXt50_32x4d \
#       --batch_size=256 \
#       --total_images=1281167 \
#       --image_shape=3,224,224 \
#       --class_dim=1000 \
#       --lr_strategy=piecewise_decay \
#       --lr=0.1 \
#       --num_epochs=120 \
#       --with_mem_opt=True \
#       --model_save_dir=output/ \
#       --l2_decay=1e-4

C
cuicheng01 已提交
479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494
#ResNeXt50_vd_32x4d
#python train.py \
#       --model=ResNeXt50_vd_32x4d \
#       --batch_size=256 \
#       --total_images=1281167 \
#       --image_shape=3,224,224 \
#       --class_dim=1000 \
#       --lr_strategy=cosine_decay \
#       --lr=0.1 \
#       --num_epochs=200 \
#       --with_mem_opt=True \
#       --model_save_dir=output/ \
#       --l2_decay=1e-4 \
#       --use_mixup=True \
#       --use_label_smoothing=True \
#       --label_smoothing_epsilon=0.1 \
495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584

#ResNeXt50_64x4d
#python train.py \
#       --model=ResNeXt50_64x4d \
#       --batch_size=256 \
#       --total_images=1281167 \
#       --image_shape=3,224,224 \
#       --class_dim=1000 \
#       --lr_strategy=piecewise_decay \
#       --lr=0.1 \
#       --num_epochs=120 \
#       --with_mem_opt=True \
#       --model_save_dir=output/ \
#       --l2_decay=1e-4

#ResNeXt50_vd_64x4d
#python train.py \
#       --model=ResNeXt50_vd_64x4d \
#       --batch_size=256 \
#       --total_images=1281167 \
#       --image_shape=3,224,224 \
#       --class_dim=1000 \
#       --lr_strategy=cosine_decay \
#       --lr=0.1 \
#       --num_epochs=200 \
#       --with_mem_opt=True \
#       --model_save_dir=output/ \
#       --l2_decay=1e-4 \
#       --use_mixup=True \
#       --use_label_smoothing=True \
#       --label_smoothing_epsilon=0.1 \

#ResNeXt101_32x4d
#python train.py \
#       --model=ResNeXt101_32x4d \
#       --batch_size=256 \
#       --total_images=1281167 \
#       --image_shape=3,224,224 \
#       --class_dim=1000 \
#       --lr_strategy=piecewise_decay \
#       --lr=0.1 \
#       --num_epochs=120 \
#       --with_mem_opt=True \
#       --model_save_dir=output/ \
#       --l2_decay=1e-4

#ResNeXt101_64x4d
#python train.py \
#       --model=ResNeXt101_64x4d \
#       --batch_size=256 \
#       --total_images=1281167 \
#       --image_shape=3,224,224 \
#       --class_dim=1000 \
#       --lr_strategy=piecewise_decay \
#       --lr=0.1 \
#       --num_epochs=120 \
#       --with_mem_opt=True \
#       --model_save_dir=output/ \
#       --l2_decay=15e-5

#ResNeXt101_vd_64x4d
# python train.py \
#       --model=ResNeXt101_vd_64x4d \
#       --batch_size=256 \
#       --total_images=1281167 \
#       --image_shape=3,224,224 \
#       --class_dim=1000 \
#       --lr_strategy=cosine_decay \
#       --lr=0.1 \
#       --num_epochs=200 \
#       --with_mem_opt=True \
#       --model_save_dir=output/ \
#       --l2_decay=1e-4 \
#       --use_mixup=True \
#       --use_label_smoothing=True \
#       --label_smoothing_epsilon=0.1

# ResNeXt152_32x4d
# python train.py \
#       --model=ResNeXt152_32x4d \
#       --batch_size=256 \
#       --total_images=1281167 \
#       --image_shape=3,224,224 \
#       --class_dim=1000 \
#       --lr_strategy=piecewise_decay \
#       --lr=0.1 \
#       --num_epochs=120 \
#       --with_mem_opt=True \
#       --model_save_dir=output/ \
#       --l2_decay=1e-4
S
shippingwang 已提交
585

