model.py 27.1 KB
Newer Older
1 2
from functools import partial
import numpy as np
Y
ying 已提交
3

L
Luo Tao 已提交
4 5
import paddle.fluid as fluid
import paddle.fluid.layers as layers
Y
ying 已提交
6

7
from config import *
Y
ying 已提交
8

9 10

def position_encoding_init(n_position, d_pos_vec):
Y
ying 已提交
11
    """
12 13
    Generate the initial values for the sinusoid position encoding table.
    """
14 15 16 17 18 19 20 21 22 23 24 25
    channels = d_pos_vec
    position = np.arange(n_position)
    num_timescales = channels // 2
    log_timescale_increment = (np.log(float(1e4) / float(1)) /
                               (num_timescales - 1))
    inv_timescales = np.exp(np.arange(
        num_timescales)) * -log_timescale_increment
    scaled_time = np.expand_dims(position, 1) * np.expand_dims(inv_timescales,
                                                               0)
    signal = np.concatenate([np.sin(scaled_time), np.cos(scaled_time)], axis=1)
    signal = np.pad(signal, [[0, 0], [0, np.mod(channels, 2)]], 'constant')
    position_enc = signal
26 27 28 29 30 31 32 33 34 35
    return position_enc.astype("float32")


def multi_head_attention(queries,
                         keys,
                         values,
                         attn_bias,
                         d_key,
                         d_value,
                         d_model,
G
guosheng 已提交
36
                         n_head=1,
G
guosheng 已提交
37
                         dropout_rate=0.,
38
                         cache=None):
39
    """
Y
ying 已提交
40 41 42
    Multi-Head Attention. Note that attn_bias is added to the logit before
    computing softmax activiation to mask certain selected positions so that
    they will not considered in attention weights.
43
    """
44 45 46
    keys = queries if keys is None else keys
    values = keys if values is None else values

47 48
    if not (len(queries.shape) == len(keys.shape) == len(values.shape) == 3):
        raise ValueError(
Y
ying 已提交
49
            "Inputs: quries, keys and values should all be 3-D tensors.")
50

G
guosheng 已提交
51
    def __compute_qkv(queries, keys, values, n_head, d_key, d_value):
Y
ying 已提交
52
        """
53 54 55
        Add linear projection to queries, keys, and values.
        """
        q = layers.fc(input=queries,
G
guosheng 已提交
56
                      size=d_key * n_head,
57 58 59
                      bias_attr=False,
                      num_flatten_dims=2)
        k = layers.fc(input=keys,
G
guosheng 已提交
60
                      size=d_key * n_head,
61 62 63
                      bias_attr=False,
                      num_flatten_dims=2)
        v = layers.fc(input=values,
G
guosheng 已提交
64
                      size=d_value * n_head,
65 66 67 68
                      bias_attr=False,
                      num_flatten_dims=2)
        return q, k, v

G
guosheng 已提交
69
    def __split_heads(x, n_head):
70 71 72
        """
        Reshape the last dimension of inpunt tensor x so that it becomes two
        dimensions and then transpose. Specifically, input a tensor with shape
G
guosheng 已提交
73 74
        [bs, max_sequence_length, n_head * hidden_dim] then output a tensor
        with shape [bs, n_head, max_sequence_length, hidden_dim].
75
        """
G
guosheng 已提交
76
        if n_head == 1:
77 78 79
            return x

        hidden_size = x.shape[-1]
80 81
        # The value 0 in shape attr means copying the corresponding dimension
        # size of the input as the output dimension size.
82
        reshaped = layers.reshape(
83
            x=x, shape=[0, 0, n_head, hidden_size // n_head], inplace=True)
84 85

        # permuate the dimensions into:
G
guosheng 已提交
86
        # [batch_size, n_head, max_sequence_len, hidden_size_per_head]
87 88 89 90 91 92 93 94 95 96 97 98
        return layers.transpose(x=reshaped, perm=[0, 2, 1, 3])

    def __combine_heads(x):
        """
        Transpose and then reshape the last two dimensions of inpunt tensor x
        so that it becomes one dimension, which is reverse to __split_heads.
        """
        if len(x.shape) == 3: return x
        if len(x.shape) != 4:
            raise ValueError("Input(x) should be a 4-D Tensor.")

