reader.py 7.3 KB
Newer Older
J
jerrywgz 已提交
1
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved
J
jerrywgz 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from paddle.utils.image_util import *
import random
from PIL import Image
from PIL import ImageDraw
import numpy as np
import xml.etree.ElementTree
import os
import time
import copy
import six
25
from collections import deque
J
jerrywgz 已提交
26 27 28

from roidbs import JsonDataset
import data_utils
J
jerrywgz 已提交
29
from config import cfg
J
jerrywgz 已提交
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69
import segm_utils


def roidb_reader(roidb, mode):
    im, im_scales = data_utils.get_image_blob(roidb, mode)
    im_id = roidb['id']
    im_height = np.round(roidb['height'] * im_scales)
    im_width = np.round(roidb['width'] * im_scales)
    im_info = np.array([im_height, im_width, im_scales], dtype=np.float32)
    if mode == 'test' or mode == 'infer':
        return im, im_info, im_id

    gt_boxes = roidb['gt_boxes'].astype('float32')
    gt_classes = roidb['gt_classes'].astype('int32')
    is_crowd = roidb['is_crowd'].astype('int32')
    segms = roidb['segms']

    outs = (im, gt_boxes, gt_classes, is_crowd, im_info, im_id)

    if cfg.MASK_ON:
        gt_masks = []
        valid = True
        segms = roidb['segms']
        assert len(segms) == is_crowd.shape[0]
        for i in range(len(roidb['segms'])):
            segm, iscrowd = segms[i], is_crowd[i]
            gt_segm = []
            if iscrowd:
                gt_segm.append([[0, 0]])
            else:
                for poly in segm:
                    if len(poly) == 0:
                        valid = False
                        break
                    gt_segm.append(np.array(poly).reshape(-1, 2))
            if (not valid) or len(gt_segm) == 0:
                break
            gt_masks.append(gt_segm)
        outs = outs + (gt_masks, )
    return outs
J
jerrywgz 已提交
70 71


J
jerrywgz 已提交
72
def coco(mode,
73 74 75 76
         batch_size=None,
         total_batch_size=None,
         padding_total=False,
         shuffle=False):
J
jerrywgz 已提交
77 78 79 80 81 82 83 84 85 86 87 88 89 90 91
    if 'coco2014' in cfg.dataset:
        cfg.train_file_list = 'annotations/instances_train2014.json'
        cfg.train_data_dir = 'train2014'
        cfg.val_file_list = 'annotations/instances_val2014.json'
        cfg.val_data_dir = 'val2014'
    elif 'coco2017' in cfg.dataset:
        cfg.train_file_list = 'annotations/instances_train2017.json'
        cfg.train_data_dir = 'train2017'
        cfg.val_file_list = 'annotations/instances_val2017.json'
        cfg.val_data_dir = 'val2017'
    else:
        raise NotImplementedError('Dataset {} not supported'.format(
            cfg.dataset))
    cfg.mean_value = np.array(cfg.pixel_means)[np.newaxis,
                                               np.newaxis, :].astype('float32')
92
    total_batch_size = total_batch_size if total_batch_size else batch_size
J
jerrywgz 已提交
93 94
    if mode != 'infer':
        assert total_batch_size % batch_size == 0
J
jerrywgz 已提交
95
    if mode == 'train':
J
jerrywgz 已提交
96 97
        cfg.train_file_list = os.path.join(cfg.data_dir, cfg.train_file_list)
        cfg.train_data_dir = os.path.join(cfg.data_dir, cfg.train_data_dir)
J
jerrywgz 已提交
98
    elif mode == 'test' or mode == 'infer':
J
jerrywgz 已提交
99 100 101
        cfg.val_file_list = os.path.join(cfg.data_dir, cfg.val_file_list)
        cfg.val_data_dir = os.path.join(cfg.data_dir, cfg.val_data_dir)
    json_dataset = JsonDataset(train=(mode == 'train'))
J
jerrywgz 已提交
102 103
    roidbs = json_dataset.get_roidb()

J
jerrywgz 已提交
104
    print("{} on {} with {} roidbs".format(mode, cfg.dataset, len(roidbs)))
J
jerrywgz 已提交
105

