train_elem.py 10.5 KB
Newer Older
K
kbChen 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import os
import sys
import math
import time
import logging
import argparse
import functools
import threading
import subprocess
import numpy as np
import paddle
import paddle.fluid as fluid
import models
import reader
from losses import SoftmaxLoss
from losses import ArcMarginLoss
from utility import add_arguments, print_arguments
from utility import fmt_time, recall_topk, get_gpu_num

parser = argparse.ArgumentParser(description=__doc__)
add_arg = functools.partial(add_arguments, argparser=parser)
# yapf: disable
add_arg('model', str, "ResNet50", "Set the network to use.")
add_arg('embedding_size', int, 0, "Embedding size.")
add_arg('train_batch_size', int, 256, "Minibatch size.")
add_arg('test_batch_size', int, 50, "Minibatch size.")
add_arg('image_shape', str, "3,224,224", "input image size")
add_arg('class_dim', int, 11318 , "Class number.")
add_arg('lr', float, 0.01, "set learning rate.")
add_arg('lr_strategy', str, "piecewise_decay",	"Set the learning rate decay strategy.")
add_arg('lr_steps', str, "30000", "step of lr")
add_arg('total_iter_num', int, 30000, "total_iter_num")
add_arg('display_iter_step', int, 10, "display_iter_step.")
add_arg('test_iter_step', int, 1000, "test_iter_step.")
add_arg('save_iter_step', int, 1000, "save_iter_step.")
add_arg('use_gpu', bool, True, "Whether to use GPU or not.")
add_arg('with_mem_opt', bool, True, "Whether to use memory optimization or not.")
add_arg('pretrained_model', str, None, "Whether to use pretrained model.")
add_arg('checkpoint', str, None, "Whether to resume checkpoint.")
add_arg('model_save_dir', str, "output", "model save directory")
add_arg('loss_name', str, "softmax", "Set the loss type to use.")
add_arg('arc_scale', float, 80.0, "arc scale.")
add_arg('arc_margin', float, 0.15, "arc margin.")
add_arg('arc_easy_margin', bool, False, "arc easy margin.")
add_arg('enable_ce', bool, False, "If set True, enable continuous evaluation job.")
# yapf: enable

model_list = [m for m in dir(models) if "__" not in m]

def optimizer_setting(params):
    ls = params["learning_strategy"]
    assert ls["name"] == "piecewise_decay", \
           "learning rate strategy must be {}, \
           but got {}".format("piecewise_decay", lr["name"])

    bd = [int(e) for e in ls["lr_steps"].split(',')]
    base_lr = params["lr"]
    lr = [base_lr * (0.1 ** i) for i in range(len(bd) + 1)]
    optimizer = fluid.optimizer.Momentum(
        learning_rate=fluid.layers.piecewise_decay(
            boundaries=bd, values=lr),
        momentum=0.9,
        regularization=fluid.regularizer.L2Decay(1e-4))
    return optimizer


def net_config(image, label, model, args, is_train):
    assert args.model in model_list, "{} is not in lists: {}".format(
        args.model, model_list)

    out = model.net(input=image, embedding_size=args.embedding_size)
    if not is_train:
        return None, None, None, out

    if args.loss_name == "softmax":
        metricloss = SoftmaxLoss(
                class_dim=args.class_dim,
        )
    elif args.loss_name == "arcmargin":
        metricloss = ArcMarginLoss(
                class_dim = args.class_dim,
                margin = args.arc_margin,
                scale = args.arc_scale,
                easy_margin = args.arc_easy_margin,
        )
    cost, logit = metricloss.loss(out, label)
    avg_cost = fluid.layers.mean(x=cost)
    acc_top1 = fluid.layers.accuracy(input=logit, label=label, k=1)
    acc_top5 = fluid.layers.accuracy(input=logit, label=label, k=5)
    return avg_cost, acc_top1, acc_top5, out

def build_program(is_train, main_prog, startup_prog, args):
    image_shape = [int(m) for m in args.image_shape.split(",")]
    model = models.__dict__[args.model]()
    with fluid.program_guard(main_prog, startup_prog):
        if is_train:
            queue_capacity = 64
            py_reader = fluid.layers.py_reader(
                capacity=queue_capacity,
                shapes=[[-1] + image_shape, [-1, 1]],
                lod_levels=[0, 0],
                dtypes=["float32", "int64"],
                use_double_buffer=True)
            image, label = fluid.layers.read_file(py_reader)
        else:
            image = fluid.layers.data(name='image', shape=image_shape, dtype='float32')
            label = fluid.layers.data(name='label', shape=[1], dtype='int64')

        with fluid.unique_name.guard():
            avg_cost, acc_top1, acc_top5, out = net_config(image, label, model, args, is_train)
            if is_train:
                params = model.params
                params["lr"] = args.lr
                params["learning_strategy"]["lr_steps"] = args.lr_steps
                params["learning_strategy"]["name"] = args.lr_strategy
                optimizer = optimizer_setting(params)
                optimizer.minimize(avg_cost)
                global_lr = optimizer._global_learning_rate()
    """            
    if not is_train:
        main_prog = main_prog.clone(for_test=True)
    """
    if is_train:
        return py_reader, avg_cost, acc_top1, acc_top5, global_lr
    else: 
        return out, image, label


def train_async(args):
    # parameters from arguments

    logging.debug('enter train')
    model_name = args.model
    checkpoint = args.checkpoint
    pretrained_model = args.pretrained_model
    model_save_dir = args.model_save_dir