        trans_x = layers.transpose(x, perm=[0, 2, 1, 3])
99 100
        # The value 0 in shape attr means copying the corresponding dimension
        # size of the input as the output dimension size.
101
        return layers.reshape(
102 103 104
            x=trans_x,
            shape=[0, 0, trans_x.shape[2] * trans_x.shape[3]],
            inplace=True)
105

106
    def scaled_dot_product_attention(q, k, v, attn_bias, d_key, dropout_rate):
107 108 109
        """
        Scaled Dot-Product Attention
        """
110
        scaled_q = layers.scale(x=q, scale=d_key**-0.5)
111
        product = layers.matmul(x=scaled_q, y=k, transpose_y=True)
112 113 114
        if attn_bias:
            product += attn_bias
        weights = layers.softmax(product)
115 116
        if dropout_rate:
            weights = layers.dropout(
G
guosheng 已提交
117 118 119 120
                weights,
                dropout_prob=dropout_rate,
                seed=ModelHyperParams.dropout_seed,
                is_test=False)
121 122 123
        out = layers.matmul(weights, v)
        return out

G
guosheng 已提交
124
    q, k, v = __compute_qkv(queries, keys, values, n_head, d_key, d_value)
125

126
    if cache is not None:  # use cache and concat time steps
127 128 129 130 131 132 133 134 135
        # Since the inplace reshape in __split_heads changes the shape of k and
        # v, which is the cache input for next time step, reshape the cache
        # input from the previous time step first.
        k = cache["k"] = layers.concat(
            [layers.reshape(
                cache["k"], shape=[0, 0, d_model]), k], axis=1)
        v = cache["v"] = layers.concat(
            [layers.reshape(
                cache["v"], shape=[0, 0, d_model]), v], axis=1)
136

G
guosheng 已提交
137 138 139
    q = __split_heads(q, n_head)
    k = __split_heads(k, n_head)
    v = __split_heads(v, n_head)
140

G
guosheng 已提交
141
    ctx_multiheads = scaled_dot_product_attention(q, k, v, attn_bias, d_model,
142 143 144
                                                  dropout_rate)

    out = __combine_heads(ctx_multiheads)
145

146 147 148 149 150 151 152 153
    # Project back to the model size.
    proj_out = layers.fc(input=out,
                         size=d_model,
                         bias_attr=False,
                         num_flatten_dims=2)
    return proj_out


154
def positionwise_feed_forward(x, d_inner_hid, d_hid, dropout_rate):
155
    """
Y
ying 已提交
156 157 158
    Position-wise Feed-Forward Networks.
    This module consists of two linear transformations with a ReLU activation
    in between, which is applied to each position separately and identically.
159 160 161 162 163
    """
    hidden = layers.fc(input=x,
                       size=d_inner_hid,
                       num_flatten_dims=2,
                       act="relu")
164 165 166 167 168 169
    if dropout_rate:
        hidden = layers.dropout(
            hidden,
            dropout_prob=dropout_rate,
            seed=ModelHyperParams.dropout_seed,
            is_test=False)
G
guosheng 已提交
170
    out = layers.fc(input=hidden, size=d_hid, num_flatten_dims=2)
171 172 173
    return out


