modeling.py 31.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913
import re
import numpy as np
import paddle.fluid as fluid
import collections


def log_softmax(logits, axis=-1):
    logsoftmax = logits - fluid.layers.log(
        fluid.layers.reduce_sum(fluid.layers.exp(logits), axis))
    return logsoftmax


def einsum4x4(equation, x, y):
    idx_x, idx_y, idx_z = re.split(",|->", equation)
    repeated_idx = list(set(idx_x + idx_y) - set(idx_z))

    unique_idx_x = list(set(idx_x) - set(idx_y))
    unique_idx_y = list(set(idx_y) - set(idx_x))
    common_idx = list(set(idx_x) & set(idx_y) - set(repeated_idx))

    new_idx_x = common_idx + unique_idx_x + repeated_idx
    new_idx_y = common_idx + unique_idx_y + repeated_idx
    new_idx_z = common_idx + unique_idx_x + unique_idx_y

    perm_x = [idx_x.index(i) for i in new_idx_x]
    perm_y = [idx_y.index(i) for i in new_idx_y]
    perm_z = [new_idx_z.index(i) for i in idx_z]

    x = fluid.layers.transpose(x, perm=perm_x)
    y = fluid.layers.transpose(y, perm=perm_y)
    z = fluid.layers.matmul(x=x, y=y, transpose_y=True)
    z = fluid.layers.transpose(z, perm=perm_z)
    return z


def positional_embedding(pos_seq, inv_freq, bsz=None):
    pos_seq = fluid.layers.reshape(pos_seq, [-1, 1])
    inv_freq = fluid.layers.reshape(inv_freq, [1, -1])
    sinusoid_inp = fluid.layers.matmul(pos_seq, inv_freq)
    pos_emb = fluid.layers.concat(
        input=[fluid.layers.sin(sinusoid_inp), fluid.layers.cos(sinusoid_inp)],
        axis=-1)
    pos_emb = fluid.layers.unsqueeze(pos_emb, [1])
    if bsz is not None:
        pos_emb = fluid.layers.expand(pos_emb, [1, bsz, 1])

    return pos_emb


def positionwise_ffn(inp,
                     d_model,
                     d_inner,
                     dropout_prob,
                     param_initializer=None,
                     act_type='relu',
                     name='ff'):
    """Position-wise Feed-forward Network."""
    if act_type not in ['relu', 'gelu']:
        raise ValueError('Unsupported activation type {}'.format(act_type))

    output = fluid.layers.fc(input=inp,
                             size=d_inner,
                             act=act_type,
                             num_flatten_dims=2,
                             param_attr=fluid.ParamAttr(
                                 name=name + '_layer_1_weight',
                                 initializer=param_initializer),
                             bias_attr=name + '_layer_1_bias')
    output = fluid.layers.dropout(
        output,
        dropout_prob=dropout_prob,
        dropout_implementation="upscale_in_train",
        is_test=False)
    output = fluid.layers.fc(output,
                             size=d_model,
                             num_flatten_dims=2,
                             param_attr=fluid.ParamAttr(
                                 name=name + '_layer_2_weight',
                                 initializer=param_initializer),
                             bias_attr=name + '_layer_2_bias')
    output = fluid.layers.dropout(
        output,
        dropout_prob=dropout_prob,
        dropout_implementation="upscale_in_train",
        is_test=False)
    output = fluid.layers.layer_norm(
        output + inp,
        begin_norm_axis=len(output.shape) - 1,
        epsilon=1e-12,
        param_attr=fluid.ParamAttr(
            name=name + '_layer_norm_scale',
            initializer=fluid.initializer.Constant(1.)),
        bias_attr=fluid.ParamAttr(
            name + '_layer_norm_bias',
            initializer=fluid.initializer.Constant(0.)))
    return output


