utils.py 8.9 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118
"""Contains common utility functions."""
#  Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
#
#Licensed under the Apache License, Version 2.0 (the "License");
#you may not use this file except in compliance with the License.
#You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
#Unless required by applicable law or agreed to in writing, software
#distributed under the License is distributed on an "AS IS" BASIS,
#WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#See the License for the specific language governing permissions and
#limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

from collections import OrderedDict
from prettytable import PrettyTable
import distutils.util
import numpy as np
import six


def print_arguments(args):
    """Print argparse's arguments.

    Usage:

    .. code-block:: python

        parser = argparse.ArgumentParser()
        parser.add_argument("name", default="Jonh", type=str, help="User name.")
        args = parser.parse_args()
        print_arguments(args)

    :param args: Input argparse.Namespace for printing.
    :type args: argparse.Namespace
    """
    print("-----------  Configuration Arguments -----------")
    for arg, value in sorted(six.iteritems(vars(args))):
        print("%s: %s" % (arg, value))
    print("------------------------------------------------")


def add_arguments(argname, type, default, help, argparser, **kwargs):
    """Add argparse's argument.

    Usage:

    .. code-block:: python

        parser = argparse.ArgumentParser()
        add_argument("name", str, "Jonh", "User name.", parser)
        args = parser.parse_args()
    """
    type = distutils.util.strtobool if type == bool else type
    argparser.add_argument(
        "--" + argname,
        default=default,
        type=type,
        help=help + ' Default: %(default)s.',
        **kwargs)


def summary(main_prog):
    '''
    It can summary model's PARAMS, FLOPs until now.
    It support common operator like conv, fc, pool, relu, sigmoid, bn etc.
    Args:
        main_prog: main program
    Returns:
        print summary on terminal
    '''
    collected_ops_list = []
    is_quantize = False
    for one_b in main_prog.blocks:
        block_vars = one_b.vars
        for one_op in one_b.ops:
            if str(one_op.type).find('quantize') > -1:
                is_quantize = True
            op_info = OrderedDict()
            spf_res = _summary_model(block_vars, one_op)
            if spf_res is None:
                continue
            # TODO: get the operator name
            op_info['type'] = one_op.type
            op_info['input_shape'] = spf_res[0][1:]
            op_info['out_shape'] = spf_res[1][1:]
            op_info['PARAMs'] = spf_res[2]
            op_info['FLOPs'] = spf_res[3]
            collected_ops_list.append(op_info)


    summary_table, total = _format_summary(collected_ops_list)
    _print_summary(summary_table, total)
    return total, is_quantize


def _summary_model(block_vars, one_op):
    '''
    Compute operator's params and flops.
    Args:
        block_vars: all vars of one block
        one_op: one operator to count
    Returns:
        in_data_shape: one operator's input data shape
        out_data_shape: one operator's output data shape
        params: one operator's PARAMs
        flops: : one operator's FLOPs
    '''
    if one_op.type in ['conv2d', 'depthwise_conv2d']:
        k_arg_shape = block_vars[one_op.input("Filter")[0]].shape
        in_data_shape = block_vars[one_op.input("Input")[0]].shape
        out_data_shape = block_vars[one_op.output("Output")[0]].shape
        c_out, c_in, k_h, k_w = k_arg_shape
        _, c_out_, h_out, w_out = out_data_shape
119
        #assert c_out == c_out_, 'shape error!'
120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267
        k_groups = one_op.attr("groups")
        kernel_ops = k_h * k_w * (c_in / k_groups)
        bias_ops = 0 if one_op.input("Bias") == [] else 1
        params = c_out * (kernel_ops + bias_ops)
        flops = h_out * w_out * c_out * (kernel_ops + bias_ops)
        # base nvidia paper, include mul and add
        flops = 2 * flops

        # var_name = block_vars[one_op.input("Filter")[0]].name
        # if var_name.endswith('.int8'):
        #     flops /= 2.0

    elif one_op.type == 'pool2d':
        in_data_shape = block_vars[one_op.input("X")[0]].shape
        out_data_shape = block_vars[one_op.output("Out")[0]].shape
        _, c_out, h_out, w_out = out_data_shape
        k_size = one_op.attr("ksize")
        params = 0
        flops = h_out * w_out * c_out * (k_size[0] * k_size[1])

    elif one_op.type == 'mul':
        k_arg_shape = block_vars[one_op.input("Y")[0]].shape
        in_data_shape = block_vars[one_op.input("X")[0]].shape
        out_data_shape = block_vars[one_op.output("Out")[0]].shape
        # TODO: fc has mul ops
        # add attr to mul op, tell us whether it belongs to 'fc'
        # this's not the best way
        if 'fc' not in one_op.output("Out")[0]:
            return None
        k_in, k_out = k_arg_shape
        # bias in sum op
        params = k_in * k_out + 1
        flops = k_in * k_out

