STGAN.py 16.8 KB
Newer Older
X
xiaoting 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
#   Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
L
lvmengsi 已提交
14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from network.STGAN_network import STGAN_model
from util import utility
import paddle.fluid as fluid
import sys
import time
import copy
import numpy as np


class GTrainer():
    def __init__(self, image_real, label_org, label_org_, label_trg, label_trg_,
                 cfg, step_per_epoch):
        self.program = fluid.default_main_program().clone()
        with fluid.program_guard(self.program):
            model = STGAN_model()
            self.fake_img, self.rec_img = model.network_G(
                image_real, label_org_, label_trg_, cfg, name="generator")
            self.fake_img.persistable = True
            self.rec_img.persistable = True
            self.infer_program = self.program.clone(for_test=True)
            self.g_loss_rec = fluid.layers.mean(
                fluid.layers.abs(
                    fluid.layers.elementwise_sub(
                        x=image_real, y=self.rec_img)))
            self.pred_fake, self.cls_fake = model.network_D(
                self.fake_img, cfg, name="discriminator")
            #wgan
            if cfg.gan_mode == "wgan":
                self.g_loss_fake = -1 * fluid.layers.mean(self.pred_fake)
            #lsgan
            elif cfg.gan_mode == "lsgan":
                ones = fluid.layers.fill_constant_batch_size_like(
                    input=self.pred_fake,
                    shape=self.pred_fake.shape,
                    value=1.0,
                    dtype='float32')
                self.g_loss_fake = fluid.layers.mean(
                    fluid.layers.square(
                        fluid.layers.elementwise_sub(
                            x=self.pred_fake, y=ones)))
L
lvmengsi 已提交
57 58 59
            else:
                raise NotImplementedError("gan_mode {} is not support!".format(
                    cfg.gan_mode))
L
lvmengsi 已提交
60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92

            self.g_loss_cls = fluid.layers.mean(
                fluid.layers.sigmoid_cross_entropy_with_logits(self.cls_fake,
                                                               label_trg))
            self.g_loss = self.g_loss_fake + cfg.lambda_rec * self.g_loss_rec + cfg.lambda_cls * self.g_loss_cls
            self.g_loss_fake.persistable = True
            self.g_loss_rec.persistable = True
            self.g_loss_cls.persistable = True
            lr = cfg.g_lr
            vars = []
            for var in self.program.list_vars():
                if fluid.io.is_parameter(var) and var.name.startswith(
                        "generator"):
                    vars.append(var.name)
            self.param = vars
            optimizer = fluid.optimizer.Adam(
                learning_rate=fluid.layers.piecewise_decay(
                    boundaries=[99 * step_per_epoch], values=[lr, lr * 0.1]),
                beta1=0.5,
                beta2=0.999,
                name="net_G")

            optimizer.minimize(self.g_loss, parameter_list=vars)


class DTrainer():
    def __init__(self, image_real, label_org, label_org_, label_trg, label_trg_,
                 cfg, step_per_epoch):
        self.program = fluid.default_main_program().clone()
        lr = cfg.d_lr
        with fluid.program_guard(self.program):
            model = STGAN_model()
            self.fake_img, _ = model.network_G(
L
lvmengsi 已提交
93
                image_real, label_org_, label_trg_, cfg, name="generator")
L
lvmengsi 已提交
94 95 96 97 98 99 100 101 102 103 104 105 106 107 108
            self.pred_real, self.cls_real = model.network_D(
                image_real, cfg, name="discriminator")
            self.pred_real.persistable = True
            self.cls_real.persistable = True
            self.pred_fake, _ = model.network_D(
                self.fake_img, cfg, name="discriminator")
            self.d_loss_cls = fluid.layers.mean(
                fluid.layers.sigmoid_cross_entropy_with_logits(self.cls_real,
                                                               label_org))
            #wgan
            if cfg.gan_mode == "wgan":
                self.d_loss_fake = fluid.layers.reduce_mean(self.pred_fake)
                self.d_loss_real = -1 * fluid.layers.reduce_mean(self.pred_real)
                self.d_loss_gp = self.gradient_penalty(
                    model.network_D,
L
lvmengsi 已提交
109
                    image_real,
L
lvmengsi 已提交
110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126
                    self.fake_img,
                    cfg=cfg,
                    name="discriminator")
                self.d_loss = self.d_loss_real + self.d_loss_fake + 1.0 * self.d_loss_cls + cfg.lambda_gp * self.d_loss_gp
            #lsgan
            elif cfg.gan_mode == "lsgan":
                ones = fluid.layers.fill_constant_batch_size_like(
                    input=self.pred_real,
                    shape=self.pred_real.shape,
                    value=1.0,
                    dtype='float32')
                self.d_loss_real = fluid.layers.mean(
                    fluid.layers.square(
                        fluid.layers.elementwise_sub(
                            x=self.pred_real, y=ones)))
                self.d_loss_fake = fluid.layers.mean(
                    fluid.layers.square(x=self.pred_fake))
L
lvmengsi 已提交
127 128 129 130 131 132 133
                self.d_loss_gp = self.gradient_penalty(
                    model.network_D,
                    image_real,
                    None,
                    cfg=cfg,
                    name="discriminator")
                self.d_loss = self.d_loss_real + self.d_loss_fake + 1.0 * self.d_loss_cls + cfg.lambda_gp * self.d_loss_gp
L
lvmengsi 已提交
134 135 136
            else:
                raise NotImplementedError("gan_mode {} is not support!".format(
                    cfg.gan_mode))
L
lvmengsi 已提交
137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158

