infer.py 5.5 KB
Newer Older
Z
add ssr  
zhangwenhui03 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
import sys
import argparse
import time
import math
import unittest
import contextlib
import numpy as np
import six
import paddle.fluid as fluid
import paddle
import utils
import nets as net


def parse_args():
    parser = argparse.ArgumentParser("ssr benchmark.")
    parser.add_argument(
        '--test_dir', type=str, default='test_data', help='test file address')
    parser.add_argument(
        '--vocab_path', type=str, default='vocab.txt', help='vocab path')
    parser.add_argument(
        '--start_index', type=int, default='1', help='start index')
    parser.add_argument(
        '--last_index', type=int, default='10', help='end index')
    parser.add_argument(
        '--model_dir', type=str, default='model_output', help='model dir')
    parser.add_argument(
        '--use_cuda', type=int, default='0', help='whether use cuda')
    parser.add_argument(
        '--batch_size', type=int, default='50', help='batch_size')
    parser.add_argument(
        '--hid_size', type=int, default='128', help='hidden size')
Z
zhangwenhui03 已提交
33 34
    parser.add_argument(
        '--emb_size', type=int, default='128', help='embedding size')
Z
add ssr  
zhangwenhui03 已提交
35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78
    args = parser.parse_args()
    return args


def model(vocab_size, emb_size, hidden_size):
    user_data = fluid.layers.data(
        name="user", shape=[1], dtype="int64", lod_level=1)
    all_item_data = fluid.layers.data(
        name="all_item", shape=[vocab_size, 1], dtype="int64")

    user_emb = fluid.layers.embedding(
        input=user_data, size=[vocab_size, emb_size], param_attr="emb.item")
    all_item_emb = fluid.layers.embedding(
        input=all_item_data, size=[vocab_size, emb_size], param_attr="emb.item")
    all_item_emb_re = fluid.layers.reshape(x=all_item_emb, shape=[-1, emb_size])

    user_encoder = net.GrnnEncoder(hidden_size=hidden_size)
    user_enc = user_encoder.forward(user_emb)
    user_hid = fluid.layers.fc(input=user_enc,
                               size=hidden_size,
                               param_attr='user.w',
                               bias_attr="user.b")
    user_exp = fluid.layers.expand(x=user_hid, expand_times=[1, vocab_size])
    user_re = fluid.layers.reshape(x=user_exp, shape=[-1, hidden_size])

    all_item_hid = fluid.layers.fc(input=all_item_emb_re,
                                   size=hidden_size,
                                   param_attr='item.w',
                                   bias_attr="item.b")
    cos_item = fluid.layers.cos_sim(X=all_item_hid, Y=user_re)
    all_pre_ = fluid.layers.reshape(x=cos_item, shape=[-1, vocab_size])
    pos_label = fluid.layers.data(name="pos_label", shape=[1], dtype="int64")
    acc = fluid.layers.accuracy(input=all_pre_, label=pos_label, k=20)
    return acc


def infer(args, vocab_size, test_reader):
    """ inference function """
    place = fluid.CUDAPlace(0) if args.use_cuda else fluid.CPUPlace()
    exe = fluid.Executor(place)
    emb_size = args.emb_size
    hid_size = args.hid_size
    batch_size = args.batch_size
    model_path = args.model_dir
Y
Yibing Liu 已提交
79
    with fluid.scope_guard(fluid.Scope()):
Z
add ssr  
zhangwenhui03 已提交
80 81 82 83
        main_program = fluid.Program()
        start_up_program = fluid.Program()
        with fluid.program_guard(main_program, start_up_program):
            acc = model(vocab_size, emb_size, hid_size)
Z
fix bug  
zhangwenhui03 已提交
84
            for epoch in range(start_index, last_index + 1):
Z
add ssr  
zhangwenhui03 已提交
85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
                copy_program = main_program.clone()
                model_path = model_dir + "/epoch_" + str(epoch)
                fluid.io.load_params(
                    executor=exe, dirname=model_path, main_program=copy_program)
                accum_num_recall = 0.0
                accum_num_sum = 0.0
                t0 = time.time()
                step_id = 0
                for data in test_reader():
                    step_id += 1
                    user_data, pos_label = utils.infer_data(data, place)
                    all_item_numpy = np.tile(
                        np.arange(vocab_size), len(pos_label)).reshape(
                            len(pos_label), vocab_size, 1)
                    para = exe.run(copy_program,
                                   feed={
                                       "user": user_data,
                                       "all_item": all_item_numpy,
                                       "pos_label": pos_label
                                   },
                                   fetch_list=[acc.name],
                                   return_numpy=False)

                    acc_ = para[0]._get_float_element(0)
                    data_length = len(
                        np.concatenate(
                            pos_label, axis=0).astype("int64"))
                    accum_num_sum += (data_length)
                    accum_num_recall += (data_length * acc_)
                    if step_id % 1 == 0:
                        print("step:%d  " % (step_id),
                              accum_num_recall / accum_num_sum)
                t1 = time.time()
                print("model:%s recall@20:%.3f time_cost(s):%.2f" %
                      (model_path, accum_num_recall / accum_num_sum, t1 - t0))


if __name__ == "__main__":
    args = parse_args()
    start_index = args.start_index
    last_index = args.last_index
    test_dir = args.test_dir
    model_dir = args.model_dir
    batch_size = args.batch_size
    vocab_path = args.vocab_path
    use_cuda = True if args.use_cuda else False
    print("start index: ", start_index, " last_index:", last_index)
    test_reader, vocab_size = utils.construct_test_data(
        test_dir, vocab_path, batch_size=args.batch_size)
    infer(args, vocab_size, test_reader=test_reader)