174
def pre_post_process_layer(prev_out, out, process_cmd, dropout_rate=0.):
175
    """
Y
ying 已提交
176
    Add residual connection, layer normalization and droput to the out tensor
177 178 179 180 181
    optionally according to the value of process_cmd.
    This will be used before or after multi-head attention and position-wise
    feed-forward networks.
    """
    for cmd in process_cmd:
Y
ying 已提交
182
        if cmd == "a":  # add residual connection
183
            out = out + prev_out if prev_out else out
Y
ying 已提交
184
        elif cmd == "n":  # add layer normalization
G
guosheng 已提交
185 186 187 188 189
            out = layers.layer_norm(
                out,
                begin_norm_axis=len(out.shape) - 1,
                param_attr=fluid.initializer.Constant(1.),
                bias_attr=fluid.initializer.Constant(0.))
Y
ying 已提交
190
        elif cmd == "d":  # add dropout
191 192
            if dropout_rate:
                out = layers.dropout(
G
guosheng 已提交
193 194 195 196
                    out,
                    dropout_prob=dropout_rate,
                    seed=ModelHyperParams.dropout_seed,
                    is_test=False)
197 198 199 200 201 202 203
    return out


pre_process_layer = partial(pre_post_process_layer, None)
post_process_layer = pre_post_process_layer


204 205 206 207 208 209 210 211
def prepare_encoder_decoder(src_word,
                            src_pos,
                            src_vocab_size,
                            src_emb_dim,
                            src_max_len,
                            dropout_rate=0.,
                            word_emb_param_name=None,
                            pos_enc_param_name=None):
Y
ying 已提交
212 213
    """Add word embeddings and position encodings.
    The output tensor has a shape of:
214
    [batch_size, max_src_length_in_batch, d_model].
Y
ying 已提交
215
    This module is used at the bottom of the encoder stacks.
216 217
    """
    src_word_emb = layers.embedding(
G
guosheng 已提交
218 219
        src_word,
        size=[src_vocab_size, src_emb_dim],
220
        padding_idx=ModelHyperParams.bos_idx,  # set embedding of bos to 0
G
guosheng 已提交
221 222 223
        param_attr=fluid.ParamAttr(
            name=word_emb_param_name,
            initializer=fluid.initializer.Normal(0., src_emb_dim**-0.5)))
Y
Yu Yang 已提交
224

G
guosheng 已提交
225
    src_word_emb = layers.scale(x=src_word_emb, scale=src_emb_dim**0.5)
226 227 228 229 230
    src_pos_enc = layers.embedding(
        src_pos,
        size=[src_max_len, src_emb_dim],
        param_attr=fluid.ParamAttr(
            name=pos_enc_param_name, trainable=False))
C
chengduoZH 已提交
231
    src_pos_enc.stop_gradient = True
232 233
    enc_input = src_word_emb + src_pos_enc
    return layers.dropout(
G
guosheng 已提交
234 235 236
        enc_input,
        dropout_prob=dropout_rate,
        seed=ModelHyperParams.dropout_seed,
237
        is_test=False) if dropout_rate else enc_input
238 239 240


prepare_encoder = partial(
241
    prepare_encoder_decoder, pos_enc_param_name=pos_enc_param_names[0])
242
prepare_decoder = partial(
243
    prepare_encoder_decoder, pos_enc_param_name=pos_enc_param_names[1])
244 245


Y
ying 已提交
246 247 248 249 250 251 252
def encoder_layer(enc_input,
                  attn_bias,
                  n_head,
                  d_key,
                  d_value,
                  d_model,
                  d_inner_hid,
253 254 255 256 257
                  prepostprocess_dropout,
                  attention_dropout,
                  relu_dropout,
                  preprocess_cmd="n",
                  postprocess_cmd="da"):
Y
ying 已提交
258 259 260 261 262
    """The encoder layers that can be stacked to form a deep encoder.
    This module consits of a multi-head (self) attention followed by
    position-wise feed-forward networks and both the two components companied
    with the post_process_layer to add residual connection, layer normalization
    and droput.
263
    """
264 265 266 267 268 269 270 271 272 273 274
    attn_output = multi_head_attention(
        pre_process_layer(enc_input, preprocess_cmd,
                          prepostprocess_dropout), None, None, attn_bias, d_key,
        d_value, d_model, n_head, attention_dropout)
    attn_output = post_process_layer(enc_input, attn_output, postprocess_cmd,
                                     prepostprocess_dropout)
    ffd_output = positionwise_feed_forward(
        pre_process_layer(attn_output, preprocess_cmd, prepostprocess_dropout),
        d_inner_hid, d_model, relu_dropout)
    return post_process_layer(attn_output, ffd_output, postprocess_cmd,
                              prepostprocess_dropout)
Y
ying 已提交
275 276 277 278 279 280 281 282 283 284


