icnet.py 10.0 KB
Newer Older
W
whs 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
#  Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.
#################################################################
#
# Based on
#---------------------------------------------------------------
# https://github.com/hszhao/ICNet
# Written by hszhao@cse.cuhk.edu.hk
#---------------------------------------------------------------


23 24 25
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
import paddle.fluid as fluid
import numpy as np
import sys


def conv(input,
         k_h,
         k_w,
         c_o,
         s_h,
         s_w,
         relu=False,
         padding="VALID",
         biased=False,
         name=None):
    act = None
    tmp = input
    if relu:
        act = "relu"
    if padding == "SAME":
        padding_h = max(k_h - s_h, 0)
        padding_w = max(k_w - s_w, 0)
48 49
        padding_top = padding_h // 2
        padding_left = padding_w // 2
50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
        padding_bottom = padding_h - padding_top
        padding_right = padding_w - padding_left
        padding = [
            0, 0, 0, 0, padding_top, padding_bottom, padding_left, padding_right
        ]
        tmp = fluid.layers.pad(tmp, padding)
    tmp = fluid.layers.conv2d(
        tmp,
        num_filters=c_o,
        filter_size=[k_h, k_w],
        stride=[s_h, s_w],
        groups=1,
        act=act,
        bias_attr=biased,
        use_cudnn=False,
        name=name)
    return tmp


def atrous_conv(input,
                k_h,
                k_w,
                c_o,
                dilation,
                relu=False,
                padding="VALID",
                biased=False,
                name=None):
    act = None
    if relu:
        act = "relu"
    tmp = input
    if padding == "SAME":
        padding_h = max(k_h - s_h, 0)
        padding_w = max(k_w - s_w, 0)
85 86
        padding_top = padding_h // 2
        padding_left = padding_w // 2
87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168
        padding_bottom = padding_h - padding_top
        padding_right = padding_w - padding_left
        padding = [
            0, 0, 0, 0, padding_top, padding_bottom, padding_left, padding_right
        ]
        tmp = fluid.layers.pad(tmp, padding)

    tmp = fluid.layers.conv2d(
        input,
        num_filters=c_o,
        filter_size=[k_h, k_w],
        dilation=dilation,
        groups=1,
        act=act,
        bias_attr=biased,
        use_cudnn=False,
        name=name)
    return tmp


def zero_padding(input, padding):
    return fluid.layers.pad(input,
                            [0, 0, 0, 0, padding, padding, padding, padding])


def bn(input, relu=False, name=None, is_test=False):
    act = None
    if relu:
        act = 'relu'
    name = input.name.split(".")[0] + "_bn"
    tmp = fluid.layers.batch_norm(
        input, act=act, momentum=0.95, epsilon=1e-5, name=name)
    return tmp


def avg_pool(input, k_h, k_w, s_h, s_w, name=None, padding=0):
    temp = fluid.layers.pool2d(
        input,
        pool_size=[k_h, k_w],
        pool_type="avg",
        pool_stride=[s_h, s_w],
        pool_padding=padding,
        name=name)
    return temp


def max_pool(input, k_h, k_w, s_h, s_w, name=None, padding=0):
    temp = fluid.layers.pool2d(
        input,
        pool_size=[k_h, k_w],
        pool_type="max",
        pool_stride=[s_h, s_w],
        pool_padding=padding,
        name=name)
    return temp


def interp(input, out_shape):
    out_shape = list(out_shape.astype("int32"))
    return fluid.layers.resize_bilinear(input, out_shape=out_shape)


def dilation_convs(input):
    tmp = res_block(input, filter_num=256, padding=1, name="conv3_2")
    tmp = res_block(tmp, filter_num=256, padding=1, name="conv3_3")
    tmp = res_block(tmp, filter_num=256, padding=1, name="conv3_4")

