data_reader.py 15.6 KB
Newer Older
1
"""This module contains data processing related logic.
Z
zhxfl 已提交
2
"""
3 4 5 6
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

Z
zhxfl 已提交
7 8
import random
import struct
Y
yangyaming 已提交
9 10 11 12
import Queue
import time
import numpy as np
from threading import Thread
Y
yangyaming 已提交
13
import signal
Y
yangyaming 已提交
14
from multiprocessing import Manager, Process
15 16
import data_utils.augmentor.trans_mean_variance_norm as trans_mean_variance_norm
import data_utils.augmentor.trans_add_delta as trans_add_delta
Y
yangyaming 已提交
17
from data_utils.util import suppress_complaints, suppress_signal
18
from data_utils.util import CriticalException, ForceExitWrapper
19 20 21


class SampleInfo(object):
Y
yangyaming 已提交
22
    """SampleInfo holds the necessary information to load a sample from disk.
23 24 25 26 27 28 29 30 31 32

    Args:
        feature_bin_path (str): File containing the feature data.
        feature_start (int): Start position of the sample's feature data.
        feature_size (int): Byte count of the sample's feature data.
        feature_frame_num (int): Time length of the sample.
        feature_dim (int): Feature dimension of one frame.
        label_bin_path (str): File containing the label data.
        label_size (int): Byte count of the sample's label data. 
        label_frame_num (int): Label number of the sample.
Z
zhxfl 已提交
33 34
    """

35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51
    def __init__(self, feature_bin_path, feature_start, feature_size,
                 feature_frame_num, feature_dim, label_bin_path, label_start,
                 label_size, label_frame_num):
        self.feature_bin_path = feature_bin_path
        self.feature_start = feature_start
        self.feature_size = feature_size
        self.feature_frame_num = feature_frame_num
        self.feature_dim = feature_dim

        self.label_bin_path = label_bin_path
        self.label_start = label_start
        self.label_size = label_size
        self.label_frame_num = label_frame_num


class SampleInfoBucket(object):
    """SampleInfoBucket contains paths of several description files. Feature
Y
yangyaming 已提交
52 53 54 55
    description file contains necessary information (including path of binary 
    data, sample start position, sample byte number etc.) to access samples' 
    feature data and the same with the label description file. SampleInfoBucket 
    is the minimum unit to do shuffle.
56 57 58 59 60 61 62 63 64

    Args:
        feature_bin_paths (list|tuple): Files containing the binary feature 
                                        data.
        feature_desc_paths (list|tuple): Files containing the description of 
                                         samples' feature data. 
        label_bin_paths (list|tuple): Files containing the binary label data.
        label_desc_paths (list|tuple): Files containing the description of
                                       samples' label data.
Z
zhxfl 已提交
65
    """
66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119

    def __init__(self, feature_bin_paths, feature_desc_paths, label_bin_paths,
                 label_desc_paths):
        block_num = len(label_bin_paths)
        assert len(label_desc_paths) == block_num
        assert len(feature_bin_paths) == block_num
        assert len(feature_desc_paths) == block_num
        self._block_num = block_num

        self._feature_bin_paths = feature_bin_paths
        self._feature_desc_paths = feature_desc_paths
        self._label_bin_paths = label_bin_paths
        self._label_desc_paths = label_desc_paths

    def generate_sample_info_list(self):
        sample_info_list = []
        for block_idx in xrange(self._block_num):
            label_bin_path = self._label_bin_paths[block_idx]
            label_desc_path = self._label_desc_paths[block_idx]
            feature_bin_path = self._feature_bin_paths[block_idx]
            feature_desc_path = self._feature_desc_paths[block_idx]

            label_desc_lines = open(label_desc_path).readlines()
            feature_desc_lines = open(feature_desc_path).readlines()

            sample_num = int(label_desc_lines[0].split()[1])
            assert sample_num == int(feature_desc_lines[0].split()[1])

            for i in xrange(sample_num):
                feature_desc_split = feature_desc_lines[i + 1].split()
                feature_start = int(feature_desc_split[2])
                feature_size = int(feature_desc_split[3])
                feature_frame_num = int(feature_desc_split[4])
                feature_dim = int(feature_desc_split[5])

                label_desc_split = label_desc_lines[i + 1].split()
                label_start = int(label_desc_split[2])
                label_size = int(label_desc_split[3])
                label_frame_num = int(label_desc_split[4])

                sample_info_list.append(
                    SampleInfo(feature_bin_path, feature_start, feature_size,
                               feature_frame_num, feature_dim, label_bin_path,
                               label_start, label_size, label_frame_num))

        return sample_info_list


class EpochEndSignal():
    pass


class DataReader(object):
    """DataReader provides basic audio sample preprocessing pipeline including
Y
yangyaming 已提交
120
    data loading and data augmentation.
121 122