            self.d_loss_real.persistable = True
            self.d_loss_fake.persistable = True
            self.d_loss.persistable = True
            self.d_loss_cls.persistable = True
            self.d_loss_gp.persistable = True
            vars = []
            for var in self.program.list_vars():
                if fluid.io.is_parameter(var) and (
                        var.name.startswith("discriminator")):
                    vars.append(var.name)
            self.param = vars

            optimizer = fluid.optimizer.Adam(
                learning_rate=fluid.layers.piecewise_decay(
                    boundaries=[99 * step_per_epoch],
                    values=[lr, lr * 0.1], ),
                beta1=0.5,
                beta2=0.999,
                name="net_D")

            optimizer.minimize(self.d_loss, parameter_list=vars)
L
lvmengsi 已提交
159 160
            f = open('G_program.txt', 'w')
            print(self.program, file=f)
L
lvmengsi 已提交
161 162 163

    def gradient_penalty(self, f, real, fake=None, cfg=None, name=None):
        def _interpolate(a, b=None):
L
lvmengsi 已提交
164 165 166 167
            if b is None:
                beta = fluid.layers.uniform_random_batch_size_like(
                    input=a, shape=a.shape, min=0.0, max=1.0)
                mean = fluid.layers.reduce_mean(
L
lvmengsi 已提交
168
                    a, dim=list(range(len(a.shape))), keep_dim=True)
L
lvmengsi 已提交
169 170 171
                input_sub_mean = fluid.layers.elementwise_sub(a, mean, axis=0)
                var = fluid.layers.reduce_mean(
                    fluid.layers.square(input_sub_mean),
L
lvmengsi 已提交
172
                    dim=list(range(len(a.shape))),
L
lvmengsi 已提交
173 174
                    keep_dim=True)
                b = beta * fluid.layers.sqrt(var) * 0.5 + a
L
lvmengsi 已提交
175 176 177
            shape = [a.shape[0]]
            alpha = fluid.layers.uniform_random_batch_size_like(
                input=a, shape=shape, min=0.0, max=1.0)
L
lvmengsi 已提交
178
            inner = (b - a) * alpha + a
L
lvmengsi 已提交
179 180 181 182 183 184 185 186 187 188 189 190
            return inner

        x = _interpolate(real, fake)

        pred, _ = f(x, cfg=cfg, name=name)
        if isinstance(pred, tuple):
            pred = pred[0]
        vars = []
        for var in fluid.default_main_program().list_vars():
            if fluid.io.is_parameter(var) and var.name.startswith(
                    "discriminator"):
                vars.append(var.name)
L
lvmengsi 已提交
191
        grad = fluid.gradients(pred, x, no_grad_set=vars)[0]
L
lvmengsi 已提交
192 193 194
        grad_shape = grad.shape
        grad = fluid.layers.reshape(
            grad, [-1, grad_shape[1] * grad_shape[2] * grad_shape[3]])
L
lvmengsi 已提交
195
        epsilon = 1e-16
L
lvmengsi 已提交
196 197
        norm = fluid.layers.sqrt(
            fluid.layers.reduce_sum(
L
lvmengsi 已提交
198
                fluid.layers.square(grad), dim=1) + epsilon)
L
lvmengsi 已提交
199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263
        gp = fluid.layers.reduce_mean(fluid.layers.square(norm - 1.0))
        return gp


