learning_rate.py 2.3 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14
#  Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.

J
jerrywgz 已提交
15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import paddle.fluid as fluid
import paddle.fluid.layers.learning_rate_scheduler as lr_scheduler
from paddle.fluid.layers import control_flow


def exponential_with_warmup_decay(learning_rate, boundaries, values,
                                  warmup_iter, warmup_factor):
    global_step = lr_scheduler._decay_step_counter()

    lr = fluid.layers.create_global_var(
        shape=[1],
        value=0.0,
        dtype='float32',
        persistable=True,
        name="learning_rate")

    warmup_iter_var = fluid.layers.fill_constant(
        shape=[1], dtype='float32', value=float(warmup_iter), force_cpu=True)

    with control_flow.Switch() as switch:
        with switch.case(global_step < warmup_iter_var):
            alpha = global_step / warmup_iter_var
            factor = warmup_factor * (1 - alpha) + alpha
            decayed_lr = learning_rate * factor
            fluid.layers.assign(decayed_lr, lr)

        for i in range(len(boundaries)):
            boundary_val = fluid.layers.fill_constant(
                shape=[1],
                dtype='float32',
                value=float(boundaries[i]),
                force_cpu=True)
            value_var = fluid.layers.fill_constant(
                shape=[1], dtype='float32', value=float(values[i]))
            with switch.case(global_step < boundary_val):
                fluid.layers.assign(value_var, lr)

        last_value_var = fluid.layers.fill_constant(
            shape=[1], dtype='float32', value=float(values[len(values) - 1]))
        with switch.default():
            fluid.layers.assign(last_value_var, lr)

    return lr