infer.py 8.5 KB
Newer Older
Z
zhangwenhui03 已提交
1 2
import argparse
import sys
3
import time
Z
zhangwenhui03 已提交
4 5 6
import math
import unittest
import contextlib
7
import numpy as np
Z
zhangwenhui03 已提交
8 9 10 11 12
import six
import paddle.fluid as fluid
import paddle
import net
import utils
13 14 15


def parse_args():
Z
zhangwenhui03 已提交
16
    parser = argparse.ArgumentParser("PaddlePaddle Word2vec infer example")
17 18 19
    parser.add_argument(
        '--dict_path',
        type=str,
Z
zhangwenhui03 已提交
20 21
        default='./data/data_c/1-billion_dict_word_to_id_',
        help="The path of dic")
22
    parser.add_argument(
Z
zhangwenhui03 已提交
23
        '--infer_epoch',
24 25 26
        action='store_true',
        required=False,
        default=False,
Z
zhangwenhui03 已提交
27
        help='infer by epoch')
28
    parser.add_argument(
Z
zhangwenhui03 已提交
29
        '--infer_step',
30 31
        action='store_true',
        required=False,
J
JiabinYang 已提交
32
        default=False,
Z
zhangwenhui03 已提交
33
        help='infer by step')
34
    parser.add_argument(
Z
zhangwenhui03 已提交
35
        '--test_dir', type=str, default='test_data', help='test file address')
36
    parser.add_argument(
Z
zhangwenhui03 已提交
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62
        '--print_step', type=int, default='500000', help='print step')
    parser.add_argument(
        '--start_index', type=int, default='0', help='start index')
    parser.add_argument(
        '--start_batch', type=int, default='1', help='start index')
    parser.add_argument(
        '--end_batch', type=int, default='13', help='start index')
    parser.add_argument(
        '--last_index', type=int, default='100', help='last index')
    parser.add_argument(
        '--model_dir', type=str, default='model', help='model dir')
    parser.add_argument(
        '--use_cuda', type=int, default='0', help='whether use cuda')
    parser.add_argument(
        '--batch_size', type=int, default='5', help='batch_size')
    parser.add_argument('--emb_size', type=int, default='64', help='batch_size')
    args = parser.parse_args()
    return args


def infer_epoch(args, vocab_size, test_reader, use_cuda, i2w):
    """ inference function """
    place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
    exe = fluid.Executor(place)
    emb_size = args.emb_size
    batch_size = args.batch_size
Y
Yibing Liu 已提交
63
    with fluid.scope_guard(fluid.Scope()):
Z
zhangwenhui03 已提交
64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
        main_program = fluid.Program()
        with fluid.program_guard(main_program):
            values, pred = net.infer_network(vocab_size, emb_size)
            for epoch in range(start_index, last_index + 1):
                copy_program = main_program.clone()
                model_path = model_dir + "/pass-" + str(epoch)
                fluid.io.load_params(
                    executor=exe, dirname=model_path, main_program=copy_program)
                accum_num = 0
                accum_num_sum = 0.0
                t0 = time.time()
                step_id = 0
                for data in test_reader():
                    step_id += 1
                    b_size = len([dat[0] for dat in data])
                    wa = np.array(
                        [dat[0] for dat in data]).astype("int64").reshape(
                            b_size, 1)
                    wb = np.array(
                        [dat[1] for dat in data]).astype("int64").reshape(
                            b_size, 1)
                    wc = np.array(
                        [dat[2] for dat in data]).astype("int64").reshape(
                            b_size, 1)

                    label = [dat[3] for dat in data]
                    input_word = [dat[4] for dat in data]
91 92 93 94 95 96 97 98 99 100 101
                    para = exe.run(copy_program,
                                   feed={
                                       "analogy_a": wa,
                                       "analogy_b": wb,
                                       "analogy_c": wc,
                                       "all_label":
                                       np.arange(vocab_size).reshape(
                                           vocab_size, 1).astype("int64"),
                                   },
                                   fetch_list=[pred.name, values],
                                   return_numpy=False)
Z
zhangwenhui03 已提交
102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125
                    pre = np.array(para[0])
                    val = np.array(para[1])
                    for ii in range(len(label)):
                        top4 = pre[ii]
                        accum_num_sum += 1
                        for idx in top4:
                            if int(idx) in input_word[ii]:
                                continue
                            if int(idx) == int(label[ii][0]):
                                accum_num += 1
                            break
                    if step_id % 1 == 0:
                        print("step:%d %d " % (step_id, accum_num))