def encoder(enc_input,
            attn_bias,
            n_layer,
            n_head,
            d_key,
            d_value,
            d_model,
            d_inner_hid,
285 286 287 288 289
            prepostprocess_dropout,
            attention_dropout,
            relu_dropout,
            preprocess_cmd="n",
            postprocess_cmd="da"):
290
    """
Y
ying 已提交
291 292
    The encoder is composed of a stack of identical layers returned by calling
    encoder_layer.
293 294
    """
    for i in range(n_layer):
295 296 297 298 299 300 301 302 303 304 305 306 307
        enc_output = encoder_layer(
            enc_input,
            attn_bias,
            n_head,
            d_key,
            d_value,
            d_model,
            d_inner_hid,
            prepostprocess_dropout,
            attention_dropout,
            relu_dropout,
            preprocess_cmd,
            postprocess_cmd, )
308
        enc_input = enc_output
309 310
    enc_output = pre_process_layer(enc_output, preprocess_cmd,
                                   prepostprocess_dropout)
311 312 313
    return enc_output


Y
ying 已提交
314 315 316 317 318 319 320 321 322
def decoder_layer(dec_input,
                  enc_output,
                  slf_attn_bias,
                  dec_enc_attn_bias,
                  n_head,
                  d_key,
                  d_value,
                  d_model,
                  d_inner_hid,
323 324 325 326 327
                  prepostprocess_dropout,
                  attention_dropout,
                  relu_dropout,
                  preprocess_cmd,
                  postprocess_cmd,
328
                  cache=None):
Y
ying 已提交
329 330 331
    """ The layer to be stacked in decoder part.
    The structure of this module is similar to that in the encoder part except
    a multi-head attention is added to implement encoder-decoder attention.
332
    """
Y
ying 已提交
333
    slf_attn_output = multi_head_attention(
334 335 336
        pre_process_layer(dec_input, preprocess_cmd, prepostprocess_dropout),
        None,
        None,
Y
ying 已提交
337 338 339 340 341
        slf_attn_bias,
        d_key,
        d_value,
        d_model,
        n_head,
342
        attention_dropout,
343
        cache, )
Y
ying 已提交
344 345 346
    slf_attn_output = post_process_layer(
        dec_input,
        slf_attn_output,
347 348
        postprocess_cmd,
        prepostprocess_dropout, )
Y
ying 已提交
349
    enc_attn_output = multi_head_attention(
350 351
        pre_process_layer(slf_attn_output, preprocess_cmd,
                          prepostprocess_dropout),
Y
ying 已提交
352 353 354 355 356 357 358
        enc_output,
        enc_output,
        dec_enc_attn_bias,
        d_key,
        d_value,
        d_model,
        n_head,
359
        attention_dropout, )
Y
ying 已提交
360 361 362
    enc_attn_output = post_process_layer(
        slf_attn_output,
        enc_attn_output,
363 364
        postprocess_cmd,
        prepostprocess_dropout, )
Y
ying 已提交
365
    ffd_output = positionwise_feed_forward(
366 367
        pre_process_layer(enc_attn_output, preprocess_cmd,
                          prepostprocess_dropout),
Y
ying 已提交
368
        d_inner_hid,
369 370
        d_model,
        relu_dropout, )
Y
ying 已提交
371 372 373
    dec_output = post_process_layer(
        enc_attn_output,
        ffd_output,
374 375
        postprocess_cmd,
        prepostprocess_dropout, )
376 377 378
    return dec_output


