train.py 17.3 KB
Newer Older
R
root 已提交
1 2 3
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
4 5 6 7
import os
import numpy as np
import time
import sys
R
root 已提交
8 9
import functools
import math
10
import paddle
11
import paddle.fluid as fluid
12
import paddle.dataset.flowers as flowers
13 14
import reader
import argparse
R
ruri 已提交
15 16 17 18
import functools
import subprocess
import utils
from utils.learning_rate import cosine_decay
T
typhoonzero 已提交
19
from utils.fp16_utils import create_master_params_grads, master_param_to_train_param
20
from utility import add_arguments, print_arguments
R
root 已提交
21 22

IMAGENET1000 = 1281167
23 24 25

parser = argparse.ArgumentParser(description=__doc__)
add_arg = functools.partial(add_arguments, argparser=parser)
26 27 28 29 30 31 32 33 34 35 36 37 38 39
# yapf: disable
add_arg('batch_size',       int,   256,                  "Minibatch size.")
add_arg('use_gpu',          bool,  True,                 "Whether to use GPU or not.")
add_arg('total_images',     int,   1281167,              "Training image number.")
add_arg('num_epochs',       int,   120,                  "number of epochs.")
add_arg('class_dim',        int,   1000,                 "Class number.")
add_arg('image_shape',      str,   "3,224,224",          "input image size")
add_arg('model_save_dir',   str,   "output",             "model save directory")
add_arg('with_mem_opt',     bool,  True,                 "Whether to use memory optimization or not.")
add_arg('pretrained_model', str,   None,                 "Whether to use pretrained model.")
add_arg('checkpoint',       str,   None,                 "Whether to resume checkpoint.")
add_arg('lr',               float, 0.1,                  "set learning rate.")
add_arg('lr_strategy',      str,   "piecewise_decay",    "Set the learning rate decay strategy.")
add_arg('model',            str,   "SE_ResNeXt50_32x4d", "Set the network to use.")
40
add_arg('enable_ce',        bool,  False,                "If set True, enable continuous evaluation job.")
M
minqiyang 已提交
41
add_arg('data_dir',         str,   "./data/ILSVRC2012",  "The ImageNet dataset root dir.")
42
add_arg('model_category',   str,   "models_name",        "Whether to use models_name or not, valid value:'models','models_name'." )
T
typhoonzero 已提交
43
add_arg('fp16',             bool,  False,                "Enable half precision training with fp16." )
T
update  
typhoonzero 已提交
44
add_arg('scale_loss',       float, 1.0,                  "Scale loss for fp16." )
R
root 已提交
45 46
add_arg('l2_decay',         float, 1e-4,                 "L2_decay parameter.")
add_arg('momentum_rate',    float, 0.9,                  "momentum_rate.")
T
typhoonzero 已提交
47
# yapf: enable
48

R
ruri 已提交
49

R
root 已提交
50
def set_models(model_category):
R
ruri 已提交
51
    global models
R
root 已提交
52 53 54 55 56
    assert model_category in ["models", "models_name"
                              ], "{} is not in lists: {}".format(
                                  model_category, ["models", "models_name"])
    if model_category == "models_name":
        import models_name as models
R
ruri 已提交
57
    else:
R
root 已提交
58
        import models as models
59 60 61 62


def optimizer_setting(params):
    ls = params["learning_strategy"]
R
root 已提交
63 64
    l2_decay = params["l2_decay"]
    momentum_rate = params["momentum_rate"]
65 66
    if ls["name"] == "piecewise_decay":
        if "total_images" not in params:
R
root 已提交
67
            total_images = IMAGENET1000
Y
Yibing Liu 已提交
68
        else:
69 70 71
            total_images = params["total_images"]
        batch_size = ls["batch_size"]
        step = int(total_images / batch_size + 1)
D
Dang Qingqing 已提交
72

73 74 75 76
        bd = [step * e for e in ls["epochs"]]
        base_lr = params["lr"]
        lr = []
        lr = [base_lr * (0.1**i) for i in range(len(bd) + 1)]
77
        optimizer = fluid.optimizer.Momentum(
78 79
            learning_rate=fluid.layers.piecewise_decay(
                boundaries=bd, values=lr),
R
root 已提交
80 81
            momentum=momentum_rate,
            regularization=fluid.regularizer.L2Decay(l2_decay))
R
ruri 已提交
82