    Args:
Y
yangyaming 已提交
123 124 125 126 127 128
        feature_file_list (str): File containing paths of feature data file and
                                 corresponding description file.
        label_file_list (str): File containing paths of label data file and 
                               corresponding description file.
        drop_frame_len (int): Samples whose label length above the value will be
                              dropped.
129 130 131 132 133
        process_num (int): Number of processes for processing data.
        sample_buffer_size (int): Buffer size to indicate the maximum samples 
                                  cached.
        sample_info_buffer_size (int): Buffer size to indicate the maximum 
                                       sample information cached.
Y
yangyaming 已提交
134 135
        batch_buffer_size (int): Buffer size to indicate the maximum batch 
                                 cached.
136 137 138
        shuffle_block_num (int): Block number indicating the minimum unit to do 
                                 shuffle.
        random_seed (int): Random seed.
Y
yangyaming 已提交
139 140 141
        verbose (int): If set to 0, complaints including exceptions and signal 
                       traceback from sub-process will be suppressed. If set 
                       to 1, all complaints will be printed.
Z
zhxfl 已提交
142 143
    """

Z
zhxfl 已提交
144 145 146 147 148 149 150 151 152
    def __init__(self,
                 feature_file_list,
                 label_file_list,
                 drop_frame_len=512,
                 process_num=10,
                 sample_buffer_size=1024,
                 sample_info_buffer_size=1024,
                 batch_buffer_size=1024,
                 shuffle_block_num=1,
153 154
                 random_seed=0,
                 verbose=0):
155 156 157 158 159 160 161 162 163 164 165 166
        self._feature_file_list = feature_file_list
        self._label_file_list = label_file_list
        self._drop_frame_len = drop_frame_len
        self._shuffle_block_num = shuffle_block_num
        self._block_info_list = None
        self._rng = random.Random(random_seed)
        self._bucket_list = None
        self.generate_bucket_list(True)
        self._order_id = 0
        self._manager = Manager()
        self._sample_buffer_size = sample_buffer_size
        self._sample_info_buffer_size = sample_info_buffer_size
Y
yangyaming 已提交
167
        self._batch_buffer_size = batch_buffer_size
168
        self._process_num = process_num
169
        self._verbose = verbose
170
        self._force_exit = ForceExitWrapper(self._manager.Value('b', False))
171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208

    def generate_bucket_list(self, is_shuffle):
        if self._block_info_list is None:
            block_feature_info_lines = open(self._feature_file_list).readlines()
            block_label_info_lines = open(self._label_file_list).readlines()
            assert len(block_feature_info_lines) == len(block_label_info_lines)
            self._block_info_list = []
            for i in xrange(0, len(block_feature_info_lines), 2):
                block_info = (block_feature_info_lines[i],
                              block_feature_info_lines[i + 1],
                              block_label_info_lines[i],
                              block_label_info_lines[i + 1])
                self._block_info_list.append(
                    map(lambda line: line.strip(), block_info))

        if is_shuffle:
            self._rng.shuffle(self._block_info_list)

        self._bucket_list = []
        for i in xrange(0, len(self._block_info_list), self._shuffle_block_num):
            bucket_block_info = self._block_info_list[i:i +
                                                      self._shuffle_block_num]
            self._bucket_list.append(
                SampleInfoBucket(
                    map(lambda info: info[0], bucket_block_info),
                    map(lambda info: info[1], bucket_block_info),
                    map(lambda info: info[2], bucket_block_info),
                    map(lambda info: info[3], bucket_block_info)))

    # @TODO make this configurable
    def set_transformers(self, transformers):
        self._transformers = transformers

    def _sample_generator(self):
        sample_info_queue = self._manager.Queue(self._sample_info_buffer_size)
        sample_queue = self._manager.Queue(self._sample_buffer_size)
        self._order_id = 0

209
        @suppress_complaints(verbose=self._verbose, notify=self._force_exit)
Y
yangyaming 已提交
210
        def ordered_feeding_task(sample_info_queue):
211
            for sample_info_bucket in self._bucket_list:
212 213 214 215 216 217 218 219 220 221
                try:
                    sample_info_list = \
                            sample_info_bucket.generate_sample_info_list()
                except Exception as e:
                    raise CriticalException(e)
                else:
                    self._rng.shuffle(sample_info_list)  # do shuffle here
                    for sample_info in sample_info_list:
                        sample_info_queue.put((sample_info, self._order_id))
                        self._order_id += 1
222 223 224 225 226

            for i in xrange(self._process_num):
                sample_info_queue.put(EpochEndSignal())

        feeding_thread = Thread(
Y
yangyaming 已提交
227
            target=ordered_feeding_task, args=(sample_info_queue, ))
228 229 230
        feeding_thread.daemon = True
        feeding_thread.start()

231
        @suppress_complaints(verbose=self._verbose, notify=self._force_exit)
Y
yangyaming 已提交
232
        def ordered_processing_task(sample_info_queue, sample_queue, out_order):
Y
yangyaming 已提交
233
            if self._verbose == 0:
234 235
                signal.signal(signal.SIGTERM, suppress_signal)
                signal.signal(signal.SIGINT, suppress_signal)
Y
yangyaming 已提交
236