Y
ying 已提交
379 380 381 382 383 384 385 386 387 388
def decoder(dec_input,
            enc_output,
            dec_slf_attn_bias,
            dec_enc_attn_bias,
            n_layer,
            n_head,
            d_key,
            d_value,
            d_model,
            d_inner_hid,
389 390 391 392 393
            prepostprocess_dropout,
            attention_dropout,
            relu_dropout,
            preprocess_cmd,
            postprocess_cmd,
394
            caches=None):
395 396 397 398
    """
    The decoder is composed of a stack of identical decoder_layer layers.
    """
    for i in range(n_layer):
Y
ying 已提交
399
        dec_output = decoder_layer(
400 401 402 403 404 405 406 407 408
            dec_input,
            enc_output,
            dec_slf_attn_bias,
            dec_enc_attn_bias,
            n_head,
            d_key,
            d_value,
            d_model,
            d_inner_hid,
409 410 411 412 413 414
            prepostprocess_dropout,
            attention_dropout,
            relu_dropout,
            preprocess_cmd,
            postprocess_cmd,
            cache=None if caches is None else caches[i])
415
        dec_input = dec_output
416 417
    dec_output = pre_process_layer(dec_output, preprocess_cmd,
                                   prepostprocess_dropout)
418 419 420
    return dec_output


421
def make_all_inputs(input_fields):
422 423 424
    """
    Define the input data layers for the transformer model.
    """
425 426 427 428 429 430
    inputs = []
    for input_field in input_fields:
        input_var = layers.data(
            name=input_field,
            shape=input_descs[input_field][0],
            dtype=input_descs[input_field][1],
431 432
            lod_level=input_descs[input_field][2]
            if len(input_descs[input_field]) == 3 else 0,
433
            append_batch_size=False)
434 435
        inputs.append(input_var)
    return inputs
436 437


438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469
def make_all_py_reader_inputs(input_fields, is_test=False):
    reader = layers.py_reader(
        capacity=20,
        name="test_reader" if is_test else "train_reader",
        shapes=[input_descs[input_field][0] for input_field in input_fields],
        dtypes=[input_descs[input_field][1] for input_field in input_fields],
        lod_levels=[
            input_descs[input_field][2]
            if len(input_descs[input_field]) == 3 else 0
            for input_field in input_fields
        ])
    return layers.read_file(reader), reader


def transformer(src_vocab_size,
                trg_vocab_size,
                max_length,
                n_layer,
                n_head,
                d_key,
                d_value,
                d_model,
                d_inner_hid,
                prepostprocess_dropout,
                attention_dropout,
                relu_dropout,
                preprocess_cmd,
                postprocess_cmd,
                weight_sharing,
                label_smooth_eps,
                use_py_reader=False,
                is_test=False):
G
guosheng 已提交
470
    if weight_sharing:
G
guosheng 已提交
471
        assert src_vocab_size == trg_vocab_size, (
G
guosheng 已提交
472 473
            "Vocabularies in source and target should be same for weight sharing."
        )
474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489

    data_input_names = encoder_data_input_fields + \
                decoder_data_input_fields[:-1] + label_data_input_fields

    if use_py_reader:
        all_inputs, reader = make_all_py_reader_inputs(data_input_names,
                                                       is_test)
    else:
        all_inputs = make_all_inputs(data_input_names)

    enc_inputs_len = len(encoder_data_input_fields)
    dec_inputs_len = len(decoder_data_input_fields[:-1])
    enc_inputs = all_inputs[0:enc_inputs_len]
    dec_inputs = all_inputs[enc_inputs_len:enc_inputs_len + dec_inputs_len]
    label = all_inputs[-2]
    weights = all_inputs[-1]
490

491 492 493 494 495 496 497 498 499
    enc_output = wrap_encoder(
        src_vocab_size,
        max_length,
        n_layer,
        n_head,
        d_key,
        d_value,
        d_model,
        d_inner_hid,
500 501 502 503 504
        prepostprocess_dropout,
        attention_dropout,
        relu_dropout,
        preprocess_cmd,
        postprocess_cmd,
G
guosheng 已提交
505
        weight_sharing,
506
        enc_inputs, )
507 508 509 510 511 512 513 514 515 516

    predict = wrap_decoder(
        trg_vocab_size,
        max_length,
        n_layer,
        n_head,
        d_key,
        d_value,
        d_model,
        d_inner_hid,
517 518 519 520 521
        prepostprocess_dropout,
        attention_dropout,
        relu_dropout,
        preprocess_cmd,
        postprocess_cmd,
G
guosheng 已提交
522
        weight_sharing,
523
        dec_inputs,
524 525 526 527
        enc_output, )