83 84
    elif ls["name"] == "cosine_decay":
        if "total_images" not in params:
R
root 已提交
85
            total_images = IMAGENET1000
86 87 88
        else:
            total_images = params["total_images"]
        batch_size = ls["batch_size"]
R
root 已提交
89 90
        l2_decay = params["l2_decay"]
        momentum_rate = params["momentum_rate"]
91 92 93 94 95
        step = int(total_images / batch_size + 1)

        lr = params["lr"]
        num_epochs = params["num_epochs"]

96 97
        optimizer = fluid.optimizer.Momentum(
            learning_rate=cosine_decay(
98
                learning_rate=lr, step_each_epoch=step, epochs=num_epochs),
R
root 已提交
99 100 101
            momentum=momentum_rate,
            regularization=fluid.regularizer.L2Decay(l2_decay))
    elif ls["name"] == "linear_decay":
R
ruri 已提交
102
        if "total_images" not in params:
R
root 已提交
103
            total_images = IMAGENET1000
R
ruri 已提交
104 105 106 107
        else:
            total_images = params["total_images"]
        batch_size = ls["batch_size"]
        num_epochs = params["num_epochs"]
R
root 已提交
108
        start_lr = params["lr"]
R
root 已提交
109 110 111 112 113 114
        l2_decay = params["l2_decay"]
        momentum_rate = params["momentum_rate"]
        end_lr = 0
        total_step = int((total_images / batch_size) * num_epochs)
        lr = fluid.layers.polynomial_decay(
            start_lr, total_step, end_lr, power=1)
R
ruri 已提交
115
        optimizer = fluid.optimizer.Momentum(
R
root 已提交
116 117 118
            learning_rate=lr,
            momentum=momentum_rate,
            regularization=fluid.regularizer.L2Decay(l2_decay))
T
tensor-tang 已提交
119 120 121
    elif ls["name"] == "adam":
        lr = params["lr"]
        optimizer = fluid.optimizer.Adam(learning_rate=lr)
122
    else:
123
        lr = params["lr"]
R
root 已提交
124 125
        l2_decay = params["l2_decay"]
        momentum_rate = params["momentum_rate"]
126
        optimizer = fluid.optimizer.Momentum(
127
            learning_rate=lr,
R
root 已提交
128 129
            momentum=momentum_rate,
            regularization=fluid.regularizer.L2Decay(l2_decay))
130

131
    return optimizer
132

R
root 已提交
133

R
ruri 已提交
134 135
def net_config(image, label, model, args):
    model_list = [m for m in dir(models) if "__" not in m]
R
root 已提交
136 137
    assert args.model in model_list, "{} is not lists: {}".format(args.model,
                                                                  model_list)
138

139 140 141
    class_dim = args.class_dim
    model_name = args.model

142 143
    if args.enable_ce:
        assert model_name == "SE_ResNeXt50_32x4d"
D
Dang Qingqing 已提交
144
        model.params["dropout_seed"] = 100
R
root 已提交
145
        class_dim = 102
146

R
root 已提交
147
    if model_name == "GoogleNet":
148 149 150 151 152 153 154 155 156 157 158
        out0, out1, out2 = model.net(input=image, class_dim=class_dim)
        cost0 = fluid.layers.cross_entropy(input=out0, label=label)
        cost1 = fluid.layers.cross_entropy(input=out1, label=label)
        cost2 = fluid.layers.cross_entropy(input=out2, label=label)
        avg_cost0 = fluid.layers.mean(x=cost0)
        avg_cost1 = fluid.layers.mean(x=cost1)
        avg_cost2 = fluid.layers.mean(x=cost2)

        avg_cost = avg_cost0 + 0.3 * avg_cost1 + 0.3 * avg_cost2
        acc_top1 = fluid.layers.accuracy(input=out0, label=label, k=1)
        acc_top5 = fluid.layers.accuracy(input=out0, label=label, k=5)
Y
Yibing Liu 已提交
159
    else:
R
root 已提交
160 161 162
        out = model.net(input=image, class_dim=class_dim)
        cost, pred = fluid.layers.softmax_with_cross_entropy(
            out, label, return_softmax=True)
T
typhoonzero 已提交
163
        if args.scale_loss > 1:
T
update  
typhoonzero 已提交
164
            avg_cost = fluid.layers.mean(x=cost) * float(args.scale_loss)
T
typhoonzero 已提交
165
        else:
T
update  
typhoonzero 已提交
166
            avg_cost = fluid.layers.mean(x=cost)
167