237
            def read_bytes(fpath, start, size):
238 239 240 241 242 243 244 245
                try:
                    f = open(fpath, 'r')
                    f.seek(start, 0)
                    binary_bytes = f.read(size)
                    f.close()
                    return binary_bytes
                except Exception as e:
                    raise CriticalException(e)
246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284

            ins = sample_info_queue.get()

            while not isinstance(ins, EpochEndSignal):
                sample_info, order_id = ins

                feature_bytes = read_bytes(sample_info.feature_bin_path,
                                           sample_info.feature_start,
                                           sample_info.feature_size)

                label_bytes = read_bytes(sample_info.label_bin_path,
                                         sample_info.label_start,
                                         sample_info.label_size)

                assert sample_info.label_frame_num * 4 == len(label_bytes)
                label_array = struct.unpack('I' * sample_info.label_frame_num,
                                            label_bytes)
                label_data = np.array(
                    label_array, dtype='int64').reshape(
                        (sample_info.label_frame_num, 1))

                feature_frame_num = sample_info.feature_frame_num
                feature_dim = sample_info.feature_dim
                assert feature_frame_num * feature_dim * 4 == len(feature_bytes)
                feature_array = struct.unpack('f' * feature_frame_num *
                                              feature_dim, feature_bytes)
                feature_data = np.array(
                    feature_array, dtype='float32').reshape((
                        sample_info.feature_frame_num, sample_info.feature_dim))

                sample_data = (feature_data, label_data)
                for transformer in self._transformers:
                    # @TODO(pkuyym) to make transfomer only accept feature_data
                    sample_data = transformer.perform_trans(sample_data)

                while order_id != out_order[0]:
                    time.sleep(0.001)

                # drop long sentence
Y
yangyaming 已提交
285
                if self._drop_frame_len >= sample_data[0].shape[0]:
286 287 288 289 290 291 292 293 294 295 296
                    sample_queue.put(sample_data)

                out_order[0] += 1
                ins = sample_info_queue.get()

            sample_queue.put(EpochEndSignal())

        out_order = self._manager.list([0])
        args = (sample_info_queue, sample_queue, out_order)
        workers = [
            Process(
Y
yangyaming 已提交
297
                target=ordered_processing_task, args=args)
298 299 300 301 302 303 304 305 306
            for _ in xrange(self._process_num)
        ]

        for w in workers:
            w.daemon = True
            w.start()

        finished_process_num = 0

307 308 309 310 311 312 313 314 315 316 317 318
        while self._force_exit == False:
            try:
                sample = sample_queue.get_nowait()
            except Queue.Empty:
                time.sleep(0.001)
            else:
                if isinstance(sample, EpochEndSignal):
                    finished_process_num += 1
                    if finished_process_num >= self._process_num:
                        break
                    else:
                        continue
319

320
                yield sample
321 322

    def batch_iterator(self, batch_size, minimum_batch_size):
Y
yangyaming 已提交
323
        def batch_to_ndarray(batch_samples, lod):
Z
zhxfl 已提交
324 325 326
            assert len(batch_samples)
            frame_dim = batch_samples[0][0].shape[1]
            batch_feature = np.zeros((lod[-1], frame_dim), dtype="float32")
Y
yangyaming 已提交
327 328 329 330 331 332 333 334 335
            batch_label = np.zeros((lod[-1], 1), dtype="int64")
            start = 0
            for sample in batch_samples:
                frame_num = sample[0].shape[0]
                batch_feature[start:start + frame_num, :] = sample[0]
                batch_label[start:start + frame_num, :] = sample[1]
                start += frame_num
            return (batch_feature, batch_label)

336
        @suppress_complaints(verbose=self._verbose, notify=self._force_exit)
Y
yangyaming 已提交
337 338 339 340 341 342 343
        def batch_assembling_task(sample_generator, batch_queue):
            batch_samples = []
            lod = [0]
            for sample in sample_generator():
                batch_samples.append(sample)
                lod.append(lod[-1] + sample[0].shape[0])
                if len(batch_samples) == batch_size:
Y
yangyaming 已提交
344 345
                    (batch_feature, batch_label) = batch_to_ndarray(
                        batch_samples, lod)
Y
yangyaming 已提交
346 347 348 349 350
                    batch_queue.put((batch_feature, batch_label, lod))
                    batch_samples = []
                    lod = [0]

            if len(batch_samples) >= minimum_batch_size:
Y
yangyaming 已提交
351 352
                (batch_feature, batch_label) = batch_to_ndarray(batch_samples,
                                                                lod)
Y
yangyaming 已提交
353 354 355 356 357 358 359 360 361 362 363 364
                batch_queue.put((batch_feature, batch_label, lod))

            batch_queue.put(EpochEndSignal())

        batch_queue = Queue.Queue(self._batch_buffer_size)

        assembling_thread = Thread(
            target=batch_assembling_task,
            args=(self._sample_generator, batch_queue))
        assembling_thread.daemon = True
        assembling_thread.start()

365
        while self._force_exit == False:
366 367 368 369 370 371 372 373
            try:
                batch_data = batch_queue.get_nowait()
            except Queue.Empty:
                time.sleep(0.001)
            else:
                if isinstance(batch_data, EpochEndSignal):
                    break
                yield batch_data