def head_projection(h, d_model, n_head, d_head, param_initializer, name=''):
    """Project hidden states to a specific head with a 4D-shape."""
    proj_weight = fluid.layers.create_parameter(
        shape=[d_model, n_head, d_head],
        dtype=h.dtype,
        attr=fluid.ParamAttr(
            name=name + '_weight', initializer=param_initializer),
        is_bias=False)
    # ibh,hnd->ibnd 
    head = fluid.layers.mul(x=h,
                            y=proj_weight,
                            x_num_col_dims=2,
                            y_num_col_dims=1)
    return head


def post_attention(h,
                   attn_vec,
                   d_model,
                   n_head,
                   d_head,
                   dropout,
                   param_initializer,
                   residual=True,
                   name=''):
    """Post-attention processing."""
    # post-attention projection (back to `d_model`)
    proj_o = fluid.layers.create_parameter(
        shape=[d_model, n_head, d_head],
        dtype=h.dtype,
        attr=fluid.ParamAttr(
            name=name + '_o_weight', initializer=param_initializer),
        is_bias=False)
    # ibnd,hnd->ibh
    proj_o = fluid.layers.transpose(proj_o, perm=[1, 2, 0])
    attn_out = fluid.layers.mul(x=attn_vec,
                                y=proj_o,
                                x_num_col_dims=2,
                                y_num_col_dims=2)

    attn_out = fluid.layers.dropout(
        attn_out,
        dropout_prob=dropout,
        dropout_implementation="upscale_in_train",
        is_test=False)

    if residual:
        output = fluid.layers.layer_norm(
            attn_out + h,
            begin_norm_axis=len(attn_out.shape) - 1,
            epsilon=1e-12,
            param_attr=fluid.ParamAttr(
                name=name + '_layer_norm_scale',
                initializer=fluid.initializer.Constant(1.)),
            bias_attr=fluid.ParamAttr(
                name + '_layer_norm_bias',
                initializer=fluid.initializer.Constant(0.)))
    else:
        output = fluid.layers.layer_norm(
            attn_out,
            begin_norm_axis=len(attn_out.shape) - 1,
            epsilon=1e-12,
            param_attr=fluid.ParamAttr(
                name=name + '_layer_norm_scale',
                initializer=fluid.initializer.Constant(1.)),
            bias_attr=fluid.ParamAttr(
                name + '_layer_norm_bias',
                initializer=fluid.initializer.Constant(0.)))

    return output


def abs_attn_core(q_head, k_head, v_head, attn_mask, dropatt, scale):
    """Core absolute positional attention operations."""

    attn_score = einsum4x4('ibnd,jbnd->ijbn', q_head, k_head)

    attn_score *= scale
    if attn_mask is not None:
        attn_score = attn_score - 1e30 * attn_mask

    # attention probability
    attn_prob = fluid.layers.softmax(attn_score, axis=1)
    attn_prob = fluid.layers.dropout(
        attn_prob,
        dropout_prob=dropatt,
        dropout_implementation="upscale_in_train",
        is_test=False)

    # attention output
    attn_vec = einsum4x4('ijbn,jbnd->ibnd', attn_prob, v_head)

    return attn_vec


def rel_attn_core(q_head, k_head_h, v_head_h, k_head_r, seg_embed, seg_mat,
                  r_w_bias, r_r_bias, r_s_bias, attn_mask, dropatt, scale,
                  name):
    """Core relative positional attention operations."""
    ## content based attention score
    ac = einsum4x4('ibnd,jbnd->ijbn',
                   fluid.layers.elementwise_add(q_head, r_w_bias, 2), k_head_h)

    # position based attention score
    bd = einsum4x4('ibnd,jbnd->ijbn',
                   fluid.layers.elementwise_add(q_head, r_r_bias, 2), k_head_r)

    bd = rel_shift(bd, klen=ac.shape[1])

    # segment based attention score
    if seg_mat is None:
        ef = 0
    else:
        seg_embed = fluid.layers.stack([seg_embed] * q_head.shape[0], axis=0)

        ef = einsum4x4('ibnd,isnd->ibns',
                       fluid.layers.elementwise_add(q_head, r_s_bias, 2),
                       seg_embed)
        ef = einsum4x4('ijbs,ibns->ijbn', seg_mat, ef)

    attn_score = (ac + bd + ef) * scale

    if attn_mask is not None:
        # attn_score = attn_score * (1 - attn_mask) - 1e30 * attn_mask
        attn_score = attn_score - 1e30 * attn_mask