    tmp = proj_block(tmp, filter_num=512, padding=2, dilation=2, name="conv4_1")
    tmp = res_block(tmp, filter_num=512, padding=2, dilation=2, name="conv4_2")
    tmp = res_block(tmp, filter_num=512, padding=2, dilation=2, name="conv4_3")
    tmp = res_block(tmp, filter_num=512, padding=2, dilation=2, name="conv4_4")
    tmp = res_block(tmp, filter_num=512, padding=2, dilation=2, name="conv4_5")
    tmp = res_block(tmp, filter_num=512, padding=2, dilation=2, name="conv4_6")

    tmp = proj_block(
        tmp, filter_num=1024, padding=4, dilation=4, name="conv5_1")
    tmp = res_block(tmp, filter_num=1024, padding=4, dilation=4, name="conv5_2")
    tmp = res_block(tmp, filter_num=1024, padding=4, dilation=4, name="conv5_3")
    return tmp


def pyramis_pooling(input, input_shape):
169
    shape = np.ceil(input_shape // 32).astype("int32")
170 171 172
    h, w = shape
    pool1 = avg_pool(input, h, w, h, w)
    pool1_interp = interp(pool1, shape)
173
    pool2 = avg_pool(input, h // 2, w // 2, h // 2, w // 2)
174
    pool2_interp = interp(pool2, shape)
175
    pool3 = avg_pool(input, h // 3, w // 3, h // 3, w // 3)
176
    pool3_interp = interp(pool3, shape)
177
    pool4 = avg_pool(input, h // 4, w // 4, h // 4, w // 4)
178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199
    pool4_interp = interp(pool4, shape)
    conv5_3_sum = input + pool4_interp + pool3_interp + pool2_interp + pool1_interp
    return conv5_3_sum


def shared_convs(image):
    tmp = conv(image, 3, 3, 32, 2, 2, padding='SAME', name="conv1_1_3_3_s2")
    tmp = bn(tmp, relu=True)
    tmp = conv(tmp, 3, 3, 32, 1, 1, padding='SAME', name="conv1_2_3_3")
    tmp = bn(tmp, relu=True)
    tmp = conv(tmp, 3, 3, 64, 1, 1, padding='SAME', name="conv1_3_3_3")
    tmp = bn(tmp, relu=True)
    tmp = max_pool(tmp, 3, 3, 2, 2, padding=[1, 1])

    tmp = proj_block(tmp, filter_num=128, padding=0, name="conv2_1")
    tmp = res_block(tmp, filter_num=128, padding=1, name="conv2_2")
    tmp = res_block(tmp, filter_num=128, padding=1, name="conv2_3")
    tmp = proj_block(tmp, filter_num=256, padding=1, stride=2, name="conv3_1")
    return tmp


def res_block(input, filter_num, padding=0, dilation=None, name=None):
200
    tmp = conv(input, 1, 1, filter_num // 4, 1, 1, name=name + "_1_1_reduce")
201 202 203
    tmp = bn(tmp, relu=True)
    tmp = zero_padding(tmp, padding=padding)
    if dilation is None:
204
        tmp = conv(tmp, 3, 3, filter_num // 4, 1, 1, name=name + "_3_3")
205 206
    else:
        tmp = atrous_conv(
207
            tmp, 3, 3, filter_num // 4, dilation, name=name + "_3_3")
208 209 210 211
    tmp = bn(tmp, relu=True)
    tmp = conv(tmp, 1, 1, filter_num, 1, 1, name=name + "_1_1_increase")
    tmp = bn(tmp, relu=False)
    tmp = input + tmp
W
wanghaoshuang 已提交
212
    tmp = fluid.layers.relu(tmp)
213 214 215 216 217 218 219 220 221 222
    return tmp


def proj_block(input, filter_num, padding=0, dilation=None, stride=1,
               name=None):
    proj = conv(
        input, 1, 1, filter_num, stride, stride, name=name + "_1_1_proj")
    proj_bn = bn(proj, relu=False)

    tmp = conv(
223
        input, 1, 1, filter_num // 4, stride, stride, name=name + "_1_1_reduce")
224 225 226 227 228 229 230 231 232 233 234 235
    tmp = bn(tmp, relu=True)

