mmoe_train.py 4.9 KB
Newer Older
Z
zhang wenhui 已提交
1 2
import paddle.fluid as fluid
import numpy as np
Z
zhang wenhui 已提交
3 4
import time
from args import *
Z
zhang wenhui 已提交
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60


def fc_layers(input, layers, acts, prefix):
    fc_layers_input = [input]
    fc_layers_size = layers
    fc_layers_act = acts
    init_range = 0.2
    scales_tmp = [input.shape[1]] + fc_layers_size
    scales = []
    for i in range(len(scales_tmp)):
        scales.append(init_range / (scales_tmp[i]**0.5))
    for i in range(len(fc_layers_size)):
        name = prefix + "_" + str(i)
        fc = fluid.layers.fc(
                input = fc_layers_input[-1],
                size = fc_layers_size[i],
                act = fc_layers_act[i],
                param_attr = \
                        fluid.ParamAttr(learning_rate=1.0, \
                        initializer=fluid.initializer.NormalInitializer(loc=0.0, scale=1.0 * scales[i])),
                bias_attr = \
                        fluid.ParamAttr(learning_rate=1.0, \
                        initializer=fluid.initializer.NormalInitializer(loc=0.0, scale=1.0 * scales[i])),
                name=name)
        fc_layers_input.append(fc)
    return fc_layers_input[-1]


def mmoe_layer(inputs, expert_num=8, gate_num=3):

    expert_out = []
    expert_nn = [3]
    expert_act = ['relu']
    for i in range(0, expert_num):
        cur_expert = fc_layers(inputs, expert_nn, expert_act,
                               'expert_' + str(i))
        expert_out.append(cur_expert)
    expert_concat = fluid.layers.concat(expert_out, axis=1)
    expert_concat = fluid.layers.reshape(expert_concat,
                                         [-1, expert_num, expert_nn[-1]])

    outs = []
    for i in range(0, gate_num):
        cur_gate = fluid.layers.fc(input=inputs,
                                   size=expert_num,
                                   act='softmax',
                                   name='gate_' + str(i))
        cur_gate_expert = fluid.layers.elementwise_mul(
            expert_concat, cur_gate, axis=0)
        cur_gate_expert = fluid.layers.reduce_sum(cur_gate_expert, dim=1)
        cur_fc = fc_layers(cur_gate_expert, [64, 32, 16, 1],
                           ['relu', 'relu', 'relu', None], 'out_' + str(i))
        outs.append(cur_fc)
    return outs


Z
zhang wenhui 已提交
61
def model(dict_dim, emb_dim):
62 63 64 65 66 67
    label_like = fluid.data(
        name="label_like", shape=[-1, 1], dtype="int64", lod_level=0)
    label_comment = fluid.data(
        name="label_comment", shape=[-1, 1], dtype="int64", lod_level=0)
    label_share = fluid.data(
        name="label_share", shape=[-1, 1], dtype="int64", lod_level=0)
Z
zhang wenhui 已提交
68

69
    a_data = fluid.data(name="a", shape=[-1, 1], dtype="int64")
Z
zhang wenhui 已提交
70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104
    emb = fluid.layers.embedding(input=a_data, size=[dict_dim, emb_dim])

    outs = mmoe_layer(emb, expert_num=8, gate_num=3)

    output_like = fluid.layers.sigmoid(
        fluid.layers.clip(
            outs[0], min=-15.0, max=15.0), name="output_like")
    output_comment = fluid.layers.sigmoid(
        fluid.layers.clip(
            outs[1], min=-15.0, max=15.0), name="output_comment")
    output_share = fluid.layers.sigmoid(
        fluid.layers.clip(
            outs[2], min=-15.0, max=15.0), name="output_share")

    cost_like = fluid.layers.log_loss(
        input=output_like,
        label=fluid.layers.cast(
            x=label_like, dtype='float32'))
    cost_comment = fluid.layers.log_loss(
        input=output_comment,
        label=fluid.layers.cast(
            x=label_comment, dtype='float32'))
    cost_share = fluid.layers.log_loss(
        input=output_share,
        label=fluid.layers.cast(
            x=label_share, dtype='float32'))

    avg_cost_like = fluid.layers.mean(x=cost_like)
    avg_cost_comment = fluid.layers.mean(x=cost_comment)
    avg_cost_share = fluid.layers.mean(x=cost_share)

    cost = avg_cost_like + avg_cost_comment + avg_cost_share
    return cost, [a_data, label_like, label_comment, label_share]


Z
zhang wenhui 已提交
105 106 107 108 109 110 111
args = parse_args()
batch_size = args.batch_size
dict_dim = args.dict_dim
emb_dim = args.emb_dim

print("batch_size:[%d], dict_dim:[%d], emb_dim:[%d], learning_rate:[%.4f]" %
      (batch_size, dict_dim, emb_dim, args.base_lr))
Z
zhang wenhui 已提交
112

Z
zhang wenhui 已提交
113 114
loss, data_list = model(dict_dim, emb_dim)
sgd = fluid.optimizer.SGD(learning_rate=args.base_lr)
Z
zhang wenhui 已提交
115
sgd.minimize(loss)
Z
zhang wenhui 已提交
116
place = fluid.CUDAPlace(0) if args.use_gpu else fluid.CPUPlace()
Z
zhang wenhui 已提交
117 118 119 120 121 122 123
exe = fluid.Executor(place)
exe.run(fluid.default_startup_program())
for batch_id in range(100):
    data = [
        np.random.randint(
            2, size=(batch_size, 1)).astype('int64') for i in range(4)
    ]
Z
zhang wenhui 已提交
124
    begin = time.time()
Z
zhang wenhui 已提交
125 126 127 128 129 130 131 132
    loss_data, = exe.run(fluid.default_main_program(),
                         feed={
                             "a": data[0],
                             "label_like": data[1],
                             "label_comment": data[2],
                             "label_share": data[3]
                         },
                         fetch_list=[loss.name])
Z
zhang wenhui 已提交
133 134 135
    end = time.time()
    print("batch_id:[%d], loss:[%.5f], batch_time:[%.5f s]" %
          (batch_id, float(np.array(loss_data)), end - begin))