    # attention probability
    attn_prob = fluid.layers.softmax(attn_score, axis=1)
    attn_prob = fluid.layers.dropout(
        attn_prob, dropatt, dropout_implementation="upscale_in_train")

    # attention output
    attn_vec = einsum4x4('ijbn,jbnd->ibnd', attn_prob, v_head_h)
    return attn_vec


def rel_shift(x, klen=-1):
    """perform relative shift to form the relative attention score."""
    x_size = x.shape
    x = fluid.layers.reshape(x, [x_size[1], x_size[0], x_size[2], x_size[3]])
    x = fluid.layers.slice(x, axes=[0], starts=[1], ends=[x_size[1]])
    x = fluid.layers.reshape(x,
                             [x_size[0], x_size[1] - 1, x_size[2], x_size[3]])
    x = fluid.layers.slice(x, axes=[1], starts=[0], ends=[klen])

    return x


def _cache_mem(curr_out, prev_mem, mem_len, reuse_len=None):
    """cache hidden states into memory."""
    if mem_len is None or mem_len == 0:
        return None
    else:
        if reuse_len is not None and reuse_len > 0:
            curr_out = curr_out[:reuse_len]

        if prev_mem is None:
            new_mem = curr_out[-mem_len:]
        else:
            new_mem = tf.concat([prev_mem, curr_out], 0)[-mem_len:]

    new_mem.stop_gradient = True
    return new_mem


def relative_positional_encoding(qlen,
                                 klen,
                                 d_model,
                                 clamp_len,
                                 attn_type,
                                 bi_data,
                                 bsz=None,
                                 dtype=None):
    """create relative positional encoding."""
    freq_seq = fluid.layers.range(0, d_model, 2.0, 'float32')
    if dtype is not None and dtype != 'float32':
        freq_seq = tf.cast(freq_seq, dtype=dtype)
    inv_freq = 1 / (10000**(freq_seq / d_model))

    if attn_type == 'bi':
        beg, end = klen, -qlen
    elif attn_type == 'uni':
        beg, end = klen, -1
    else:
        raise ValueError('Unknown `attn_type` {}.'.format(attn_type))

    if bi_data:
        fwd_pos_seq = fluid.layers.range(beg, end, -1.0, 'float32')
        bwd_pos_seq = fluid.layers.range(-beg, -end, 1.0, 'float32')

        if dtype is not None and dtype != 'float32':
            fwd_pos_seq = fluid.layers.cast(fwd_pos_seq, dtype='float32')
            bwd_pos_seq = fluid.layers.cast(bwd_pos_seq, dtype='float32')

        if clamp_len > 0:
            fwd_pos_seq = fluid.layers.clip(fwd_pos_seq, -clamp_len, clamp_len)
            bwd_pos_seq = fluid.layers.clip(bwd_pos_seq, -clamp_len, clamp_len)

        if bsz is not None:
            # With bi_data, the batch size should be divisible by 2.
            assert bsz % 2 == 0
            fwd_pos_emb = positional_embedding(fwd_pos_seq, inv_freq, bsz // 2)
            bwd_pos_emb = positional_embedding(bwd_pos_seq, inv_freq, bsz // 2)
        else:
            fwd_pos_emb = positional_embedding(fwd_pos_seq, inv_freq)
            bwd_pos_emb = positional_embedding(bwd_pos_seq, inv_freq)

        pos_emb = fluid.layers.concat([fwd_pos_emb, bwd_pos_emb], axis=1)
    else:
        fwd_pos_seq = fluid.layers.range(beg, end, -1.0, 'float32')
        if dtype is not None and dtype != 'float32':
            fwd_pos_seq = fluid.layers.cast(fwd_pos_seq, dtype=dtype)
        if clamp_len > 0:
            fwd_pos_seq = fluid.layers.clip(fwd_pos_seq, -clamp_len, clamp_len)
        pos_emb = positional_embedding(fwd_pos_seq, inv_freq, bsz)
        fluid.layers.reshape(pos_emb, [2 * qlen, -1, d_model], inplace=True)
    return pos_emb


def multihead_attn(q,
                   k,
                   v,
                   attn_mask,
                   d_model,
                   n_head,
                   d_head,
                   dropout,
                   dropatt,
                   is_training,
                   kernel_initializer,
                   residual=True,
                   scope='abs_attn',
                   reuse=None):
    """Standard multi-head attention with absolute positional embedding."""