    tmp = zero_padding(tmp, padding=padding)
    if padding == 0:
        padding = 'SAME'
    else:
        padding = 'VALID'
    if dilation is None:
        tmp = conv(
            tmp,
            3,
            3,
236
            filter_num // 4,
237 238 239 240 241 242 243 244 245
            1,
            1,
            padding=padding,
            name=name + "_3_3")
    else:
        tmp = atrous_conv(
            tmp,
            3,
            3,
246
            filter_num // 4,
247 248 249 250 251 252 253 254
            dilation,
            padding=padding,
            name=name + "_3_3")

    tmp = bn(tmp, relu=True)
    tmp = conv(tmp, 1, 1, filter_num, 1, 1, name=name + "_1_1_increase")
    tmp = bn(tmp, relu=False)
    tmp = proj_bn + tmp
W
wanghaoshuang 已提交
255
    tmp = fluid.layers.relu(tmp)
256 257 258 259
    return tmp


def sub_net_4(input, input_shape):
W
whs 已提交
260
    tmp = interp(input, out_shape=(input_shape // 32))
261 262 263 264
    tmp = dilation_convs(tmp)
    tmp = pyramis_pooling(tmp, input_shape)
    tmp = conv(tmp, 1, 1, 256, 1, 1, name="conv5_4_k1")
    tmp = bn(tmp, relu=True)
W
whs 已提交
265
    tmp = interp(tmp, out_shape=np.ceil(input_shape / 16))
266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292
    return tmp


def sub_net_2(input):
    tmp = conv(input, 1, 1, 128, 1, 1, name="conv3_1_sub2_proj")
    tmp = bn(tmp, relu=False)
    return tmp


def sub_net_1(input):
    tmp = conv(input, 3, 3, 32, 2, 2, padding='SAME', name="conv1_sub1")
    tmp = bn(tmp, relu=True)
    tmp = conv(tmp, 3, 3, 32, 2, 2, padding='SAME', name="conv2_sub1")
    tmp = bn(tmp, relu=True)
    tmp = conv(tmp, 3, 3, 64, 2, 2, padding='SAME', name="conv3_sub1")
    tmp = bn(tmp, relu=True)
    tmp = conv(tmp, 1, 1, 128, 1, 1, name="conv3_sub1_proj")
    tmp = bn(tmp, relu=False)
    return tmp


def CCF24(sub2_out, sub4_out, input_shape):
    tmp = zero_padding(sub4_out, padding=2)
    tmp = atrous_conv(tmp, 3, 3, 128, 2, name="conv_sub4")
    tmp = bn(tmp, relu=False)
    tmp = tmp + sub2_out
    tmp = fluid.layers.relu(tmp)
293
    tmp = interp(tmp, input_shape // 8)
294 295 296 297 298 299 300 301 302
    return tmp


def CCF124(sub1_out, sub24_out, input_shape):
    tmp = zero_padding(sub24_out, padding=2)
    tmp = atrous_conv(tmp, 3, 3, 128, 2, name="conv_sub2")
    tmp = bn(tmp, relu=False)
    tmp = tmp + sub1_out
    tmp = fluid.layers.relu(tmp)
303
    tmp = interp(tmp, input_shape // 4)
304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326
    return tmp


def icnet(data, num_classes, input_shape):
    image_sub1 = data
    image_sub2 = interp(data, out_shape=input_shape * 0.5)

    s_convs = shared_convs(image_sub2)
    sub4_out = sub_net_4(s_convs, input_shape)
    sub2_out = sub_net_2(s_convs)
    sub1_out = sub_net_1(image_sub1)

    sub24_out = CCF24(sub2_out, sub4_out, input_shape)
    sub124_out = CCF124(sub1_out, sub24_out, input_shape)

    conv6_cls = conv(
        sub124_out, 1, 1, num_classes, 1, 1, biased=True, name="conv6_cls")
    sub4_out = conv(
        sub4_out, 1, 1, num_classes, 1, 1, biased=True, name="sub4_out")
    sub24_out = conv(
        sub24_out, 1, 1, num_classes, 1, 1, biased=True, name="sub24_out")

    return sub4_out, sub24_out, conv6_cls