T
update  
typhoonzero 已提交
168 169
        acc_top1 = fluid.layers.accuracy(input=pred, label=label, k=1)
        acc_top5 = fluid.layers.accuracy(input=pred, label=label, k=5)
170

R
ruri 已提交
171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189
    return avg_cost, acc_top1, acc_top5


def build_program(is_train, main_prog, startup_prog, args):
    image_shape = [int(m) for m in args.image_shape.split(",")]
    model_name = args.model
    model_list = [m for m in dir(models) if "__" not in m]
    assert model_name in model_list, "{} is not in lists: {}".format(args.model,
                                                                     model_list)
    model = models.__dict__[model_name]()
    with fluid.program_guard(main_prog, startup_prog):
        py_reader = fluid.layers.py_reader(
            capacity=16,
            shapes=[[-1] + image_shape, [-1, 1]],
            lod_levels=[0, 0],
            dtypes=["float32", "int64"],
            use_double_buffer=True)
        with fluid.unique_name.guard():
            image, label = fluid.layers.read_file(py_reader)
T
typhoonzero 已提交
190
            if args.fp16:
T
update  
typhoonzero 已提交
191
                image = fluid.layers.cast(image, "float16")
R
ruri 已提交
192 193 194 195 196 197 198 199 200 201 202
            avg_cost, acc_top1, acc_top5 = net_config(image, label, model, args)
            avg_cost.persistable = True
            acc_top1.persistable = True
            acc_top5.persistable = True
            if is_train:
                params = model.params
                params["total_images"] = args.total_images
                params["lr"] = args.lr
                params["num_epochs"] = args.num_epochs
                params["learning_strategy"]["batch_size"] = args.batch_size
                params["learning_strategy"]["name"] = args.lr_strategy
R
root 已提交
203 204
                params["l2_decay"] = args.l2_decay
                params["momentum_rate"] = args.momentum_rate
R
ruri 已提交
205 206

                optimizer = optimizer_setting(params)
T
typhoonzero 已提交
207
                if args.fp16:
T
typhoonzero 已提交
208
                    params_grads = optimizer.backward(avg_cost)
T
typhoonzero 已提交
209 210
                    master_params_grads = create_master_params_grads(
                        params_grads, main_prog, startup_prog, args.scale_loss)
T
update  
typhoonzero 已提交
211
                    optimizer.apply_gradients(master_params_grads)
R
root 已提交
212 213
                    master_param_to_train_param(master_params_grads,
                                                params_grads, main_prog)
T
typhoonzero 已提交
214 215
                else:
                    optimizer.minimize(avg_cost)
R
root 已提交
216
                global_lr = optimizer._global_learning_rate()
R
ruri 已提交
217

R
root 已提交
218 219 220 221
    if is_train:
        return py_reader, avg_cost, acc_top1, acc_top5, global_lr
    else:
        return py_reader, avg_cost, acc_top1, acc_top5
R
ruri 已提交
222 223 224 225 226 227 228 229 230


def train(args):
    # parameters from arguments
    model_name = args.model
    checkpoint = args.checkpoint
    pretrained_model = args.pretrained_model
    with_memory_optimization = args.with_mem_opt
    model_save_dir = args.model_save_dir
231

R
ruri 已提交
232 233 234 235 236 237 238
    startup_prog = fluid.Program()
    train_prog = fluid.Program()
    test_prog = fluid.Program()
    if args.enable_ce:
        startup_prog.random_seed = 1000
        train_prog.random_seed = 1000

R
root 已提交
239
    train_py_reader, train_cost, train_acc1, train_acc5, global_lr = build_program(
R
ruri 已提交
240 241 242 243 244 245 246 247 248 249
        is_train=True,
        main_prog=train_prog,
        startup_prog=startup_prog,
        args=args)
    test_py_reader, test_cost, test_acc1, test_acc5 = build_program(
        is_train=False,
        main_prog=test_prog,
        startup_prog=startup_prog,
        args=args)
    test_prog = test_prog.clone(for_test=True)
250

251
    if with_memory_optimization:
R
ruri 已提交
252 253
        fluid.memory_optimize(train_prog)
        fluid.memory_optimize(test_prog)
254