    scale = 1 / (d_head**0.5)
    with tf.variable_scope(scope, reuse=reuse):
        # attention heads
        q_head_h = head_projection(
            h, d_model, n_head, d_head, initializer, name=name + '_rel_attn_q')

        q_head = head_projection(q, d_model, n_head, d_head, kernel_initializer,
                                 'q')
        k_head = head_projection(k, d_model, n_head, d_head, kernel_initializer,
                                 'k')
        v_head = head_projection(v, d_model, n_head, d_head, kernel_initializer,
                                 'v')

        # attention vector
        attn_vec = abs_attn_core(q_head, k_head, v_head, attn_mask, dropatt,
                                 is_training, scale)

        # post processing
        output = post_attention(v, attn_vec, d_model, n_head, d_head, dropout,
                                is_training, kernel_initializer, residual)

    return output


def rel_multihead_attn(h,
                       r,
                       r_w_bias,
                       r_r_bias,
                       seg_mat,
                       r_s_bias,
                       seg_embed,
                       attn_mask,
                       mems,
                       d_model,
                       n_head,
                       d_head,
                       dropout,
                       dropatt,
                       initializer,
                       name=''):
    """Multi-head attention with relative positional encoding."""

    scale = 1 / (d_head**0.5)
    if mems is not None and len(mems.shape) > 1:
        cat = fluid.layers.concat([mems, h], 0)
    else:
        cat = h

    # content heads
    q_head_h = head_projection(
        h, d_model, n_head, d_head, initializer, name=name + '_rel_attn_q')
    k_head_h = head_projection(
        cat, d_model, n_head, d_head, initializer, name=name + '_rel_attn_k')
    v_head_h = head_projection(
        cat, d_model, n_head, d_head, initializer, name=name + '_rel_attn_v')

    # positional heads
    k_head_r = head_projection(
        r, d_model, n_head, d_head, initializer, name=name + '_rel_attn_r')

    # core attention ops
    attn_vec = rel_attn_core(q_head_h, k_head_h, v_head_h, k_head_r, seg_embed,
                             seg_mat, r_w_bias, r_r_bias, r_s_bias, attn_mask,
                             dropatt, scale, name)

    # post processing
    output = post_attention(
        h,
        attn_vec,
        d_model,
        n_head,
        d_head,
        dropout,
        initializer,
        name=name + '_rel_attn')

    return output


def transformer_xl(inp_k,
                   n_token,
                   n_layer,
                   d_model,
                   n_head,
                   d_head,
                   d_inner,
                   dropout,
                   dropatt,
                   attn_type,
                   bi_data,
                   initializer,
                   mem_len=None,
                   inp_q=None,
                   mems=None,
                   same_length=False,
                   clamp_len=-1,
                   untie_r=False,
                   input_mask=None,
                   perm_mask=None,
                   seg_id=None,
                   reuse_len=None,
                   ff_activation='relu',
                   target_mapping=None,
                   use_fp16=False,
                   name='',
                   **kwargs):
    """
    Defines a Transformer-XL computation graph with additional
	support for XLNet.