C
cuicheng01 已提交
586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669
#ResNeXt152_64x4d
#python train.py \
#       --model=ResNeXt152_64x4d \
#       --batch_size=256 \
#       --total_images=1281167 \
#       --image_shape=3,224,224 \
#       --class_dim=1000 \
#       --lr_strategy=piecewise_decay \
#       --lr=0.1 \
#       --num_epochs=120 \
#       --with_mem_opt=True \
#       --model_save_dir=output/ \
#       --l2_decay=18e-5

# DenseNet121
# python train.py \
#       --model=DenseNet121 \
#       --batch_size=256 \
#       --total_images=1281167 \
#       --image_shape=3,224,224 \
#       --class_dim=1000 \
#       --lr_strategy=piecewise_decay \
#       --lr=0.1 \
#       --num_epochs=120 \
#       --with_mem_opt=True \
#       --model_save_dir=output/ \
#       --l2_decay=1e-4

# DenseNet161
# python train.py \
#       --model=DenseNet161 \
#       --batch_size=256 \
#       --total_images=1281167 \
#       --image_shape=3,224,224 \
#       --class_dim=1000 \
#       --lr_strategy=piecewise_decay \
#       --lr=0.1 \
#       --num_epochs=120 \
#       --with_mem_opt=True \
#       --model_save_dir=output/ \
#       --l2_decay=1e-4

# DenseNet169
# python train.py \
#       --model=DenseNet169 \
#       --batch_size=256 \
#       --total_images=1281167 \
#       --image_shape=3,224,224 \
#       --class_dim=1000 \
#       --lr_strategy=piecewise_decay \
#       --lr=0.1 \
#       --num_epochs=120 \
#       --with_mem_opt=True \
#       --model_save_dir=output/ \
#       --l2_decay=1e-4

# DenseNet201
# python train.py \
#       --model=DenseNet201 \
#       --batch_size=256 \
#       --total_images=1281167 \
#       --image_shape=3,224,224 \
#       --class_dim=1000 \
#       --lr_strategy=piecewise_decay \
#       --lr=0.1 \
#       --num_epochs=120 \
#       --with_mem_opt=True \
#       --model_save_dir=output/ \
#       --l2_decay=1e-4

# DenseNet264
# python train.py \
#       --model=DenseNet264 \
#       --batch_size=256 \
#       --total_images=1281167 \
#       --image_shape=3,224,224 \
#       --class_dim=1000 \
#       --lr_strategy=piecewise_decay \
#       --lr=0.1 \
#       --num_epochs=120 \
#       --with_mem_opt=True \
#       --model_save_dir=output/ \
#       --l2_decay=1e-4

670
#SE_ResNeXt50_32x4d:
S
shippingwang 已提交
671
#python train.py \
672
#       --model=SE_ResNeXt50_32x4d \
S
shippingwang 已提交
673 674
#       --batch_size=400 \
#       --total_images=1281167 \
675
#       --class_dim=1000 \
S
shippingwang 已提交
676 677
#       --image_shape=3,224,224 \
#       --lr_strategy=cosine_decay \
678
#       --model_save_dir=output/ \
S
shippingwang 已提交
679 680
#       --lr=0.1 \
#       --num_epochs=200 \
681 682
#       --with_mem_opt=True \
#       --l2_decay=1.2e-4
S
shippingwang 已提交
683

684
#SE_ResNeXt101_32x4d:
S
shippingwang 已提交
685
#python train.py \
686 687 688 689 690 691 692 693 694 695 696
#       --model=SE_ResNeXt101_32x4d \
#       --batch_size=400 \
#       --total_images=1281167 \
#       --class_dim=1000 \
#       --image_shape=3,224,224 \
#       --lr_strategy=cosine_decay \
#       --model_save_dir=output/ \
#       --lr=0.1 \
#       --num_epochs=200 \
#       --with_mem_opt=True \
#       --l2_decay=1.5e-5
S
shippingwang 已提交
697