class STGAN(object):
    def add_special_args(self, parser):
        parser.add_argument(
            '--g_lr',
            type=float,
            default=0.0002,
            help="the base learning rate of generator")
        parser.add_argument(
            '--d_lr',
            type=float,
            default=0.0002,
            help="the base learning rate of discriminator")
        parser.add_argument(
            '--c_dim',
            type=int,
            default=13,
            help="the number of attributes we selected")
        parser.add_argument(
            '--d_fc_dim',
            type=int,
            default=1024,
            help="the base fc dim in discriminator")
        parser.add_argument(
            '--use_gru', type=bool, default=True, help="whether to use GRU")
        parser.add_argument(
            '--lambda_cls',
            type=float,
            default=10.0,
            help="the coefficient of classification")
        parser.add_argument(
            '--lambda_rec',
            type=float,
            default=100.0,
            help="the coefficient of refactor")
        parser.add_argument(
            '--thres_int',
            type=float,
            default=0.5,
            help="thresh change of attributes")
        parser.add_argument(
            '--lambda_gp',
            type=float,
            default=10.0,
            help="the coefficient of gradient penalty")
        parser.add_argument(
            '--n_samples', type=int, default=16, help="batch size when testing")
        parser.add_argument(
            '--selected_attrs',
            type=str,
            default="Bald,Bangs,Black_Hair,Blond_Hair,Brown_Hair,Bushy_Eyebrows,Eyeglasses,Male,Mouth_Slightly_Open,Mustache,No_Beard,Pale_Skin,Young",
            help="the attributes we selected to change")
        parser.add_argument(
            '--n_layers',
            type=int,
            default=5,
            help="default layers in generotor")
        parser.add_argument(
            '--gru_n_layers',
            type=int,
            default=4,
            help="default layers of GRU in generotor")
L
lvmengsi 已提交
264 265 266 267 268 269
        parser.add_argument(
            '--dis_norm',
            type=str,
            default=None,
            help="the normalization in discriminator, choose in [None, instance_norm]"
        )
L
lvmengsi 已提交
270 271 272 273 274 275 276

        return parser

    def __init__(self,
                 cfg=None,
                 train_reader=None,
                 test_reader=None,
L
lvmengsi 已提交
277 278
                 batch_num=1,
                 id2name=None):
L
lvmengsi 已提交
279 280 281 282 283 284
        self.cfg = cfg
        self.train_reader = train_reader
        self.test_reader = test_reader
        self.batch_num = batch_num

    def build_model(self):
L
lvmengsi 已提交
285
        data_shape = [-1, 3, self.cfg.image_size, self.cfg.image_size]
L
lvmengsi 已提交
286

287
        image_real = fluid.data(
L
lvmengsi 已提交
288
            name='image_real', shape=data_shape, dtype='float32')
289 290 291 292 293 294 295 296
        label_org = fluid.data(
            name='label_org', shape=[-1, self.cfg.c_dim], dtype='float32')
        label_trg = fluid.data(
            name='label_trg', shape=[-1, self.cfg.c_dim], dtype='float32')
        label_org_ = fluid.data(
            name='label_org_', shape=[-1, self.cfg.c_dim], dtype='float32')
        label_trg_ = fluid.data(
            name='label_trg_', shape=[-1, self.cfg.c_dim], dtype='float32')
L
lvmengsi 已提交
297 298 299 300 301 302 303 304 305 306 307 308 309

        test_gen_trainer = GTrainer(image_real, label_org, label_org_,
                                    label_trg, label_trg_, self.cfg,
                                    self.batch_num)

        py_reader = fluid.io.PyReader(
            feed_list=[image_real, label_org, label_trg],
            capacity=64,
            iterable=True,
            use_double_buffer=True)
        label_org_ = (label_org * 2.0 - 1.0) * self.cfg.thres_int
        label_trg_ = (label_trg * 2.0 - 1.0) * self.cfg.thres_int

L
lvmengsi 已提交
310 311 312 313 314 315 316
        gen_trainer = GTrainer(image_real, label_org, label_org_, label_trg,
                               label_trg_, self.cfg, self.batch_num)
        dis_trainer = DTrainer(image_real, label_org, label_org_, label_trg,
                               label_trg_, self.cfg, self.batch_num)

        # prepare environment
        place = fluid.CUDAPlace(0) if self.cfg.use_gpu else fluid.CPUPlace()
L
lvmengsi 已提交
317 318 319 320
        py_reader.decorate_batch_generator(
            self.train_reader,
            places=fluid.cuda_places()
            if self.cfg.use_gpu else fluid.cpu_places())
L
lvmengsi 已提交
321