    Args:
	inp_k: int64 Tensor in shape [len, bsz], the input token IDs.
	seg_id: int64 Tensor in shape [len, bsz], the input segment IDs.
	input_mask: float32 Tensor in shape [len, bsz], the input mask.
	  0 for real tokens and 1 for padding.
	mems: a list of float32 Tensors in shape [mem_len, bsz, d_model], memory
	  from previous batches. The length of the list equals n_layer.
	  If None, no memory is used.
	perm_mask: float32 Tensor in shape [len, len, bsz].
	  If perm_mask[i, j, k] = 0, i attend to j in batch k;
	  if perm_mask[i, j, k] = 1, i does not attend to j in batch k.
	  If None, each position attends to all the others.
	target_mapping: float32 Tensor in shape [num_predict, len, bsz].
	  If target_mapping[i, j, k] = 1, the i-th predict in batch k is
	  on the j-th token.
	  Only used during pretraining for partial prediction.
	  Set to None during finetuning.
	inp_q: float32 Tensor in shape [len, bsz].
	  1 for tokens with losses and 0 for tokens without losses.
	  Only used during pretraining for two-stream attention.
	  Set to None during finetuning.
	n_layer: int, the number of layers.
	d_model: int, the hidden size.
	n_head: int, the number of attention heads.
	d_head: int, the dimension size of each attention head.
	d_inner: int, the hidden size in feed-forward layers.
	ff_activation: str, "relu" or "gelu".
	untie_r: bool, whether to untie the biases in attention.
	n_token: int, the vocab size.
	is_training: bool, whether in training mode.
	use_tpu: bool, whether TPUs are used.
	use_fp16: bool, use bfloat16 instead of float32.
	dropout: float, dropout rate.
	dropatt: float, dropout rate on attention probabilities.
	init: str, the initialization scheme, either "normal" or "uniform".
	init_range: float, initialize the parameters with a uniform distribution
	  in [-init_range, init_range]. Only effective when init="uniform".
	init_std: float, initialize the parameters with a normal distribution
	  with mean 0 and stddev init_std. Only effective when init="normal".
	mem_len: int, the number of tokens to cache.
	reuse_len: int, the number of tokens in the currect batch to be cached
	  and reused in the future.
	bi_data: bool, whether to use bidirectional input pipeline.
	  Usually set to True during pretraining and False during finetuning.
	clamp_len: int, clamp all relative distances larger than clamp_len.
	  -1 means no clamping.
	same_length: bool, whether to use the same attention length for each token.
	summary_type: str, "last", "first", "mean", or "attn". The method
	  to pool the input to get a vector representation.
    """
    print('memory input {}'.format(mems))
    data_type = "float16" if use_fp16 else "float32"
    print('Use float type {}'.format(data_type))

    qlen = inp_k.shape[0]
    mlen = mems[0].shape[0] if mems is not None else 0
    klen = mlen + qlen
    bsz = fluid.layers.slice(
        fluid.layers.shape(inp_k), axes=[0], starts=[1], ends=[2])

    ##### Attention mask
    # causal attention mask
    if attn_type == 'uni':
        attn_mask = fluid.layers.create_global_var(
            name='attn_mask',
            shape=[qlen, klen, 1, 1],
            value=0.0,
            dtype=data_type,
            persistable=True)
    elif attn_type == 'bi':
        attn_mask = None
    else:
        raise ValueError('Unsupported attention type: {}'.format(attn_type))

    # data mask: input mask & perm mask
    if input_mask is not None and perm_mask is not None:
        data_mask = fluid.layers.unsqueeze(input_mask, [0]) + perm_mask
    elif input_mask is not None and perm_mask is None:
        data_mask = fluid.layers.unsqueeze(input_mask, [0])
    elif input_mask is None and perm_mask is not None:
        data_mask = perm_mask
    else:
        data_mask = None

    if data_mask is not None:
        # all mems can be attended to
        mems_mask = fluid.layers.zeros(
            shape=[data_mask.shape[0], mlen, 1], dtype='float32')
        mems_mask = fluid.layers.expand(mems_mask, [1, 1, bsz])
        data_mask = fluid.layers.concat([mems_mask, data_mask], 1)
        if attn_mask is None:
            attn_mask = fluid.layers.unsqueeze(data_mask, [-1])
        else:
            attn_mask += fluid.layers.unsqueeze(data_mask, [-1])
    if attn_mask is not None:
        attn_mask = fluid.layers.cast(attn_mask > 0, dtype=data_type)