106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
    def padding_minibatch(batch_data):
        if len(batch_data) == 1:
            return batch_data

        max_shape = np.array([data[0].shape for data in batch_data]).max(axis=0)

        padding_batch = []
        for data in batch_data:
            im_c, im_h, im_w = data[0].shape[:]
            padding_im = np.zeros(
                (im_c, max_shape[1], max_shape[2]), dtype=np.float32)
            padding_im[:, :im_h, :im_w] = data[0]
            padding_batch.append((padding_im, ) + data[1:])
        return padding_batch

121 122
    def reader():
        if mode == "train":
J
jerrywgz 已提交
123 124 125 126
            if shuffle:
                roidb_perm = deque(np.random.permutation(roidbs))
            else:
                roidb_perm = deque(roidbs)
127
            roidb_cur = 0
J
jerrywgz 已提交
128
            count = 0
129
            batch_out = []
J
jerrywgz 已提交
130
            device_num = total_batch_size / batch_size
131 132 133 134 135
            while True:
                roidb = roidb_perm[0]
                roidb_cur += 1
                roidb_perm.rotate(-1)
                if roidb_cur >= len(roidbs):
J
jerrywgz 已提交
136 137 138 139
                    if shuffle:
                        roidb_perm = deque(np.random.permutation(roidbs))
                    else:
                        roidb_perm = deque(roidbs)
J
jerrywgz 已提交
140
                    roidb_cur = 0
J
jerrywgz 已提交
141 142 143
                # im, gt_boxes, gt_classes, is_crowd, im_info, im_id, gt_masks
                datas = roidb_reader(roidb, mode)
                if datas[1].shape[0] == 0:
144
                    continue
J
jerrywgz 已提交
145 146 147 148
                if cfg.MASK_ON:
                    if len(datas[-1]) != datas[1].shape[0]:
                        continue
                batch_out.append(datas)
149 150 151
                if not padding_total:
                    if len(batch_out) == batch_size:
                        yield padding_minibatch(batch_out)
J
jerrywgz 已提交
152
                        count += 1
153 154 155 156
                        batch_out = []
                else:
                    if len(batch_out) == total_batch_size:
                        batch_out = padding_minibatch(batch_out)
J
jerrywgz 已提交
157
                        for i in range(device_num):
158 159 160 161 162
                            sub_batch_out = []
                            for j in range(batch_size):
                                sub_batch_out.append(batch_out[i * batch_size +
                                                               j])
                            yield sub_batch_out
J
jerrywgz 已提交
163
                            count += 1
164 165
                            sub_batch_out = []
                        batch_out = []
J
jerrywgz 已提交
166 167
                iter_id = count // device_num
                if iter_id >= cfg.max_iter:
J
jerrywgz 已提交
168
                    return
J
jerrywgz 已提交
169
        elif mode == "test":
170 171
            batch_out = []
            for roidb in roidbs:
J
jerrywgz 已提交
172 173
                im, im_info, im_id = roidb_reader(roidb, mode)
                batch_out.append((im, im_info, im_id))
174 175 176
                if len(batch_out) == batch_size:
                    yield batch_out
                    batch_out = []
J
jerrywgz 已提交
177 178 179 180 181
            if len(batch_out) != 0:
                yield batch_out

        else:
            for roidb in roidbs:
J
jerrywgz 已提交
182
                if cfg.image_name not in roidb['image']:
J
jerrywgz 已提交
183
                    continue
J
jerrywgz 已提交
184 185 186
                im, im_info, im_id = roidb_reader(roidb, mode)
                batch_out = [(im, im_info, im_id)]
                yield batch_out
J
jerrywgz 已提交
187 188 189 190

    return reader


J
jerrywgz 已提交
191
def train(batch_size, total_batch_size=None, padding_total=False, shuffle=True):
192
    return coco(
J
jerrywgz 已提交
193
        'train', batch_size, total_batch_size, padding_total, shuffle=shuffle)
J
jerrywgz 已提交
194 195


J
jerrywgz 已提交
196 197
def test(batch_size, total_batch_size=None, padding_total=False):
    return coco('test', batch_size, total_batch_size, shuffle=False)
J
jerrywgz 已提交
198 199


J
jerrywgz 已提交
200 201
def infer():
    return coco('infer')