bleu.py 6.6 KB
Newer Older
Z
Zeyu Chen 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import math
import sys
from collections import defaultdict


def get_match_size(cand_ngram, refs_ngram):
    ref_set = defaultdict(int)
    for ref_ngram in refs_ngram:
        tmp_ref_set = defaultdict(int)
        for ngram in ref_ngram:
            tmp_ref_set[ngram] += tmp_ref_set.get(ngram, 0) + 1
        for ngram, count in tmp_ref_set.items():
            ref_set[ngram] = max(ref_set[ngram], count)
    cand_set = defaultdict(int)
    for ngram in cand_ngram:
        cand_set[ngram] += 1
    match_size = 0
    for ngram, count in cand_set.items():
        match_size += min(count, ref_set.get(ngram, 0))
    cand_size = len(cand_ngram)
    return match_size, cand_size


def get_ngram(sent, n_size, label=None):
    def _ngram(sent, n_size):
        ngram_list = []
        for left in range(len(sent) - n_size):
            ngram_list.append(sent[left:left + n_size + 1])
        return ngram_list

    ngram_list = _ngram(sent, n_size)
    if label is not None:
        ngram_list = [ngram + '_' + label for ngram in ngram_list]
    return ngram_list


class BLEU(object):
    r'''
    BLEU (bilingual evaluation understudy) is an algorithm for evaluating the quality of
    text which has been machine-translated from one natural language to another. This metric
    uses a modified form of precision to compare a candidate translation against multiple
    reference translations.

    .. math::

        BP & =
        \begin{cases} 
        1,  & \text{if }c>r \\
        e_{1-r/c}, & \text{if }c\leq r
        \end{cases}

        BLEU & = BP\exp(\sum_{n=1}^N w_{n} \log{p_{n}})

    where `c` is the length of candidate sentence, and 'r' is the length of refrence sentence.

    Args:
        n_size (int): Number of gram for BLEU metric. Default: 4.
        weights (list, optional): The weights of precision of each gram. Default: None.  
    '''

    def __init__(self, n_size=4, weights=None):
        if not weights:
            weights = [1 / n_size for _ in range(n_size)]

        assert len(weights) == n_size, (
            "Number of weights and n-gram should be the same, got Number of weights: '%d' and n-gram: '%d'"
            % (len(weights), n_size))

        self.match_ngram = {}
        self.candi_ngram = {}
        self.weights = weights
        self.bp_r = 0
        self.bp_c = 0
        self.n_size = n_size

    def add_inst(self, cand, ref_list):
        '''
        Update the states based on the a pair of candidate and references.

        Args:
            cand (str): The candidate sentence generated by model.
            ref_list (list): List of ground truth sentences.
        '''
        for n_size in range(self.n_size):
            self.count_ngram(cand, ref_list, n_size)
        self.count_bp(cand, ref_list)

    def count_ngram(self, cand, ref_list, n_size):
        cand_ngram = get_ngram(cand, n_size)
        refs_ngram = []
        for ref in ref_list:
            refs_ngram.append(get_ngram(ref, n_size))
        if n_size not in self.match_ngram:
            self.match_ngram[n_size] = 0
            self.candi_ngram[n_size] = 0
        match_size, cand_size = get_match_size(cand_ngram, refs_ngram)

        self.match_ngram[n_size] += match_size
        self.candi_ngram[n_size] += cand_size

    def count_bp(self, cand, ref_list):
        self.bp_c += len(cand)
        self.bp_r += min([(abs(len(cand) - len(ref)), len(ref))
                          for ref in ref_list])[1]

    def score(self):
        '''
        Calculate the final bleu metric.
        '''
        prob_list = []
        for n_size in range(self.n_size):
            try:
                if self.candi_ngram[n_size] == 0:
                    _score = 0.0
                else:
                    _score = self.match_ngram[n_size] / float(self.candi_ngram[
                        n_size])
            except:
                _score = 0
            if _score == 0:
                _score = w_i * math.log(sys.float_info.min)
            prob_list.append(_score)

        logs = math.fsum(w_i * math.log(p_i)
                         for w_i, p_i in zip(self.weights, prob_list))
        bp = math.exp(min(1 - self.bp_r / float(self.bp_c), 0))
        bleu = bp * math.exp(logs)

        return bleu


class BLEUForDuReader(BLEU):
    '''
    BLEU metric with bonus for DuReader contest.

    Please refer to `DuReader Homepage<https://ai.baidu.com//broad/subordinate?dataset=dureader>`_ for more details.
    '''

    def __init__(self, n_size=4, alpha=1.0, beta=1.0):
        super(BLEUForDuReader, self).__init__(n_size)
        self.alpha = alpha
        self.beta = beta

    def add_inst(self,
                 cand,
                 ref_list,
                 yn_label=None,
                 yn_ref=None,
                 entity_ref=None):
        #super(BLEUWithBonus, self).add_inst(cand, ref_list)
        BLEU.add_inst(self, cand, ref_list)
        if yn_label is not None and yn_ref is not None:
            self.add_yn_bonus(cand, ref_list, yn_label, yn_ref)
        elif entity_ref is not None:
            self.add_entity_bonus(cand, entity_ref)

    def add_yn_bonus(self, cand, ref_list, yn_label, yn_ref):
        for n_size in range(self.n_size):
            cand_ngram = get_ngram(cand, n_size, label=yn_label)
            ref_ngram = []
            for ref_id, r in enumerate(yn_ref):
                ref_ngram.append(get_ngram(ref_list[ref_id], n_size, label=r))
            match_size, cand_size = self.get_match_size(cand_ngram, ref_ngram)
            self.match_ngram[n_size] += self.alpha * match_size
            self.candi_ngram[n_size] += self.alpha * match_size

    def add_entity_bonus(self, cand, entity_ref):
        for n_size in range(self.n_size):
            cand_ngram = get_ngram(cand, n_size, label='ENTITY')
            ref_ngram = []
            for reff_id, r in enumerate(entity_ref):
                ref_ngram.append(get_ngram(r, n_size, label='ENTITY'))
            match_size, cand_size = self.get_match_size(cand_ngram, ref_ngram)
            self.match_ngram[n_size] += self.beta * match_size
            self.candi_ngram[n_size] += self.beta * match_size