run.sh 5.5 KB
Newer Older
R
ruri 已提交
1
#Hyperparameters config
2
#Example: SE_ResNext50_32x4d
R
ruri 已提交
3 4
python train.py \
       --model=SE_ResNeXt50_32x4d \
5
       --batch_size=400 \
R
ruri 已提交
6 7 8 9
       --total_images=1281167 \
       --class_dim=1000 \
       --image_shape=3,224,224 \
       --model_save_dir=output/ \
R
root 已提交
10
       --with_mem_opt=True \
11 12 13 14 15
       --lr_strategy=cosine_decay \
       --lr=0.1 \
       --num_epochs=200 \
       --l2_decay=1.2e-4 \
       --model_category=models_name \
R
ruri 已提交
16 17 18 19 20 21 22 23 24
#      >log_SE_ResNeXt50_32x4d.txt 2>&1 &
#AlexNet:
#python train.py \
#       --model=AlexNet \
#       --batch_size=256 \
#       --total_images=1281167 \
#       --class_dim=1000 \
#       --image_shape=3,224,224 \
#       --model_save_dir=output/ \
R
root 已提交
25
#       --with_mem_opt=True \
26
#       --model_category=models_name \
R
ruri 已提交
27 28
#       --lr_strategy=piecewise_decay \
#	--num_epochs=120 \
29 30
#       --lr=0.01 \
#       --l2_decay=1e-4
R
ruri 已提交
31 32 33 34 35 36 37 38 39

#MobileNet v1:
#python train.py \
#       --model=MobileNet \
#       --batch_size=256 \
#       --total_images=1281167 \
#       --class_dim=1000 \
#       --image_shape=3,224,224 \
#       --model_save_dir=output/ \
R
root 已提交
40
#       --with_mem_opt=True \
41
#       --model_category=models_name \
R
ruri 已提交
42 43
#       --lr_strategy=piecewise_decay \
#	--num_epochs=120 \
44 45
#       --lr=0.1 \
#       --l2_decay=3e-5
R
ruri 已提交
46

R
root 已提交
47 48 49 50 51 52 53
#python train.py \
#	--model=MobileNetV2 \
#	--batch_size=500 \
#	--total_images=1281167 \
#	--class_dim=1000 \
#	--image_shape=3,224,224 \
#	--model_save_dir=output/ \
54
#       --model_category=models_name \
R
root 已提交
55 56
#	--with_mem_opt=True \
#	--lr_strategy=cosine_decay \
57 58 59
#	--num_epochs=240 \
#	--lr=0.1 \
#       --l2_decay=4e-5
R
ruri 已提交
60 61 62 63 64 65 66 67
#ResNet50:
#python train.py \
#       --model=ResNet50 \
#       --batch_size=256 \
#       --total_images=1281167 \
#       --class_dim=1000 \
#       --image_shape=3,224,224 \
#       --model_save_dir=output/ \
R
root 已提交
68
#       --with_mem_opt=True \
69
#       --model_category=models_name \
R
ruri 已提交
70 71
#       --lr_strategy=piecewise_decay \
#	--num_epochs=120 \
72 73
#       --lr=0.1 \
#       --l2_decay=1e-4
R
ruri 已提交
74 75 76 77 78 79 80 81 82

#ResNet101:
#python train.py \
#       --model=ResNet101 \
#       --batch_size=256 \
#       --total_images=1281167 \
#       --class_dim=1000 \
#       --image_shape=3,224,224 \
#       --model_save_dir=output/ \
83 84
#       --model_category=models_name \
#       --with_mem_opt=True \
R
ruri 已提交
85 86
#       --lr_strategy=piecewise_decay \
#	--num_epochs=120 \
87 88
#       --lr=0.1 \
#       --l2_decay=1e-4
R
ruri 已提交
89

S
shippingwang 已提交
90 91 92 93 94
#ResNet152:
#python train.py \
#       --model=ResNet152 \
#       --batch_size=256 \
#       --total_images=1281167 \
95
#       --class_dim=1000 \
S
shippingwang 已提交
96
#       --image_shape=3,224,224 \
97
#       --model_save_dir=output/ \
S
shippingwang 已提交
98
#       --lr_strategy=piecewise_decay \
99 100
#       --model_category=models_name \
#       --with_mem_opt=True \
S
shippingwang 已提交
101 102
#       --lr=0.1 \
#       --num_epochs=120 \
103
#       --l2_decay=1e-4
S
shippingwang 已提交
104 105


