retinanet_r101_fpn_1x.yml 2.1 KB
Newer Older
F
FlyingQianMM 已提交
1 2 3 4 5
architecture: RetinaNet
train_feed: FasterRCNNTrainFeed
eval_feed: FasterRCNNEvalFeed
test_feed: FasterRCNNTestFeed
max_iters: 90000
6
use_gpu: true
F
FlyingQianMM 已提交
7 8 9 10 11 12
pretrain_weights: https://paddle-imagenet-models-name.bj.bcebos.com/ResNet101_pretrained.tar
weights: output/retinanet_r101_fpn_1x/model_final
log_smooth_window: 20
snapshot_iter: 10000
metric: COCO
save_dir: output
13
num_classes: 81
F
FlyingQianMM 已提交
14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81

RetinaNet:
  backbone: ResNet
  fpn: FPN
  retina_head: RetinaHead

ResNet:
  norm_type: affine_channel
  norm_decay: 0.
  depth: 101
  feature_maps: [3, 4, 5]
  freeze_at: 2

FPN:
  max_level: 7
  min_level: 3
  num_chan: 256
  spatial_scale: [0.03125, 0.0625, 0.125]
  has_extra_convs: true

RetinaHead:
  num_convs_per_octave: 4
  num_chan: 256
  max_level: 7
  min_level: 3
  prior_prob: 0.01
  base_scale: 4
  num_scales_per_octave: 3
  anchor_generator:
    aspect_ratios: [1.0, 2.0, 0.5]
    variance: [1.0, 1.0, 1.0, 1.0]
  target_assign:
    positive_overlap: 0.5
    negative_overlap: 0.4
  gamma: 2.0
  alpha: 0.25
  sigma: 3.0151134457776365
  output_decoder:
    score_thresh: 0.05
    nms_thresh: 0.5
    pre_nms_top_n: 1000
    detections_per_im: 100
    nms_eta: 1.0

LearningRate:
  base_lr: 0.01
  schedulers:
  - !PiecewiseDecay
    gamma: 0.1
    milestones: [60000, 80000]
  - !LinearWarmup
    start_factor: 0.3333333333333333
    steps: 500

OptimizerBuilder:
  optimizer:
    momentum: 0.9
    type: Momentum
  regularizer:
    factor: 0.0001
    type: L2

FasterRCNNTrainFeed:
  batch_size: 2
  batch_transforms:
  - !PadBatch
    pad_to_stride: 128
  dataset:
Q
qingqing01 已提交
82
    dataset_dir: dataset/coco
F
FlyingQianMM 已提交
83 84 85 86 87 88 89 90 91 92
    annotation: annotations/instances_train2017.json
    image_dir: train2017
  num_workers: 2

FasterRCNNEvalFeed:
  batch_size: 2
  batch_transforms:
  - !PadBatch
    pad_to_stride: 128
  dataset:
Q
qingqing01 已提交
93
    dataset_dir: dataset/coco
F
FlyingQianMM 已提交
94 95 96 97 98 99 100 101 102 103
    annotation: annotations/instances_val2017.json
    image_dir: val2017
  num_workers: 2

FasterRCNNTestFeed:
  batch_size: 1
  batch_transforms:
  - !PadBatch
    pad_to_stride: 128
  dataset:
104
    annotation: dataset/coco/annotations/instances_val2017.json
F
FlyingQianMM 已提交
105
  num_workers: 2