c_gan.py 6.8 KB
Newer Older
W
whs 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

W
whs 已提交
15 16 17
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
W
whs 已提交
18 19
import sys
import os
W
whs 已提交
20
import six
W
whs 已提交
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46
import argparse
import functools
import matplotlib
import numpy as np
import paddle
import paddle.fluid as fluid
from utility import get_parent_function_name, plot, check, add_arguments, print_arguments
from network import G_cond, D_cond
matplotlib.use('agg')
import matplotlib.pyplot as plt
import matplotlib.gridspec as gridspec

NOISE_SIZE = 100
LEARNING_RATE = 2e-4

parser = argparse.ArgumentParser(description=__doc__)
add_arg = functools.partial(add_arguments, argparser=parser)
# yapf: disable
add_arg('batch_size',        int,   121,          "Minibatch size.")
add_arg('epoch',             int,   20,        "The number of epoched to be trained.")
add_arg('output',            str,   "./output", "The directory the model and the test result to be saved to.")
add_arg('use_gpu',           bool,  True,       "Whether to use GPU to train.")
# yapf: enable


def loss(x, label):
47 48 49
    return fluid.layers.mean(
        fluid.layers.sigmoid_cross_entropy_with_logits(
            x=x, label=label))
W
whs 已提交
50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75


def train(args):

    d_program = fluid.Program()
    dg_program = fluid.Program()

    with fluid.program_guard(d_program):
        conditions = fluid.layers.data(
            name='conditions', shape=[1], dtype='float32')
        img = fluid.layers.data(name='img', shape=[784], dtype='float32')
        label = fluid.layers.data(name='label', shape=[1], dtype='float32')
        d_logit = D_cond(img, conditions)
        d_loss = loss(d_logit, label)

    with fluid.program_guard(dg_program):
        conditions = fluid.layers.data(
            name='conditions', shape=[1], dtype='float32')
        noise = fluid.layers.data(
            name='noise', shape=[NOISE_SIZE], dtype='float32')
        g_img = G_cond(z=noise, y=conditions)

        g_program = dg_program.clone()
        g_program_test = dg_program.clone(for_test=True)

        dg_logit = D_cond(g_img, conditions)
76 77 78 79
        dg_loss = loss(
            dg_logit,
            fluid.layers.fill_constant_batch_size_like(
                input=noise, dtype='float32', shape=[-1, 1], value=1.0))
W
whs 已提交
80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108

    opt = fluid.optimizer.Adam(learning_rate=LEARNING_RATE)

    opt.minimize(loss=d_loss)
    parameters = [p.name for p in g_program.global_block().all_parameters()]

    opt.minimize(loss=dg_loss, parameter_list=parameters)

    exe = fluid.Executor(fluid.CPUPlace())
    if args.use_gpu:
        exe = fluid.Executor(fluid.CUDAPlace(0))
    exe.run(fluid.default_startup_program())

    train_reader = paddle.batch(
        paddle.reader.shuffle(
            paddle.dataset.mnist.train(), buf_size=60000),
        batch_size=args.batch_size)

    NUM_TRAIN_TIMES_OF_DG = 2
    const_n = np.random.uniform(
        low=-1.0, high=1.0,
        size=[args.batch_size, NOISE_SIZE]).astype('float32')
    for pass_id in range(args.epoch):
        for batch_id, data in enumerate(train_reader()):
            if len(data) != args.batch_size:
                continue
            noise_data = np.random.uniform(
                low=-1.0, high=1.0,
                size=[args.batch_size, NOISE_SIZE]).astype('float32')
W
whs 已提交
109
            real_image = np.array(list(map(lambda x: x[0], data))).reshape(
W
whs 已提交
110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
                -1, 784).astype('float32')
            conditions_data = np.array([x[1] for x in data]).reshape(
                [-1, 1]).astype("float32")
            real_labels = np.ones(
                shape=[real_image.shape[0], 1], dtype='float32')
            fake_labels = np.zeros(
                shape=[real_image.shape[0], 1], dtype='float32')
            total_label = np.concatenate([real_labels, fake_labels])

            generated_image = exe.run(
                g_program,
                feed={'noise': noise_data,
                      'conditions': conditions_data},
                fetch_list={g_img})[0]

            total_images = np.concatenate([real_image, generated_image])

            d_loss_1 = exe.run(d_program,
                               feed={
                                   'img': generated_image,
                                   'label': fake_labels,
                                   'conditions': conditions_data
                               },
                               fetch_list={d_loss})

            d_loss_2 = exe.run(d_program,
                               feed={
                                   'img': real_image,
                                   'label': real_labels,
                                   'conditions': conditions_data
                               },
                               fetch_list={d_loss})

            d_loss_np = [d_loss_1[0][0], d_loss_2[0][0]]

W
whs 已提交
145
            for _ in six.moves.xrange(NUM_TRAIN_TIMES_OF_DG):
W
whs 已提交
146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
                noise_data = np.random.uniform(
                    low=-1.0, high=1.0,
                    size=[args.batch_size, NOISE_SIZE]).astype('float32')
                dg_loss_np = exe.run(
                    dg_program,
                    feed={'noise': noise_data,
                          'conditions': conditions_data},
                    fetch_list={dg_loss})[0]
            if batch_id % 10 == 0:
                if not os.path.exists(args.output):
                    os.makedirs(args.output)
                # generate image each batch
                generated_images = exe.run(
                    g_program_test,
                    feed={'noise': const_n,
                          'conditions': conditions_data},
                    fetch_list={g_img})[0]
                total_images = np.concatenate([real_image, generated_images])
                fig = plot(total_images)
                msg = "Epoch ID={0}\n Batch ID={1}\n D-Loss={2}\n DG-Loss={3}\n gen={4}".format(
W
whs 已提交
166 167 168
                    pass_id, batch_id,
                    np.sum(d_loss_np),
                    np.sum(dg_loss_np), check(generated_images))
W
whs 已提交
169 170 171 172 173 174 175 176 177 178 179 180 181
                print(msg)
                plt.title(msg)
                plt.savefig(
                    '{}/{:04d}_{:04d}.png'.format(args.output, pass_id,
                                                  batch_id),
                    bbox_inches='tight')
                plt.close(fig)


if __name__ == "__main__":
    args = parser.parse_args()
    print_arguments(args)
    train(args)