    # Padding index do not contribute to the total loss. The weights is used to
    # cancel padding index in calculating the loss.
528 529 530 531 532
    if label_smooth_eps:
        label = layers.label_smooth(
            label=layers.one_hot(
                input=label, depth=trg_vocab_size),
            epsilon=label_smooth_eps)
533

534
    cost = layers.softmax_with_cross_entropy(
535
        logits=predict,
536 537
        label=label,
        soft_label=True if label_smooth_eps else False)
538
    weighted_cost = cost * weights
G
guosheng 已提交
539 540
    sum_cost = layers.reduce_sum(weighted_cost)
    token_num = layers.reduce_sum(weights)
541
    token_num.stop_gradient = True
G
guosheng 已提交
542
    avg_cost = sum_cost / token_num
543
    return sum_cost, avg_cost, predict, token_num, reader if use_py_reader else None
544 545 546 547 548 549 550 551 552 553


def wrap_encoder(src_vocab_size,
                 max_length,
                 n_layer,
                 n_head,
                 d_key,
                 d_value,
                 d_model,
                 d_inner_hid,
554 555 556 557 558
                 prepostprocess_dropout,
                 attention_dropout,
                 relu_dropout,
                 preprocess_cmd,
                 postprocess_cmd,
G
guosheng 已提交
559
                 weight_sharing,
560
                 enc_inputs=None):
561 562 563
    """
    The wrapper assembles together all needed layers for the encoder.
    """
564
    if enc_inputs is None:
565
        # This is used to implement independent encoder program in inference.
566 567
        src_word, src_pos, src_slf_attn_bias = make_all_inputs(
            encoder_data_input_fields)
568
    else:
569
        src_word, src_pos, src_slf_attn_bias = enc_inputs
Y
ying 已提交
570 571 572 573 574 575
    enc_input = prepare_encoder(
        src_word,
        src_pos,
        src_vocab_size,
        d_model,
        max_length,
576
        prepostprocess_dropout,
G
guosheng 已提交
577
        word_emb_param_name=word_emb_param_names[0])
578 579 580 581 582 583 584 585 586 587 588 589 590 591
    enc_output = encoder(
        enc_input,
        src_slf_attn_bias,
        n_layer,
        n_head,
        d_key,
        d_value,
        d_model,
        d_inner_hid,
        prepostprocess_dropout,
        attention_dropout,
        relu_dropout,
        preprocess_cmd,
        postprocess_cmd, )
592 593 594 595 596 597 598 599 600 601 602
    return enc_output


def wrap_decoder(trg_vocab_size,
                 max_length,
                 n_layer,
                 n_head,
                 d_key,
                 d_value,
                 d_model,
                 d_inner_hid,
603 604 605 606 607
                 prepostprocess_dropout,
                 attention_dropout,
                 relu_dropout,
                 preprocess_cmd,
                 postprocess_cmd,
G
guosheng 已提交
608
                 weight_sharing,
609
                 dec_inputs=None,
610 611
                 enc_output=None,
                 caches=None):
612 613 614
    """
    The wrapper assembles together all needed layers for the decoder.
    """
615
    if dec_inputs is None:
616
        # This is used to implement independent decoder program in inference.
617 618
        trg_word, trg_pos, trg_slf_attn_bias, trg_src_attn_bias, enc_output = \
            make_all_inputs(decoder_data_input_fields)
619
    else:
620
        trg_word, trg_pos, trg_slf_attn_bias, trg_src_attn_bias = dec_inputs
Y
ying 已提交
621 622 623 624 625 626 627