    if attn_mask is not None:
        non_tgt_mask = fluid.layers.diag(
            np.array([-1] * qlen).astype(data_type))
        non_tgt_mask = fluid.layers.concat(
            [fluid.layers.zeros(
                [qlen, mlen], dtype=data_type), non_tgt_mask],
            axis=-1)

        attn_mask = fluid.layers.expand(attn_mask, [qlen, 1, 1, 1])
        non_tgt_mask = fluid.layers.unsqueeze(non_tgt_mask, axes=[2, 3])
        non_tgt_mask = fluid.layers.expand(non_tgt_mask, [1, 1, bsz, 1])
        non_tgt_mask = fluid.layers.cast(
            (attn_mask + non_tgt_mask) > 0, dtype=data_type)
        non_tgt_mask.stop_gradient = True
    else:
        non_tgt_mask = None

    if untie_r:
        r_w_bias = fluid.layers.create_parameter(
            shape=[n_layer, n_head, d_head],
            dtype=data_type,
            attr=fluid.ParamAttr(
                name=name + '_r_w_bias', initializer=initializer),
            is_bias=True)
        r_w_bias = [
            fluid.layers.slice(
                r_w_bias, axes=[0], starts=[i], ends=[i + 1])
            for i in range(n_layer)
        ]
        r_w_bias = [
            fluid.layers.squeeze(
                r_w_bias[i], axes=[0]) for i in range(n_layer)
        ]
        r_r_bias = fluid.layers.create_parameter(
            shape=[n_layer, n_head, d_head],
            dtype=data_type,
            attr=fluid.ParamAttr(
                name=name + '_r_r_bias', initializer=initializer),
            is_bias=True)
        r_r_bias = [
            fluid.layers.slice(
                r_r_bias, axes=[0], starts=[i], ends=[i + 1])
            for i in range(n_layer)
        ]
        r_r_bias = [
            fluid.layers.squeeze(
                r_r_bias[i], axes=[0]) for i in range(n_layer)
        ]
    else:
        r_w_bias = fluid.layers.create_parameter(
            shape=[n_head, d_head],
            dtype=data_type,
            attr=fluid.ParamAttr(
                name=name + '_r_w_bias', initializer=initializer),
            is_bias=True)
        r_r_bias = fluid.layers.create_parameter(
            shape=[n_head, d_head],
            dtype=data_type,
            attr=fluid.ParamAttr(
                name=name + '_r_r_bias', initializer=initializer),
            is_bias=True)

    lookup_table = fluid.layers.create_parameter(
        shape=[n_token, d_model],
        dtype=data_type,
        attr=fluid.ParamAttr(
            name=name + '_word_embedding', initializer=initializer),
        is_bias=False)
    word_emb_k = fluid.layers.embedding(
        input=inp_k,
        size=[n_token, d_model],
        dtype=data_type,
        param_attr=fluid.ParamAttr(
            name=name + '_word_embedding', initializer=initializer))

    if inp_q is not None:
        pass

    output_h = fluid.layers.dropout(
        word_emb_k,
        dropout_prob=dropout,
        dropout_implementation="upscale_in_train")

    if inp_q is not None:
        pass

    if seg_id is not None:
        if untie_r:
            r_s_bias = fluid.layers.create_parameter(
                shape=[n_layer, n_head, d_head],
                dtype=data_type,
                attr=fluid.ParamAttr(
                    name=name + '_r_s_bias', initializer=initializer),
                is_bias=True)
            r_s_bias = [
                fluid.layers.slice(
                    r_s_bias, axes=[0], starts=[i], ends=[i + 1])
                for i in range(n_layer)
            ]
            r_s_bias = [
                fluid.layers.squeeze(
                    r_s_bias[i], axes=[0]) for i in range(n_layer)
            ]
        else:
            r_s_bias = fluid.layers.create_parameter(
                shape=[n_head, d_head],
                dtype=data_type,
                attr=fluid.ParamAttr(
                    name=name + '_r_s_bias', initializer=initializer),
                is_bias=True)

        seg_embed = fluid.layers.create_parameter(
            shape=[n_layer, 2, n_head, d_head],
            dtype=data_type,
            attr=fluid.ParamAttr(
                name=name + '_seg_embed', initializer=initializer))
        seg_embed = [
            fluid.layers.slice(
                seg_embed, axes=[0], starts=[i], ends=[i + 1])
            for i in range(n_layer)
        ]
        seg_embed = [
            fluid.layers.squeeze(
                seg_embed[i], axes=[0]) for i in range(n_layer)
        ]