L
lvmengsi 已提交
322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344
        exe = fluid.Executor(place)
        exe.run(fluid.default_startup_program())

        if self.cfg.init_model:
            utility.init_checkpoints(self.cfg, exe, gen_trainer, "net_G")
            utility.init_checkpoints(self.cfg, exe, dis_trainer, "net_D")

        ### memory optim
        build_strategy = fluid.BuildStrategy()

        gen_trainer_program = fluid.CompiledProgram(
            gen_trainer.program).with_data_parallel(
                loss_name=gen_trainer.g_loss.name,
                build_strategy=build_strategy)
        dis_trainer_program = fluid.CompiledProgram(
            dis_trainer.program).with_data_parallel(
                loss_name=dis_trainer.d_loss.name,
                build_strategy=build_strategy)

        t_time = 0

        for epoch_id in range(self.cfg.epoch):
            batch_id = 0
L
lvmengsi 已提交
345
            for data in py_reader():
L
lvmengsi 已提交
346 347
                s_time = time.time()
                # optimize the discriminator network
L
lvmengsi 已提交
348 349 350 351 352 353 354 355 356 357 358
                fetches = [
                    dis_trainer.d_loss.name,
                    dis_trainer.d_loss_real.name,
                    dis_trainer.d_loss_fake.name,
                    dis_trainer.d_loss_cls.name,
                    dis_trainer.d_loss_gp.name,
                ]
                d_loss, d_loss_real, d_loss_fake, d_loss_cls, d_loss_gp, = exe.run(
                    dis_trainer_program, fetch_list=fetches, feed=data)
                if (batch_id + 1) % self.cfg.num_discriminator_time == 0:
                    # optimize the generator network
L
lvmengsi 已提交
359 360 361 362 363
                    d_fetches = [
                        gen_trainer.g_loss_fake.name,
                        gen_trainer.g_loss_rec.name, gen_trainer.g_loss_cls.name
                    ]
                    g_loss_fake, g_loss_rec, g_loss_cls = exe.run(
L
lvmengsi 已提交
364
                        gen_trainer_program, fetch_list=d_fetches, feed=data)
L
lvmengsi 已提交
365 366 367 368
                    print("epoch{}: batch{}: \n\
                         g_loss_fake: {}; g_loss_rec: {}; g_loss_cls: {}"
                          .format(epoch_id, batch_id, g_loss_fake[0],
                                  g_loss_rec[0], g_loss_cls[0]))
L
lvmengsi 已提交
369 370 371 372 373 374 375 376
                batch_time = time.time() - s_time
                t_time += batch_time
                if (batch_id + 1) % self.cfg.print_freq == 0:
                    print("epoch{}: batch{}:  \n\
                         d_loss: {}; d_loss_real: {}; d_loss_fake: {}; d_loss_cls: {}; d_loss_gp: {} \n\
                         Batch_time_cost: {}".format(epoch_id, batch_id, d_loss[
                        0], d_loss_real[0], d_loss_fake[0], d_loss_cls[0],
                                                     d_loss_gp[0], batch_time))
L
lvmengsi 已提交
377 378 379 380
                sys.stdout.flush()
                batch_id += 1

            if self.cfg.run_test:
381
                image_name = fluid.data(
L
lvmengsi 已提交
382
                    name='image_name',
383
                    shape=[-1, self.cfg.n_samples],
L
lvmengsi 已提交
384 385 386 387 388 389 390
                    dtype='int32')
                test_py_reader = fluid.io.PyReader(
                    feed_list=[image_real, label_org, label_trg, image_name],
                    capacity=32,
                    iterable=True,
                    use_double_buffer=True)
                test_py_reader.decorate_batch_generator(
L
lvmengsi 已提交
391 392 393
                    self.test_reader,
                    places=fluid.cuda_places()
                    if self.cfg.use_gpu else fluid.cpu_places())
L
lvmengsi 已提交
394
                test_program = test_gen_trainer.infer_program
L
lvmengsi 已提交
395
                utility.save_test_image(epoch_id, self.cfg, exe, place,
L
lvmengsi 已提交
396 397
                                        test_program, test_gen_trainer,
                                        test_py_reader)
L
lvmengsi 已提交
398 399 400 401 402 403

            if self.cfg.save_checkpoints:
                utility.checkpoints(epoch_id, self.cfg, exe, gen_trainer,
                                    "net_G")
                utility.checkpoints(epoch_id, self.cfg, exe, dis_trainer,
                                    "net_D")