    startup_prog = fluid.Program()
    train_prog = fluid.Program()
    tmp_prog = fluid.Program()

    if args.enable_ce:
        assert args.model == "ResNet50"
        assert args.loss_name == "arcmargin"
        np.random.seed(0)
        startup_prog.random_seed = 1000
        train_prog.random_seed = 1000
        tmp_prog.random_seed = 1000

    train_py_reader, train_cost, train_acc1, train_acc5, global_lr = build_program(
        is_train=True,
        main_prog=train_prog,
        startup_prog=startup_prog,
        args=args)
    test_feas, image, label = build_program(
        is_train=False,
        main_prog=tmp_prog,
        startup_prog=startup_prog,
        args=args)
    test_prog = tmp_prog.clone(for_test=True)

    train_fetch_list = [global_lr.name, train_cost.name, train_acc1.name, train_acc5.name]
    test_fetch_list = [test_feas.name]

    if args.with_mem_opt:
        fluid.memory_optimize(train_prog, skip_opt_set=set(train_fetch_list))

    place = fluid.CUDAPlace(0) if args.use_gpu else fluid.CPUPlace()
    exe = fluid.Executor(place)

    exe.run(startup_prog)

    logging.debug('after run startup program')

    if checkpoint is not None:
        fluid.io.load_persistables(exe, checkpoint, main_program=train_prog)

    if pretrained_model:

        def if_exist(var):
            return os.path.exists(os.path.join(pretrained_model, var.name))

        fluid.io.load_vars(
            exe, pretrained_model, main_program=train_prog, predicate=if_exist)

    devicenum = get_gpu_num()
    assert (args.train_batch_size % devicenum) == 0
    train_batch_size = args.train_batch_size // devicenum
    test_batch_size = args.test_batch_size
    
    train_reader = paddle.batch(reader.train(args), batch_size=train_batch_size, drop_last=True)
    test_reader = paddle.batch(reader.test(args), batch_size=test_batch_size, drop_last=False)
    test_feeder = fluid.DataFeeder(place=place, feed_list=[image, label])
    train_py_reader.decorate_paddle_reader(train_reader)

    train_exe = fluid.ParallelExecutor(
        main_program=train_prog,
        use_cuda=args.use_gpu,
        loss_name=train_cost.name)

    totalruntime = 0
    train_py_reader.start()
    iter_no = 0
    train_info = [0, 0, 0, 0]
    while iter_no <= args.total_iter_num:
        t1 = time.time()
        lr, loss, acc1, acc5 = train_exe.run(fetch_list=train_fetch_list)
        t2 = time.time()
        period = t2 - t1
        lr = np.mean(np.array(lr))
        train_info[0] += np.mean(np.array(loss))
        train_info[1] += np.mean(np.array(acc1))
        train_info[2] += np.mean(np.array(acc5))
        train_info[3] += 1
        if iter_no % args.display_iter_step == 0:
            avgruntime = totalruntime / args.display_iter_step
            avg_loss = train_info[0] / train_info[3]
            avg_acc1 = train_info[1] / train_info[3]
            avg_acc5 = train_info[2] / train_info[3]
            print("[%s] trainbatch %d, lr %.6f, loss %.6f, "\
                    "acc1 %.4f, acc5 %.4f, time %2.2f sec" % \
                    (fmt_time(), iter_no, lr, avg_loss, avg_acc1, avg_acc5, avgruntime))
            sys.stdout.flush()
            totalruntime = 0
        if iter_no % 1000 == 0:
            train_info = [0, 0, 0, 0]

        totalruntime += period
        
        if iter_no % args.test_iter_step == 0 and iter_no != 0:
            f, l = [], []
            for batch_id, data in enumerate(test_reader()):
                t1 = time.time()
                [feas] = exe.run(test_prog, fetch_list = test_fetch_list, feed=test_feeder.feed(data))
                label = np.asarray([x[1] for x in data])
                f.append(feas)
                l.append(label)

                t2 = time.time()
                period = t2 - t1
                if batch_id % 20 == 0:
                    print("[%s] testbatch %d, time %2.2f sec" % \
                            (fmt_time(), batch_id, period))

            f = np.vstack(f)
            l = np.hstack(l)
            recall = recall_topk(f, l, k=1)
            print("[%s] test_img_num %d, trainbatch %d, test_recall %.5f" % \
                    (fmt_time(), len(f), iter_no, recall))
            sys.stdout.flush()

        if iter_no % args.save_iter_step == 0 and iter_no != 0:
            model_path = os.path.join(model_save_dir + '/' + model_name,
                                      str(iter_no))
            if not os.path.isdir(model_path):
                os.makedirs(model_path)
            fluid.io.save_persistables(exe, model_path, main_program=train_prog)

        iter_no += 1

    # This is for continuous evaluation only
    if args.enable_ce:
        # Use the mean cost/acc for training
        print("kpis train_cost      %s" % (avg_loss))
        print("kpis test_recall     %s" % (recall))


def initlogging():
    for handler in logging.root.handlers[:]:
        logging.root.removeHandler(handler)
    loglevel = logging.DEBUG
    logging.basicConfig(
        level=loglevel,
        # logger.BASIC_FORMAT,
        format=
        "%(levelname)s:%(filename)s[%(lineno)s] %(name)s:%(funcName)s->%(message)s",
        datefmt='%a, %d %b %Y %H:%M:%S')

def main():
    args = parser.parse_args()
    print_arguments(args)
    train_async(args)


if __name__ == '__main__':
    main()