        # COnver `seg_id` to one-hot seg_mat
        # seg_id: [bsz, qlen, 1]
        mem_pad = fluid.layers.fill_constant_batch_size_like(
            input=seg_id, shape=[-1, mlen], value=0, dtype='int64')
        # cat_ids: [bsz, klen, 1]
        cat_ids = fluid.layers.concat(input=[mem_pad, seg_id], axis=1)
        seg_id = fluid.layers.stack([seg_id] * klen, axis=2)
        cat_ids = fluid.layers.stack([cat_ids] * qlen, axis=2)
        cat_ids = fluid.layers.transpose(cat_ids, perm=[0, 2, 1])

        # seg_mat: [bsz, qlen, klen]
        seg_mat = fluid.layers.cast(
            fluid.layers.logical_not(fluid.layers.equal(seg_id, cat_ids)),
            dtype='int64')

        seg_mat = fluid.layers.transpose(seg_mat, perm=[1, 2, 0])
        seg_mat = fluid.layers.unsqueeze(seg_mat, [-1])
        seg_mat = fluid.layers.one_hot(seg_mat, 2)
        seg_mat.stop_gradient = True
    else:
        seg_mat = None

    pos_emb = relative_positional_encoding(
        qlen,
        klen,
        d_model,
        clamp_len,
        attn_type,
        bi_data,
        bsz=bsz,
        dtype=data_type)
    pos_emb = fluid.layers.dropout(
        pos_emb, dropout, dropout_implementation="upscale_in_train")
    pos_emb.stop_gradient = True
    ##### Attention layers
    if mems is None:
        mems = [None] * n_layer

    for i in range(n_layer):
        # cache new mems
        #new_mems.append(_cache_mem(output_h, mems[i], mem_len, reuse_len)) 

        # segment bias
        if seg_id is None:
            r_s_bias_i = None
            seg_embed_i = None
        else:
            r_s_bias_i = r_s_bias if not untie_r else r_s_bias[i]
            seg_embed_i = seg_embed[i]

        if inp_q is not None:
            pass
        else:
            output_h = rel_multihead_attn(
                h=output_h,
                r=pos_emb,
                r_w_bias=r_w_bias if not untie_r else r_w_bias[i],
                r_r_bias=r_r_bias if not untie_r else r_r_bias[i],
                seg_mat=seg_mat,
                r_s_bias=r_s_bias_i,
                seg_embed=seg_embed_i,
                attn_mask=non_tgt_mask,
                mems=mems[i],
                d_model=d_model,
                n_head=n_head,
                d_head=d_head,
                dropout=dropout,
                dropatt=dropatt,
                initializer=initializer,
                name=name + '_layer_{}'.format(i))

        if inp_q is not None:
            pass
        output_h = positionwise_ffn(
            inp=output_h,
            d_model=d_model,
            d_inner=d_inner,
            dropout_prob=dropout,
            param_initializer=initializer,
            act_type=ff_activation,
            name=name + '_layer_{}_ff'.format(i))
    if inp_q is not None:
        output = fluid.layers.dropout(
            output_g, dropout, dropout_implementation="upscale_in_train")
    else:
        output = fluid.layers.dropout(
            output_h, dropout, dropout_implementation="upscale_in_train")
    new_mems = None
    return output, new_mems, lookup_table


def lm_loss(hidden,
            target,
            n_token,
            d_model,
            initializer,
            lookup_table=None,
            tie_weight=False,
            bi_data=True):