255
    place = fluid.CUDAPlace(0) if args.use_gpu else fluid.CPUPlace()
256
    exe = fluid.Executor(place)
R
ruri 已提交
257
    exe.run(startup_prog)
258

259
    if checkpoint is not None:
R
ruri 已提交
260
        fluid.io.load_persistables(exe, checkpoint, main_program=train_prog)
261

262 263 264 265 266
    if pretrained_model:

        def if_exist(var):
            return os.path.exists(os.path.join(pretrained_model, var.name))

R
ruri 已提交
267 268
        fluid.io.load_vars(
            exe, pretrained_model, main_program=train_prog, predicate=if_exist)
269

T
tensor-tang 已提交
270 271 272 273 274 275 276
    if args.use_gpu:
        visible_device = os.getenv('CUDA_VISIBLE_DEVICES')
        if visible_device:
            device_num = len(visible_device.split(','))
        else:
            device_num = subprocess.check_output(
                ['nvidia-smi', '-L']).decode().count('\n')
R
ruri 已提交
277
    else:
T
tensor-tang 已提交
278
        device_num = 1
R
ruri 已提交
279
    train_batch_size = args.batch_size / device_num
T
tensor-tang 已提交
280

K
kolinwei 已提交
281
    test_batch_size = 16
282
    if not args.enable_ce:
R
ruri 已提交
283 284
        train_reader = paddle.batch(
            reader.train(), batch_size=train_batch_size, drop_last=True)
285 286 287 288 289 290
        test_reader = paddle.batch(reader.val(), batch_size=test_batch_size)
    else:
        # use flowers dataset for CE and set use_xmap False to avoid disorder data
        # but it is time consuming. For faster speed, need another dataset.
        import random
        random.seed(0)
D
Dang Qingqing 已提交
291
        np.random.seed(0)
292
        train_reader = paddle.batch(
R
ruri 已提交
293 294 295
            flowers.train(use_xmap=False),
            batch_size=train_batch_size,
            drop_last=True)
296 297 298
        test_reader = paddle.batch(
            flowers.test(use_xmap=False), batch_size=test_batch_size)

R
ruri 已提交
299 300
    train_py_reader.decorate_paddle_reader(train_reader)
    test_py_reader.decorate_paddle_reader(test_reader)
T
tensor-tang 已提交
301 302 303 304 305 306 307 308 309

    use_ngraph = os.getenv('FLAGS_use_ngraph')
    if not use_ngraph:
        train_exe = fluid.ParallelExecutor(
            main_program=train_prog,
            use_cuda=bool(args.use_gpu),
            loss_name=train_cost.name)
    else:
        train_exe = exe
R
ruri 已提交
310

R
root 已提交
311 312 313
    train_fetch_list = [
        train_cost.name, train_acc1.name, train_acc5.name, global_lr.name
    ]
R
ruri 已提交
314
    test_fetch_list = [test_cost.name, test_acc1.name, test_acc5.name]
315

R
ruri 已提交
316
    params = models.__dict__[args.model]().params
317
    for pass_id in range(params["num_epochs"]):
R
ruri 已提交
318 319 320

        train_py_reader.start()

321 322
        train_info = [[], [], []]
        test_info = [[], [], []]
323
        train_time = []
R
ruri 已提交
324 325 326 327
        batch_id = 0
        try:
            while True:
                t1 = time.time()
R
root 已提交
328

T
tensor-tang 已提交
329 330 331 332 333 334
                if use_ngraph:
                    loss, acc1, acc5, lr = train_exe.run(
                        train_prog, fetch_list=train_fetch_list)
                else:
                    loss, acc1, acc5, lr = train_exe.run(
                        fetch_list=train_fetch_list)
R
ruri 已提交
335 336 337 338 339 340 341 342
                t2 = time.time()
                period = t2 - t1
                loss = np.mean(np.array(loss))
                acc1 = np.mean(np.array(acc1))
                acc5 = np.mean(np.array(acc5))
                train_info[0].append(loss)
                train_info[1].append(acc1)
                train_info[2].append(acc5)
R
root 已提交
343
                lr = np.mean(np.array(lr))
R
ruri 已提交
344
                train_time.append(period)
R
root 已提交
345