                print("epoch:%d \t acc:%.3f " %
                      (epoch, 1.0 * accum_num / accum_num_sum))


def infer_step(args, vocab_size, test_reader, use_cuda, i2w):
    """ inference function """
    place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
    exe = fluid.Executor(place)
    emb_size = args.emb_size
    batch_size = args.batch_size
Y
Yibing Liu 已提交
126
    with fluid.scope_guard(fluid.Scope()):
Z
zhangwenhui03 已提交
127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187
        main_program = fluid.Program()
        with fluid.program_guard(main_program):
            values, pred = net.infer_network(vocab_size, emb_size)
            for epoch in range(start_index, last_index + 1):
                for batchid in range(args.start_batch, args.end_batch):
                    copy_program = main_program.clone()
                    model_path = model_dir + "/pass-" + str(epoch) + (
                        '/batch-' + str(batchid * args.print_step))
                    fluid.io.load_params(
                        executor=exe,
                        dirname=model_path,
                        main_program=copy_program)
                    accum_num = 0
                    accum_num_sum = 0.0
                    t0 = time.time()
                    step_id = 0
                    for data in test_reader():
                        step_id += 1
                        b_size = len([dat[0] for dat in data])
                        wa = np.array(
                            [dat[0] for dat in data]).astype("int64").reshape(
                                b_size, 1)
                        wb = np.array(
                            [dat[1] for dat in data]).astype("int64").reshape(
                                b_size, 1)
                        wc = np.array(
                            [dat[2] for dat in data]).astype("int64").reshape(
                                b_size, 1)

                        label = [dat[3] for dat in data]
                        input_word = [dat[4] for dat in data]
                        para = exe.run(
                            copy_program,
                            feed={
                                "analogy_a": wa,
                                "analogy_b": wb,
                                "analogy_c": wc,
                                "all_label":
                                np.arange(vocab_size).reshape(vocab_size, 1),
                            },
                            fetch_list=[pred.name, values],
                            return_numpy=False)
                        pre = np.array(para[0])
                        val = np.array(para[1])
                        for ii in range(len(label)):
                            top4 = pre[ii]
                            accum_num_sum += 1
                            for idx in top4:
                                if int(idx) in input_word[ii]:
                                    continue
                                if int(idx) == int(label[ii][0]):
                                    accum_num += 1
                                break
                        if step_id % 1 == 0:
                            print("step:%d %d " % (step_id, accum_num))
                    print("epoch:%d \t acc:%.3f " %
                          (epoch, 1.0 * accum_num / accum_num_sum))
                    t1 = time.time()


if __name__ == "__main__":
188
    args = parse_args()
Z
zhangwenhui03 已提交
189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206
    start_index = args.start_index
    last_index = args.last_index
    test_dir = args.test_dir
    model_dir = args.model_dir
    batch_size = args.batch_size
    dict_path = args.dict_path
    use_cuda = True if args.use_cuda else False
    print("start index: ", start_index, " last_index:", last_index)
    vocab_size, test_reader, id2word = utils.prepare_data(
        test_dir, dict_path, batch_size=batch_size)
    print("vocab_size:", vocab_size)
    if args.infer_step:
        infer_step(
            args,
            vocab_size,
            test_reader=test_reader,
            use_cuda=use_cuda,
            i2w=id2word)
J
JiabinYang 已提交
207
    else:
Z
zhangwenhui03 已提交
208 209 210 211 212 213
        infer_epoch(
            args,
            vocab_size,
            test_reader=test_reader,
            use_cuda=use_cuda,
            i2w=id2word)