        # var_name = block_vars[one_op.input("Y")[0]].name
        # if var_name.endswith('.int8'):
        #     flops /= 2.0

    elif one_op.type in ['sigmoid', 'tanh', 'relu', 'leaky_relu', 'prelu']:
        in_data_shape = block_vars[one_op.input("X")[0]].shape
        out_data_shape = block_vars[one_op.output("Out")[0]].shape
        params = 0
        if one_op.type == 'prelu':
            params = 1
        flops = 1
        for one_dim in in_data_shape[1:]:
            flops *= one_dim

    elif one_op.type == 'batch_norm':
        in_data_shape = block_vars[one_op.input("X")[0]].shape
        out_data_shape = block_vars[one_op.output("Y")[0]].shape
        _, c_in, h_out, w_out = in_data_shape
        # gamma, beta
        params = c_in * 2
        # compute mean and std
        flops = h_out * w_out * c_in * 2

    else:
        return None

    return in_data_shape, out_data_shape, params, flops


def _format_summary(collected_ops_list):
    '''
    Format summary report.
    Args:
        collected_ops_list: the collected operator with summary
    Returns:
        summary_table: summary report format
        total: sum param and flops
    '''
    summary_table = PrettyTable(
        ["No.", "TYPE", "INPUT", "OUTPUT", "PARAMs", "FLOPs"])
    summary_table.align = 'r'

    total = {}
    total_params = []
    total_flops = []
    for i, one_op in enumerate(collected_ops_list):
        # notice the order
        table_row = [
            i,
            one_op['type'],
            one_op['input_shape'],
            one_op['out_shape'],
            int(one_op['PARAMs']),
            int(one_op['FLOPs']),
        ]
        summary_table.add_row(table_row)
        total_params.append(int(one_op['PARAMs']))
        total_flops.append(int(one_op['FLOPs']))

    total['params'] = total_params
    total['flops'] = total_flops

    return summary_table, total


def _print_summary(summary_table, total):
    '''
    Print all the summary on terminal.
    Args:
        summary_table: summary report format
        total: sum param and flops
    '''
    parmas = total['params']
    flops = total['flops']
    print(summary_table)
    print('Total PARAMs: {}({:.4f}M)'.format(
        sum(parmas), sum(parmas) / (10 ** 6)))
    print('Total FLOPs: {}({:.2f}G)'.format(sum(flops), sum(flops) / 10 ** 9))
    print(
        "Notice: \n now supported ops include [Conv, DepthwiseConv, FC(mul), BatchNorm, Pool, Activation(sigmoid, tanh, relu, leaky_relu, prelu)]"
    )


def get_batch_dt_res(nmsed_out_v, data, contiguous_category_id_to_json_id, batch_size):
    dts_res = []
    lod = nmsed_out_v[0].lod()[0]
    nmsed_out_v = np.array(nmsed_out_v[0])
    real_batch_size = min(batch_size, len(data))
    assert (len(lod) == real_batch_size + 1), \
    "Error Lod Tensor offset dimension. Lod({}) vs. batch_size({})".format(len(lod), batch_size)
    k = 0
    for i in range(real_batch_size):
        dt_num_this_img = lod[i + 1] - lod[i]
        image_id = int(data[i][4][0])
        image_width = int(data[i][4][1])
        image_height = int(data[i][4][2])
        for j in range(dt_num_this_img):
            dt = nmsed_out_v[k]
            k = k + 1
            category_id, score, xmin, ymin, xmax, ymax = dt.tolist()
            xmin = max(min(xmin, 1.0), 0.0) * image_width
            ymin = max(min(ymin, 1.0), 0.0) * image_height
            xmax = max(min(xmax, 1.0), 0.0) * image_width
            ymax = max(min(ymax, 1.0), 0.0) * image_height
            w = xmax - xmin
            h = ymax - ymin
            bbox = [xmin, ymin, w, h]
            dt_res = {
                'image_id': image_id,
                'category_id': contiguous_category_id_to_json_id[category_id],
                'bbox': bbox,
                'score': score
            }
            dts_res.append(dt_res)
X
xiaoting 已提交
268
    return dts_res