faster_rcnn_r101_1x.yml 2.3 KB
Newer Older
1 2 3 4
architecture: FasterRCNN
train_feed: FasterRCNNTrainFeed
eval_feed: FasterRCNNEvalFeed
test_feed: FasterRCNNTestFeed
Y
Yang Zhang 已提交
5
use_gpu: true
6 7 8 9 10 11 12
max_iters: 180000
log_smooth_window: 20
save_dir: output
snapshot_iter: 10000
pretrain_weights: https://paddle-imagenet-models-name.bj.bcebos.com/ResNet101_pretrained.tar
metric: COCO
weights: output/faster_rcnn_r101_1x/model_final
13
num_classes: 81
14 15 16 17 18 19 20 21 22 23 24

FasterRCNN:
  backbone: ResNet
  rpn_head: RPNHead
  roi_extractor: RoIAlign
  bbox_head: BBoxHead
  bbox_assigner: BBoxAssigner

ResNet:
  norm_type: affine_channel
  depth: 101
25
  feature_maps: 4
26 27 28
  freeze_at: 2

ResNetC5:
29
  depth: 101
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
  norm_type: affine_channel

RPNHead:
  anchor_generator:
    anchor_sizes: [32, 64, 128, 256, 512]
    aspect_ratios: [0.5, 1.0, 2.0]
    stride: [16.0, 16.0]
    variance: [1.0, 1.0, 1.0, 1.0]
  rpn_target_assign:
    rpn_batch_size_per_im: 256
    rpn_fg_fraction: 0.5
    rpn_negative_overlap: 0.3
    rpn_positive_overlap: 0.7
    rpn_straddle_thresh: 0.0
    use_random: true
  train_proposal:
    min_size: 0.0
    nms_thresh: 0.7
    pre_nms_top_n: 12000
    post_nms_top_n: 2000
  test_proposal:
    min_size: 0.0
    nms_thresh: 0.7
    pre_nms_top_n: 6000
    post_nms_top_n: 1000

RoIAlign:
  resolution: 14
  sampling_ratio: 0
  spatial_scale: 0.0625

BBoxAssigner:
  batch_size_per_im: 512
  bbox_reg_weights: [0.1, 0.1, 0.2, 0.2]
  bg_thresh_hi: 0.5
  bg_thresh_lo: 0.0
  fg_fraction: 0.25
  fg_thresh: 0.5

BBoxHead:
  head: ResNetC5
  nms:
    keep_top_k: 100
    nms_threshold: 0.5
    score_threshold: 0.05

LearningRate:
  base_lr: 0.01
  schedulers:
  - !PiecewiseDecay
    gamma: 0.1
81
    milestones: [120000, 160000]
82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97
  - !LinearWarmup
    start_factor: 0.3333333333333333
    steps: 500

OptimizerBuilder:
  optimizer:
    momentum: 0.9
    type: Momentum
  regularizer:
    factor: 0.0001
    type: L2

FasterRCNNTrainFeed:
  # batch size per device
  batch_size: 1
  dataset:
98
    dataset_dir: dataset/coco
99 100 101 102 103 104 105 106
    annotation: annotations/instances_train2017.json
    image_dir: train2017
  drop_last: false
  num_workers: 2

FasterRCNNEvalFeed:
  batch_size: 1
  dataset:
107
    dataset_dir: dataset/coco
108 109 110 111 112 113 114
    annotation: annotations/instances_val2017.json
    image_dir: val2017
  num_workers: 2

FasterRCNNTestFeed:
  batch_size: 1
  dataset:
115
    annotation: dataset/coco/annotations/instances_val2017.json