R
ruri 已提交
346 347
                if batch_id % 10 == 0:
                    print("Pass {0}, trainbatch {1}, loss {2}, \
R
root 已提交
348 349 350
                        acc1 {3}, acc5 {4}, lr{5}, time {6}"
                          .format(pass_id, batch_id, loss, acc1, acc5, "%.5f" %
                                  lr, "%2.2f sec" % period))
R
ruri 已提交
351 352 353 354
                    sys.stdout.flush()
                batch_id += 1
        except fluid.core.EOFException:
            train_py_reader.reset()
355 356 357 358

        train_loss = np.array(train_info[0]).mean()
        train_acc1 = np.array(train_info[1]).mean()
        train_acc5 = np.array(train_info[2]).mean()
R
root 已提交
359 360
        train_speed = np.array(train_time).mean() / (train_batch_size *
                                                     device_num)
R
ruri 已提交
361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390

        test_py_reader.start()

        test_batch_id = 0
        try:
            while True:
                t1 = time.time()
                loss, acc1, acc5 = exe.run(program=test_prog,
                                           fetch_list=test_fetch_list)
                t2 = time.time()
                period = t2 - t1
                loss = np.mean(loss)
                acc1 = np.mean(acc1)
                acc5 = np.mean(acc5)
                test_info[0].append(loss)
                test_info[1].append(acc1)
                test_info[2].append(acc5)
                if test_batch_id % 10 == 0:
                    print("Pass {0},testbatch {1},loss {2}, \
                        acc1 {3},acc5 {4},time {5}"
                          .format(pass_id, test_batch_id, loss, acc1, acc5,
                                  "%2.2f sec" % period))
                    sys.stdout.flush()
                test_batch_id += 1
        except fluid.core.EOFException:
            test_py_reader.reset()

        test_loss = np.array(test_info[0]).mean()
        test_acc1 = np.array(test_info[1]).mean()
        test_acc5 = np.array(test_info[2]).mean()
391

392
        print("End pass {0}, train_loss {1}, train_acc1 {2}, train_acc5 {3}, "
R
ruri 已提交
393 394 395
              "test_loss {4}, test_acc1 {5}, test_acc5 {6}".format(
                  pass_id, train_loss, train_acc1, train_acc5, test_loss,
                  test_acc1, test_acc5))
396 397
        sys.stdout.flush()

398
        model_path = os.path.join(model_save_dir + '/' + model_name,
399
                                  str(pass_id))
400 401
        if not os.path.isdir(model_path):
            os.makedirs(model_path)
R
ruri 已提交
402
        fluid.io.save_persistables(exe, model_path, main_program=train_prog)
403

404 405
        # This is for continuous evaluation only
        if args.enable_ce and pass_id == args.num_epochs - 1:
R
ruri 已提交
406
            if device_num == 1:
D
Dang Qingqing 已提交
407
                # Use the mean cost/acc for training
408 409 410 411 412 413 414 415 416
                print("kpis	train_cost	%s" % train_loss)
                print("kpis	train_acc_top1	%s" % train_acc1)
                print("kpis	train_acc_top5	%s" % train_acc5)
                # Use the mean cost/acc for testing
                print("kpis	test_cost	%s" % test_loss)
                print("kpis	test_acc_top1	%s" % test_acc1)
                print("kpis	test_acc_top5	%s" % test_acc5)
                print("kpis	train_speed	%s" % train_speed)
            else:
D
Dang Qingqing 已提交
417
                # Use the mean cost/acc for training
R
ruri 已提交
418 419 420 421 422
                print("kpis	train_cost_card%s	%s" % (device_num, train_loss))
                print("kpis	train_acc_top1_card%s	%s" %
                      (device_num, train_acc1))
                print("kpis	train_acc_top5_card%s	%s" %
                      (device_num, train_acc5))
423
                # Use the mean cost/acc for testing
R
ruri 已提交
424 425 426 427
                print("kpis	test_cost_card%s	%s" % (device_num, test_loss))
                print("kpis	test_acc_top1_card%s	%s" % (device_num, test_acc1))
                print("kpis	test_acc_top5_card%s	%s" % (device_num, test_acc5))
                print("kpis	train_speed_card%s	%s" % (device_num, train_speed))
428

429

430
def main():
431
    args = parser.parse_args()
R
root 已提交
432
    set_models(args.model_category)
433
    print_arguments(args)
434
    train(args)
435

436 437 438

if __name__ == '__main__':
    main()