106
#SE_ResNeXt50_32x4d:
S
shippingwang 已提交
107
#python train.py \
108
#       --model=SE_ResNeXt50_32x4d \
S
shippingwang 已提交
109 110
#       --batch_size=400 \
#       --total_images=1281167 \
111
#	--class_dim=1000 \
S
shippingwang 已提交
112 113
#       --image_shape=3,224,224 \
#       --lr_strategy=cosine_decay \
114 115
#	--model_category=models_name \
#       --model_save_dir=output/ \
S
shippingwang 已提交
116 117
#       --lr=0.1 \
#       --num_epochs=200 \
118 119
#       --with_mem_opt=True \
#       --l2_decay=1.2e-4
S
shippingwang 已提交
120

121
#SE_ResNeXt101_32x4d:
S
shippingwang 已提交
122
#python train.py \
123
#        --model=SE_ResNeXt101_32x4d \
S
shippingwang 已提交
124 125
#        --batch_size=400 \
#        --total_images=1281167 \
126
#        --class_dim=1000 \
S
shippingwang 已提交
127 128
#        --image_shape=3,224,224 \
#        --lr_strategy=cosine_decay \
129 130
#        --model_category=models_name \
#        --model_save_dir=output/ \
S
shippingwang 已提交
131 132
#        --lr=0.1 \
#        --num_epochs=200 \
133 134
#        --with_mem_opt=True \
#        --l2_decay=1.5e-5
S
shippingwang 已提交
135 136 137 138 139 140 141 142

#VGG11:
#python train.py \
#        --model=VGG11 \
#        --batch_size=512 \
#        --total_images=1281167 \
#        --image_shape=3,224,224 \
#        --lr_strategy=cosine_decay \
143 144 145
#        --class_dim=1000 \
#        --model_category=models_name \
#        --model_save_dir=output/ \
S
shippingwang 已提交
146 147
#        --lr=0.1 \
#        --num_epochs=90 \
148
#        --with_mem_opt=True \
149
#        --l2_decay=2e-4
S
shippingwang 已提交
150 151 152 153 154 155

#VGG13:
#python train.py
#        --model=VGG13 \          
#        --batch_size=256 \
#        --total_images=1281167 \
156
#        --class_dim=1000 \
S
shippingwang 已提交
157 158 159 160
#        --image_shape=3,224,224 \
#        --lr_strategy=cosine_decay \
#        --lr=0.01 \
#        --num_epochs=90 \
161 162 163
#        --model_category=models_name \
#        --model_save_dir=output/ \
#        --with_mem_opt=True \
164
#        --l2_decay=3e-4
165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194

#VGG16:
#python train.py
#	--model=VGG16 \
#	--batch_size=256 \
#	--total_images=1281167 \
#       --class_dim=1000 \
#	--lr_strategy=cosine_decay \
#	--image_shape=3,224,224 \
#	--model_category=models_name \
#       --model_save_dir=output/ \
#	--lr=0.01 \
#	--num_epochs=90 \
#       --with_mem_opt=True \
#	--l2_decay=3e-4

#VGG19:
#python train.py
#	--model=VGG19 \
#	--batch_size=256 \
#	--total_images=1281167 \
#	--class_dim=1000 \
#	--image_shape=3,224,224 \
#	--lr_strategy=cosine_decay \
#	--lr=0.01 \
#	--num_epochs=90 \
#       --with_mem_opt=True \
#	--model_category=models_name \
#       --model_save_dir=output/ \
#	--l2_decay=3e-4
T
tensor-tang 已提交
195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216

#ResNet50 nGraph:
# Training:
#OMP_NUM_THREADS=`nproc` FLAGS_use_ngraph=true python train.py \
#    --model=ResNet50 \
#    --batch_size=128 \
#    --total_images=1281167 \
#    --class_dim=1000 \
#    --image_shape=3,224,224 \
#    --lr=0.001 \
#    --num_epochs=120 \
#    --with_mem_opt=False \
#    --model_category=models_name \
#    --model_save_dir=output/ \
#    --lr_strategy=adam \
#    --use_gpu=False
# Inference:
#OMP_NUM_THREADS=`nproc` FLAGS_use_ngraph=true python infer.py  \
#    --use_gpu=false \
#    --model=ResNet50 \
#    --pretrained_model=ResNet50_pretrained