reader.py 5.6 KB
Newer Older
Z
Zeyu Chen 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import glob
import sys
import os
import io
import itertools
from functools import partial

import numpy as np
from paddle.io import BatchSampler, DataLoader, Dataset
from paddlenlp.data import Pad
25 26 27 28 29 30 31 32 33 34 35 36 37 38
from paddlenlp.datasets import WMT14ende
from paddlenlp.data.sampler import SamplerHelper


def min_max_filer(data, max_len, min_len=0):
    # 1 for special tokens.
    data_min_len = min(len(data[0]), len(data[1])) + 1
    data_max_len = max(len(data[0]), len(data[1])) + 1
    return (data_min_len >= min_len) and (data_max_len <= max_len)


def create_data_loader(args):
    root = None if args.root == "None" else args.root
    (src_vocab, trg_vocab) = WMT14ende.get_vocab(root=root)
39 40 41 42 43
    padding_vocab = (
        lambda x: (x + args.pad_factor - 1) // args.pad_factor * args.pad_factor
    )
    args.src_vocab_size = padding_vocab(len(src_vocab))
    args.trg_vocab_size = padding_vocab(len(trg_vocab))
44 45 46 47 48 49
    transform_func = WMT14ende.get_default_transform_func(root=root)
    datasets = [
        WMT14ende.get_datasets(
            mode=m, transform_func=transform_func) for m in ["train", "dev"]
    ]

L
liu zhengxi 已提交
50 51 52 53 54 55
    if args.shuffle or args.shuffle_batch:
        if args.shuffle_seed == "None" or args.shuffle_seed is None:
            shuffle_seed = 0
        else:
            shuffle_seed = args.shuffle_seed

56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73
    def _max_token_fn(current_idx, current_batch_size, tokens_sofar,
                      data_source):
        return max(tokens_sofar,
                   len(data_source[current_idx][0]) + 1,
                   len(data_source[current_idx][1]) + 1)

    def _key(size_so_far, minibatch_len):
        return size_so_far * minibatch_len

    data_loaders = [(None)] * 2
    for i, dataset in enumerate(datasets):
        m = dataset.mode
        dataset = dataset.filter(
            partial(
                min_max_filer, max_len=args.max_length))
        sampler = SamplerHelper(dataset)

        if args.sort_type == SortType.GLOBAL:
L
liu zhengxi 已提交
74
            src_key = (lambda x, data_source: len(data_source[x][0]) + 1)
75 76
            trg_key = (lambda x, data_source: len(data_source[x][1]) + 1)
            # Sort twice
L
liu zhengxi 已提交
77
            sampler = sampler.sort(key=trg_key).sort(key=src_key)
78
        else:
L
liu zhengxi 已提交
79 80
            if args.shuffle:
                sampler = sampler.shuffle(seed=shuffle_seed)
L
liu zhengxi 已提交
81
            max_key = (lambda x, data_source: max(len(data_source[x][0]), len(data_source[x][1])) + 1)
82
            if args.sort_type == SortType.POOL:
L
liu zhengxi 已提交
83
                sampler = sampler.sort(key=max_key, buffer_size=args.pool_size)
Z
Zeyu Chen 已提交
84

85 86 87 88 89
        batch_sampler = sampler.batch(
            batch_size=args.batch_size,
            drop_last=False,
            batch_size_fn=_max_token_fn,
            key=_key)
Z
Zeyu Chen 已提交
90

L
liu zhengxi 已提交
91 92 93
        if args.shuffle_batch:
            batch_sampler.shuffle(seed=shuffle_seed)

L
liu zhengxi 已提交
94 95 96
        if m == "train":
            batch_sampler = batch_sampler.shard()

Z
Zeyu Chen 已提交
97 98 99 100 101 102 103 104 105 106
        data_loader = DataLoader(
            dataset=dataset,
            batch_sampler=batch_sampler,
            collate_fn=partial(
                prepare_train_input,
                bos_idx=args.bos_idx,
                eos_idx=args.eos_idx,
                pad_idx=args.bos_idx),
            num_workers=0,
            return_list=True)
107
        data_loaders[i] = (data_loader)
Z
Zeyu Chen 已提交
108 109 110
    return data_loaders


111 112 113
def create_infer_loader(args):
    root = None if args.root == "None" else args.root
    (src_vocab, trg_vocab) = WMT14ende.get_vocab(root=root)
114 115 116 117 118
    padding_vocab = (
        lambda x: (x + args.pad_factor - 1) // args.pad_factor * args.pad_factor
    )
    args.src_vocab_size = padding_vocab(len(src_vocab))
    args.trg_vocab_size = padding_vocab(len(trg_vocab))
119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140
    transform_func = WMT14ende.get_default_transform_func(root=root)
    dataset = WMT14ende.get_datasets(
        mode="test", transform_func=transform_func).filter(
            partial(
                min_max_filer, max_len=args.max_length))

    batch_sampler = SamplerHelper(dataset).batch(
        batch_size=args.infer_batch_size, drop_last=False)

    data_loader = DataLoader(
        dataset=dataset,
        batch_sampler=batch_sampler,
        collate_fn=partial(
            prepare_infer_input,
            bos_idx=args.bos_idx,
            eos_idx=args.eos_idx,
            pad_idx=args.bos_idx),
        num_workers=0,
        return_list=True)
    return data_loader, trg_vocab.to_tokens


Z
Zeyu Chen 已提交
141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169
def prepare_train_input(insts, bos_idx, eos_idx, pad_idx):
    """
    Put all padded data needed by training into a list.
    """
    word_pad = Pad(pad_idx)
    src_word = word_pad([inst[0] + [eos_idx] for inst in insts])
    trg_word = word_pad([[bos_idx] + inst[1] for inst in insts])
    lbl_word = np.expand_dims(
        word_pad([inst[1] + [eos_idx] for inst in insts]), axis=2)

    data_inputs = [src_word, trg_word, lbl_word]

    return data_inputs


def prepare_infer_input(insts, bos_idx, eos_idx, pad_idx):
    """
    Put all padded data needed by beam search decoder into a list.
    """
    word_pad = Pad(pad_idx)
    src_word = word_pad([inst[0] + [eos_idx] for inst in insts])

    return [src_word, ]


class SortType(object):
    GLOBAL = 'global'
    POOL = 'pool'
    NONE = "none"