698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713
# SE_154
# python train.py \
#       --model=SE_154_vd \
#       --batch_size=256 \
#       --total_images=1281167 \
#       --image_shape=3,224,224 \
#       --class_dim=1000 \
#       --lr_strategy=cosine_decay \
#       --lr=0.1 \
#       --num_epochs=200 \
#       --with_mem_opt=True \
#       --model_save_dir=output/ \
#       --l2_decay=1e-4 \
#       --use_mixup=True \
#       --use_label_smoothing=True \
#       --label_smoothing_epsilon=0.1 \
714

715 716 717 718 719
#GoogleNet:
#python train.py \
#       --model=GoogleNet \
#       --batch_size=256 \
#       --total_images=1281167 \
720
#       --class_dim=1000 \
721
#       --image_shape=3,224,224 \
722 723
#       --model_save_dir=output/ \
#       --with_mem_opt=True \
724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742
#       --lr_strategy=cosine_decay \
#       --lr=0.01 \
#       --num_epochs=200 \
#       --l2_decay=1e-4

# Xception_41
# python train.py \
#       --model=Xception_41 \
#       --batch_size=256 \
#       --total_images=1281167 \
#       --image_shape=3,224,224 \
#       --class_dim=1000 \
#       --lr_strategy=cosine_decay \
#       --lr=0.045 \
#       --num_epochs=120 \
#       --with_mem_opt=True \
#       --model_save_dir=output/ \
#       --l2_decay=1e-4 \
#       --resize_short_size=320
743

744 745 746 747 748 749 750 751 752 753
# InceptionV4
# python train.py
#       --model=InceptionV4 \
#       --batch_size=256 \
#       --total_images=1281167 \
#       --image_shape=3,299,299 \
#       --class_dim=1000 \
#       --lr_strategy=cosine_decay \
#       --lr=0.045 \
#       --num_epochs=200 \
754 755
#       --with_mem_opt=True \
#       --model_save_dir=output/ \
756 757 758 759 760
#       --l2_decay=1e-4 \
#       --use_mixup=True \
#       --resize_short_size=320 \
#       --use_label_smoothing=True \
#       --label_smoothing_epsilon=0.1 \
T
tensor-tang 已提交
761

C
cuicheng01 已提交
762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779
#DarkNet53
 python train.py
#       --model=DarkNet53 \
#       --batch_size=256 \
#       --total_images=1281167 \
#       --image_shape=3,256,256 \
#       --class_dim=1000 \
#       --lr_strategy=cosine_decay \
#       --lr=0.1 \
#       --num_epochs=200 \
#       --with_mem_opt=True \
#       --model_save_dir=output/ \
#       --l2_decay=1e-4 \
#       --use_mixup=True \
#       --resize_short_size=256 \
#       --use_label_smoothing=True \
#       --label_smoothing_epsilon=0.1 \

T
tensor-tang 已提交
780 781 782
#ResNet50 nGraph:
# Training:
#OMP_NUM_THREADS=`nproc` FLAGS_use_ngraph=true python train.py \
783 784 785 786 787 788 789 790 791 792 793
#       --model=ResNet50 \
#       --batch_size=128 \
#       --total_images=1281167 \
#       --class_dim=1000 \
#       --image_shape=3,224,224 \
#       --lr=0.001 \
#       --num_epochs=120 \
#       --with_mem_opt=False \
#       --model_save_dir=output/ \
#       --lr_strategy=adam \
#       --use_gpu=False
T
tensor-tang 已提交
794 795
# Inference:
#OMP_NUM_THREADS=`nproc` FLAGS_use_ngraph=true python infer.py  \
796 797 798
#       --use_gpu=false \
#       --model=ResNet50 \
#       --pretrained_model=ResNet50_pretrained