    dec_input = prepare_decoder(
        trg_word,
        trg_pos,
        trg_vocab_size,
        d_model,
        max_length,
628
        prepostprocess_dropout,
G
guosheng 已提交
629 630
        word_emb_param_name=word_emb_param_names[0]
        if weight_sharing else word_emb_param_names[1])
Y
ying 已提交
631 632 633 634 635 636 637 638 639 640 641
    dec_output = decoder(
        dec_input,
        enc_output,
        trg_slf_attn_bias,
        trg_src_attn_bias,
        n_layer,
        n_head,
        d_key,
        d_value,
        d_model,
        d_inner_hid,
642 643 644 645 646
        prepostprocess_dropout,
        attention_dropout,
        relu_dropout,
        preprocess_cmd,
        postprocess_cmd,
Y
Yu Yang 已提交
647
        caches=caches)
648
    # Reshape to 2D tensor to use GEMM instead of BatchedGEMM
649 650
    dec_output = layers.reshape(
        dec_output, shape=[-1, dec_output.shape[-1]], inplace=True)
G
guosheng 已提交
651
    if weight_sharing:
652 653
        predict = layers.matmul(
            x=dec_output,
C
chengduoZH 已提交
654 655
            y=fluid.default_main_program().global_block().var(
                word_emb_param_names[0]),
656
            transpose_y=True)
G
guosheng 已提交
657
    else:
658 659 660
        predict = layers.fc(input=dec_output,
                            size=trg_vocab_size,
                            bias_attr=False,
Y
Fix bug  
Yu Yang 已提交
661 662
                            num_flatten_dims=2)
    if dec_inputs is None:
663
        # Return probs for independent decoder program.
Y
Fix bug  
Yu Yang 已提交
664
        predict = layers.softmax(predict)
665
    return predict
666 667 668 669 670 671 672 673 674 675 676 677


def fast_decode(
        src_vocab_size,
        trg_vocab_size,
        max_in_len,
        n_layer,
        n_head,
        d_key,
        d_value,
        d_model,
        d_inner_hid,
678 679 680 681 682
        prepostprocess_dropout,
        attention_dropout,
        relu_dropout,
        preprocess_cmd,
        postprocess_cmd,
683
        weight_sharing,
684 685 686
        beam_size,
        max_out_len,
        eos_idx, ):
687 688 689 690
    """
    Use beam search to decode. Caches will be used to store states of history
    steps which can make the decoding faster.
    """
691 692 693 694 695 696
    enc_output = wrap_encoder(
        src_vocab_size, max_in_len, n_layer, n_head, d_key, d_value, d_model,
        d_inner_hid, prepostprocess_dropout, attention_dropout, relu_dropout,
        preprocess_cmd, postprocess_cmd, weight_sharing)
    start_tokens, init_scores, trg_src_attn_bias = make_all_inputs(
        fast_decoder_data_input_fields)
697 698 699