    if tie_weight:
        assert lookup_table is not None, \
          'lookup_table cannot be None for tie_weight'
        softmax_w = lookup_table
    else:
        softmax_w = fluid.layers.create_parameter(
            shape=[n_token, d_model],
            dtype=hidden.dtype,
            attr=fluid.ParamAttr(
                name='model_loss_weight', initializer=initializer),
            is_bias=False)

    softmax_b = fluid.layers.create_parameter(
        shape=[n_token],
        dtype=hidden.dtype,
        attr=fluid.ParamAttr(
            name='model_lm_loss_bias', initializer=initializer),
        is_bias=False)

    logits = fluid.layers.matmul(
        x=hidden, y=softmax_w, transpose_y=True) + softmax_b

    loss = fluid.layers.softmax_cross_entropy_with_logits(
        input=logits, label=target)

    return loss


def summarize_sequence(summary_type,
                       hidden,
                       d_model,
                       n_head,
                       d_head,
                       dropout,
                       dropatt,
                       input_mask,
                       initializer,
                       scope=None,
                       reuse=None,
                       use_proj=True,
                       name=''):
    """
      Different classification tasks may not may not share the same parameters
      to summarize the sequence features.
      If shared, one can keep the `scope` to the default value `None`.
      Otherwise, one should specify a different `scope` for each task.
  """
    if summary_type == 'last':
        summary = hidden[-1]
    elif summary_type == 'first':
        summary = hidden[0]
    elif summary_type == 'mean':
        summary = fluid.layers.reduce_mean(hidden, axis=0)
    elif summary_type == 'attn':
        bsz = fluid.layers.slice(
            fluid.layers.shape(hidden), axes=[0], starts=[1], ends=[2])

        summary_bias = tf.get_variable(
            'summary_bias', [d_model],
            dtype=hidden.dtype,
            initializer=initializer)
        summary_bias = tf.tile(summary_bias[None, None], [1, bsz, 1])

        if input_mask is not None:
            input_mask = input_mask[None, :, :, None]

        summary = multihead_attn(
            summary_bias,
            hidden,
            hidden,
            input_mask,
            d_model,
            n_head,
            d_head,
            dropout,
            dropatt,
            is_training,
            initializer,
            residual=False)
        summary = summary[0]
    else:
        raise ValueError('Unsupported summary type {}'.format(summary_type))

    # use another projection as in BERT
    if use_proj:
        summary = fluid.layers.fc(input=summary,
                                  size=d_model,
                                  act='tanh',
                                  param_attr=fluid.ParamAttr(
                                      name=name + '_summary_weight',
                                      initializer=initializer),
                                  bias_attr=name + '_summary_bias')

    summary = fluid.layers.dropout(
        summary,
        dropout_prob=dropout,
        dropout_implementation="upscale_in_train")

    return summary


def classification_loss(hidden,
                        labels,
                        n_class,
                        initializer,
                        name,
                        reuse=None,
                        return_logits=False):
    """
      Different classification tasks should use different parameter names to ensure
      different dense layers (parameters) are used to produce the logits.
      An exception will be in transfer learning, where one hopes to transfer
      the classification weights.
    """

    logits = fluid.layers.fc(input=hidden,
                             size=n_class,
                             param_attr=fluid.ParamAttr(
                                 name=name + '_logit_weight',
                                 initializer=initializer),
                             bias_attr=name + '_logit_bias')

    one_hot_target = fluid.layers.one_hot(labels, depth=n_class)
    loss = -1.0 * fluid.layers.reduce_sum(
        log_softmax(logits) * one_hot_target, dim=-1)

    if return_logits:
        return loss, logits

    return loss


def regression_loss(hidden, labels, initializer, name, return_logits=False):

    logits = fluid.layers.fc(input=hidden,
                             size=1,
                             param_attr=fluid.ParamAttr(
                                 name=name + '_logits_weight',
                                 initializer=initializer),
                             bias_attr=name + '_logits_bias')

    loss = fluid.layers.square(logits - labels)

    if return_logits:
        return loss, logits

    return loss