infer_by_ckpt.py 5.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import sys
import os
import numpy as np
import argparse
import time

import paddle.fluid as fluid
import data_utils.augmentor.trans_mean_variance_norm as trans_mean_variance_norm
import data_utils.augmentor.trans_add_delta as trans_add_delta
import data_utils.augmentor.trans_splice as trans_splice
Y
Yibing Liu 已提交
15
import data_utils.async_data_reader as reader
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
from data_utils.util import lodtensor_to_ndarray
from model_utils.model import stacked_lstmp_model


def parse_args():
    parser = argparse.ArgumentParser("Run inference by using checkpoint.")
    parser.add_argument(
        '--batch_size',
        type=int,
        default=32,
        help='The sequence number of a batch data. (default: %(default)d)')
    parser.add_argument(
        '--minimum_batch_size',
        type=int,
        default=1,
        help='The minimum sequence number of a batch data. '
        '(default: %(default)d)')
    parser.add_argument(
        '--stacked_num',
        type=int,
        default=5,
        help='Number of lstmp layers to stack. (default: %(default)d)')
    parser.add_argument(
        '--proj_dim',
        type=int,
        default=512,
        help='Project size of lstmp unit. (default: %(default)d)')
    parser.add_argument(
        '--hidden_dim',
        type=int,
        default=1024,
        help='Hidden size of lstmp unit. (default: %(default)d)')
    parser.add_argument(
        '--learning_rate',
        type=float,
        default=0.00016,
        help='Learning rate used to train. (default: %(default)f)')
    parser.add_argument(
        '--device',
        type=str,
        default='GPU',
        choices=['CPU', 'GPU'],
        help='The device type. (default: %(default)s)')
    parser.add_argument(
        '--parallel', action='store_true', help='If set, run in parallel.')
    parser.add_argument(
        '--mean_var',
        type=str,
        default='data/global_mean_var_search26kHr',
        help="The path for feature's global mean and variance. "
        "(default: %(default)s)")
    parser.add_argument(
        '--infer_feature_lst',
        type=str,
        default='data/infer_feature.lst',
        help='The feature list path for inference. (default: %(default)s)')
    parser.add_argument(
        '--infer_label_lst',
        type=str,
        default='data/infer_label.lst',
        help='The label list path for inference. (default: %(default)s)')
    parser.add_argument(
        '--checkpoint',
        type=str,
        default='./checkpoint',
Y
Yibing Liu 已提交
81
        help="The checkpoint path to init model. (default: %(default)s)")
82 83 84 85 86 87 88 89 90 91 92 93
    args = parser.parse_args()
    return args


def print_arguments(args):
    print('-----------  Configuration Arguments -----------')
    for arg, value in sorted(vars(args).iteritems()):
        print('%s: %s' % (arg, value))
    print('------------------------------------------------')


def infer_from_ckpt(args):
Y
Yibing Liu 已提交
94
    """Inference by using checkpoint."""
95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127

    if not os.path.exists(args.checkpoint):
        raise IOError("Invalid checkpoint!")

    prediction, avg_cost, accuracy = stacked_lstmp_model(
        hidden_dim=args.hidden_dim,
        proj_dim=args.proj_dim,
        stacked_num=args.stacked_num,
        class_num=1749,
        parallel=args.parallel)

    infer_program = fluid.default_main_program().clone()

    optimizer = fluid.optimizer.Adam(learning_rate=args.learning_rate)
    optimizer.minimize(avg_cost)

    place = fluid.CPUPlace() if args.device == 'CPU' else fluid.CUDAPlace(0)
    exe = fluid.Executor(place)
    exe.run(fluid.default_startup_program())

    # load checkpoint.
    fluid.io.load_persistables(exe, args.checkpoint)

    ltrans = [
        trans_add_delta.TransAddDelta(2, 2),
        trans_mean_variance_norm.TransMeanVarianceNorm(args.mean_var),
        trans_splice.TransSplice()
    ]

    feature_t = fluid.LoDTensor()
    label_t = fluid.LoDTensor()

    # infer data reader
Y
Yibing Liu 已提交
128 129
    infer_data_reader = reader.AsyncDataReader(args.infer_feature_lst,
                                               args.infer_label_lst)
130 131 132 133 134 135 136
    infer_data_reader.set_transformers(ltrans)
    infer_costs, infer_accs = [], []
    for batch_id, batch_data in enumerate(
            infer_data_reader.batch_iterator(args.batch_size,
                                             args.minimum_batch_size)):
        # load_data
        (features, labels, lod) = batch_data
Y
Yibing Liu 已提交
137 138 139 140 141 142
        feature_t.set(features.ndarray, place)
        feature_t.set_lod([lod.ndarray])
        label_t.set(labels.ndarray, place)
        label_t.set_lod([lod.ndarray])

        infer_data_reader.recycle(features, labels, lod)
143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158

        cost, acc = exe.run(infer_program,
                            feed={"feature": feature_t,
                                  "label": label_t},
                            fetch_list=[avg_cost, accuracy],
                            return_numpy=False)
        infer_costs.append(lodtensor_to_ndarray(cost)[0])
        infer_accs.append(lodtensor_to_ndarray(acc)[0])
    print(np.mean(infer_costs), np.mean(infer_accs))


if __name__ == '__main__':
    args = parse_args()
    print_arguments(args)

    infer_from_ckpt(args)