    def beam_search():
        max_len = layers.fill_constant(
700 701 702 703 704
            shape=[1], dtype=start_tokens.dtype, value=max_out_len)
        step_idx = layers.fill_constant(
            shape=[1], dtype=start_tokens.dtype, value=0)
        cond = layers.less_than(x=step_idx, y=max_len)
        while_op = layers.While(cond)
705
        # array states will be stored for each step.
Y
Yu Yang 已提交
706
        ids = layers.array_write(
Y
Yu Yang 已提交
707
            layers.reshape(start_tokens, (-1, 1)), step_idx)
708
        scores = layers.array_write(init_scores, step_idx)
709 710 711
        # cell states will be overwrited at each step.
        # caches contains states of history steps to reduce redundant
        # computation in decoder.
712 713 714 715
        caches = [{
            "k": layers.fill_constant_batch_size_like(
                input=start_tokens,
                shape=[-1, 0, d_model],
716
                dtype=enc_output.dtype,
717 718 719 720
                value=0),
            "v": layers.fill_constant_batch_size_like(
                input=start_tokens,
                shape=[-1, 0, d_model],
721
                dtype=enc_output.dtype,
722 723 724 725
                value=0)
        } for i in range(n_layer)]
        with while_op.block():
            pre_ids = layers.array_read(array=ids, i=step_idx)
Y
Yu Yang 已提交
726
            pre_ids = layers.reshape(pre_ids, (-1, 1, 1))
727
            pre_scores = layers.array_read(array=scores, i=step_idx)
728 729
            # sequence_expand can gather sequences according to lod thus can be
            # used in beam search to sift states corresponding to selected ids.
730
            pre_src_attn_bias = layers.sequence_expand(
731 732
                x=trg_src_attn_bias, y=pre_scores)
            pre_enc_output = layers.sequence_expand(x=enc_output, y=pre_scores)
733 734
            pre_caches = [{
                "k": layers.sequence_expand(
735
                    x=cache["k"], y=pre_scores),
736
                "v": layers.sequence_expand(
737
                    x=cache["v"], y=pre_scores),
738
            } for cache in caches]
739 740 741 742
            pre_pos = layers.elementwise_mul(
                x=layers.fill_constant_batch_size_like(
                    input=pre_enc_output,  # cann't use pre_ids here since it has lod
                    value=1,
Y
Yu Yang 已提交
743
                    shape=[-1, 1, 1],
744
                    dtype=pre_ids.dtype),
745
                y=step_idx,
746
                axis=0)
747 748 749 750 751 752 753 754 755
            logits = wrap_decoder(
                trg_vocab_size,
                max_in_len,
                n_layer,
                n_head,
                d_key,
                d_value,
                d_model,
                d_inner_hid,
756 757 758 759 760
                prepostprocess_dropout,
                attention_dropout,
                relu_dropout,
                preprocess_cmd,
                postprocess_cmd,
761
                weight_sharing,
Y
Yu Yang 已提交
762
                dec_inputs=(pre_ids, pre_pos, None, pre_src_attn_bias),
763 764
                enc_output=pre_enc_output,
                caches=pre_caches)
Y
Yu Yang 已提交
765

766 767
            topk_scores, topk_indices = layers.topk(
                input=layers.softmax(logits), k=beam_size)
768
            accu_scores = layers.elementwise_add(
769
                x=layers.log(topk_scores),
770 771 772 773 774
                y=layers.reshape(
                    pre_scores, shape=[-1]),
                axis=0)
            # beam_search op uses lod to distinguish branches.
            topk_indices = layers.lod_reset(topk_indices, pre_ids)
775 776
            selected_ids, selected_scores = layers.beam_search(
                pre_ids=pre_ids,
777
                pre_scores=pre_scores,
778 779 780 781
                ids=topk_indices,
                scores=accu_scores,
                beam_size=beam_size,
                end_id=eos_idx)
Y
Yu Yang 已提交
782

783 784
            layers.increment(x=step_idx, value=1.0, in_place=True)
            # update states
785 786
            layers.array_write(selected_ids, i=step_idx, array=ids)
            layers.array_write(selected_scores, i=step_idx, array=scores)
787 788 789 790 791
            layers.assign(pre_src_attn_bias, trg_src_attn_bias)
            layers.assign(pre_enc_output, enc_output)
            for i in range(n_layer):
                layers.assign(pre_caches[i]["k"], caches[i]["k"])
                layers.assign(pre_caches[i]["v"], caches[i]["v"])
792 793 794
            length_cond = layers.less_than(x=step_idx, y=max_len)
            finish_cond = layers.logical_not(layers.is_empty(x=selected_ids))
            layers.logical_and(x=length_cond, y=finish_cond, out=cond)
795

796
        finished_ids, finished_scores = layers.beam_search_decode(
Y
Yu Yang 已提交
797
            ids, scores, beam_size=beam_size, end_id=eos_idx)
798 799 800 801
        return finished_ids, finished_scores

    finished_ids, finished_scores = beam_search()
    return finished_ids, finished_scores