network.py 5.2 KB
Newer Older
H
hutuxian 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
#  Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.

import paddle.fluid as fluid

Z
zhang wenhui 已提交
17

18
def din_attention(hist, target_expand, mask):
H
hutuxian 已提交
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
    """activation weight"""

    hidden_size = hist.shape[-1]

    concat = fluid.layers.concat(
        [hist, target_expand, hist - target_expand, hist * target_expand],
        axis=2)
    atten_fc1 = fluid.layers.fc(name="atten_fc1",
                                input=concat,
                                size=80,
                                act="sigmoid",
                                num_flatten_dims=2)
    atten_fc2 = fluid.layers.fc(name="atten_fc2",
                                input=atten_fc1,
                                size=40,
                                act="sigmoid",
                                num_flatten_dims=2)
    atten_fc3 = fluid.layers.fc(name="atten_fc3",
                                input=atten_fc2,
                                size=1,
                                num_flatten_dims=2)
    atten_fc3 += mask
    atten_fc3 = fluid.layers.transpose(x=atten_fc3, perm=[0, 2, 1])
    atten_fc3 = fluid.layers.scale(x=atten_fc3, scale=hidden_size**-0.5)
    weight = fluid.layers.softmax(atten_fc3)
    out = fluid.layers.matmul(weight, hist)
    out = fluid.layers.reshape(x=out, shape=[0, hidden_size])
    return out


49
def network(item_count, cat_count):
H
hutuxian 已提交
50 51
    """network definition"""

52
    seq_len = -1
H
hutuxian 已提交
53 54 55 56 57 58 59 60
    item_emb_size = 64
    cat_emb_size = 64
    is_sparse = False
    #significant for speeding up the training process

    item_emb_attr = fluid.ParamAttr(name="item_emb")
    cat_emb_attr = fluid.ParamAttr(name="cat_emb")

61 62 63 64
    hist_item_seq = fluid.data(
        name="hist_item_seq", shape=[None, seq_len], dtype="int64")
    hist_cat_seq = fluid.data(
        name="hist_cat_seq", shape=[None, seq_len], dtype="int64")
Z
zhang wenhui 已提交
65 66 67 68
    target_item = fluid.data(name="target_item", shape=[None], dtype="int64")
    target_cat = fluid.data(name="target_cat", shape=[None], dtype="int64")
    label = fluid.data(name="label", shape=[None, 1], dtype="float32")
    mask = fluid.data(name="mask", shape=[None, seq_len, 1], dtype="float32")
69 70 71 72 73 74
    target_item_seq = fluid.data(
        name="target_item_seq", shape=[None, seq_len], dtype="int64")
    target_cat_seq = fluid.data(
        name="target_cat_seq", shape=[None, seq_len], dtype="int64")

    hist_item_emb = fluid.embedding(
H
hutuxian 已提交
75 76 77 78 79
        input=hist_item_seq,
        size=[item_count, item_emb_size],
        param_attr=item_emb_attr,
        is_sparse=is_sparse)

80
    hist_cat_emb = fluid.embedding(
H
hutuxian 已提交
81 82 83 84 85
        input=hist_cat_seq,
        size=[cat_count, cat_emb_size],
        param_attr=cat_emb_attr,
        is_sparse=is_sparse)

86
    target_item_emb = fluid.embedding(
H
hutuxian 已提交
87 88 89 90 91
        input=target_item,
        size=[item_count, item_emb_size],
        param_attr=item_emb_attr,
        is_sparse=is_sparse)

92
    target_cat_emb = fluid.embedding(
H
hutuxian 已提交
93 94 95 96 97
        input=target_cat,
        size=[cat_count, cat_emb_size],
        param_attr=cat_emb_attr,
        is_sparse=is_sparse)

98
    target_item_seq_emb = fluid.embedding(
H
hutuxian 已提交
99 100 101 102 103
        input=target_item_seq,
        size=[item_count, item_emb_size],
        param_attr=item_emb_attr,
        is_sparse=is_sparse)

104
    target_cat_seq_emb = fluid.embedding(
H
hutuxian 已提交
105 106 107 108 109
        input=target_cat_seq,
        size=[cat_count, cat_emb_size],
        param_attr=cat_emb_attr,
        is_sparse=is_sparse)

110
    item_b = fluid.embedding(
H
hutuxian 已提交
111 112 113 114 115 116 117 118 119 120
        input=target_item,
        size=[item_count, 1],
        param_attr=fluid.initializer.Constant(value=0.0))

    hist_seq_concat = fluid.layers.concat([hist_item_emb, hist_cat_emb], axis=2)
    target_seq_concat = fluid.layers.concat(
        [target_item_seq_emb, target_cat_seq_emb], axis=2)
    target_concat = fluid.layers.concat(
        [target_item_emb, target_cat_emb], axis=1)

121
    out = din_attention(hist_seq_concat, target_seq_concat, mask)
H
hutuxian 已提交
122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137
    out_fc = fluid.layers.fc(name="out_fc",
                             input=out,
                             size=item_emb_size + cat_emb_size,
                             num_flatten_dims=1)
    embedding_concat = fluid.layers.concat([out_fc, target_concat], axis=1)

    fc1 = fluid.layers.fc(name="fc1",
                          input=embedding_concat,
                          size=80,
                          act="sigmoid")
    fc2 = fluid.layers.fc(name="fc2", input=fc1, size=40, act="sigmoid")
    fc3 = fluid.layers.fc(name="fc3", input=fc2, size=1)
    logit = fc3 + item_b

    loss = fluid.layers.sigmoid_cross_entropy_with_logits(x=logit, label=label)
    avg_loss = fluid.layers.mean(loss)
138 139 140
    return avg_loss, fluid.layers.sigmoid(logit), \
           [hist_item_seq, hist_cat_seq, target_item, \
           target_cat, label, mask, target_item_seq, target_cat_seq]