cluster_train.py 6.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197
import argparse
import os
import sys
import time
from collections import OrderedDict

import paddle.fluid as fluid

from network import DCN


def parse_args():
    parser = argparse.ArgumentParser("dcn cluster train.")
    parser.add_argument(
        '--train_data_dir',
        type=str,
        default='dist_data/dist_train_data',
        help='The path of train data')
    parser.add_argument(
        '--test_valid_data_dir',
        type=str,
        default='dist_data/dist_test_valid_data',
        help='The path of test and valid data')
    parser.add_argument(
        '--vocab_dir',
        type=str,
        default='dist_data/vocab',
        help='The path of generated vocabs')
    parser.add_argument(
        '--cat_feat_num',
        type=str,
        default='dist_data/cat_feature_num.txt',
        help='The path of generated cat_feature_num.txt')
    parser.add_argument(
        '--batch_size', type=int, default=512, help="Batch size")
    parser.add_argument('--num_epoch', type=int, default=10, help="train epoch")
    parser.add_argument(
        '--model_output_dir',
        type=str,
        default='models',
        help='The path for model to store')
    parser.add_argument(
        '--num_thread', type=int, default=1, help='The number of threads')
    parser.add_argument('--test_epoch', type=str, default='1')
    parser.add_argument(
        '--dnn_hidden_units',
        nargs='+',
        type=int,
        default=[1024, 1024],
        help='DNN layers and hidden units')
    parser.add_argument(
        '--cross_num',
        type=int,
        default=6,
        help='The number of Cross network layers')
    parser.add_argument('--lr', type=float, default=1e-4, help='Learning rate')
    parser.add_argument(
        '--l2_reg_cross',
        type=float,
        default=1e-5,
        help='Cross net l2 regularizer coefficient')
    parser.add_argument(
        '--use_bn',
        type=bool,
        default=True,
        help='Whether use batch norm in dnn part')
    parser.add_argument(
        '--is_sparse',
        action='store_true',
        required=False,
        default=False,
        help='embedding will use sparse or not, (default: False)')
    parser.add_argument(
        '--clip_by_norm', type=float, default=100.0, help="gradient clip norm")
    parser.add_argument('--print_steps', type=int, default=5)
    parser.add_argument('--use_gpu', type=int, default=1)

    # dist params
    parser.add_argument('--is_local', type=int, default=1, help='whether local')
    parser.add_argument(
        '--num_devices', type=int, default=1, help='Number of GPU devices')
    parser.add_argument(
        '--role', type=str, default='pserver', help='trainer or pserver')
    parser.add_argument(
        '--endpoints',
        type=str,
        default='127.0.0.1:6000',
        help='The pserver endpoints, like: 127.0.0.1:6000, 127.0.0.1:6001')
    parser.add_argument(
        '--current_endpoint',
        type=str,
        default='127.0.0.1:6000',
        help='The current_endpoint')
    parser.add_argument(
        '--trainer_id',
        type=int,
        default=0,
        help='trainer id ,only trainer_id=0 save model')
    parser.add_argument(
        '--trainers',
        type=int,
        default=1,
        help='The num of trianers, (default: 1)')
    args = parser.parse_args()
    return args


def train():
    """ do training """
    args = parse_args()
    print(args)

    if args.trainer_id == 0 and not os.path.isdir(args.model_output_dir):
        os.mkdir(args.model_output_dir)

    cat_feat_dims_dict = OrderedDict()
    for line in open(args.cat_feat_num):
        spls = line.strip().split()
        assert len(spls) == 2
        cat_feat_dims_dict[spls[0]] = int(spls[1])

    dcn_model = DCN(args.cross_num, args.dnn_hidden_units, args.l2_reg_cross,
                    args.use_bn, args.clip_by_norm, cat_feat_dims_dict,
                    args.is_sparse)
    dcn_model.build_network()
    optimizer = fluid.optimizer.Adam(learning_rate=args.lr)
    optimizer.minimize(dcn_model.loss)

    def train_loop(main_program):
        """ train network """
        start_time = time.time()
        dataset = fluid.DatasetFactory().create_dataset()
        dataset.set_use_var(dcn_model.data_list)
        pipe_command = 'python reader.py {}'.format(args.vocab_dir)
        dataset.set_pipe_command(pipe_command)
        dataset.set_batch_size(args.batch_size)
        dataset.set_thread(args.num_thread)
        train_filelist = [
            os.path.join(args.train_data_dir, fname)
            for fname in next(os.walk(args.train_data_dir))[2]
        ]
        dataset.set_filelist(train_filelist)

        if args.use_gpu == 1:
            exe = fluid.Executor(fluid.CUDAPlace(0))
            dataset.set_thread(1)
        else:
            exe = fluid.Executor(fluid.CPUPlace())
            dataset.set_thread(args.num_thread)
        exe.run(fluid.default_startup_program())

        for epoch_id in range(args.num_epoch):
            start = time.time()
            sys.stderr.write('\nepoch%d start ...\n' % (epoch_id + 1))
            exe.train_from_dataset(
                program=main_program,
                dataset=dataset,
                fetch_list=[
                    dcn_model.loss, dcn_model.avg_logloss, dcn_model.auc_var
                ],
                fetch_info=['total_loss', 'avg_logloss', 'auc'],
                debug=False,
                print_period=args.print_steps)
            model_dir = args.model_output_dir + '/epoch_' + str(epoch_id + 1)
            sys.stderr.write('epoch%d is finished and takes %f s\n' % (
                (epoch_id + 1), time.time() - start))
            if args.trainer_id == 0:  # only trainer 0 save model
                print("save model in {}".format(model_dir))
                fluid.io.save_persistables(
                    executor=exe, dirname=model_dir, main_program=main_program)

        print("train time cost {:.4f}".format(time.time() - start_time))
        print("finish training")

    if args.is_local:
        print("run local training")
        train_loop(fluid.default_main_program())
    else:
        print("run distribute training")
        t = fluid.DistributeTranspiler()
        t.transpile(
            args.trainer_id, pservers=args.endpoints, trainers=args.trainers)
        if args.role == "pserver":
            print("run psever")
            pserver_prog, pserver_startup = t.get_pserver_programs(
                args.current_endpoint)

            exe = fluid.Executor(fluid.CPUPlace())
            exe.run(pserver_startup)
            exe.run(pserver_prog)
        elif args.role == "trainer":
            print("run trainer")
            train_loop(t.get_trainer_program())


if __name__ == "__main__":
    train()